Show simple item record

Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication

dc.contributor.authorMolofsky, Ari B.en_US
dc.contributor.authorSwanson, Michele S.en_US
dc.date.accessioned2010-06-01T20:57:40Z
dc.date.available2010-06-01T20:57:40Z
dc.date.issued2003-10en_US
dc.identifier.citationMolofsky, Ari B.; Swanson, Michele S. (2003). " Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication." Molecular Microbiology 50(2): 445-461. <http://hdl.handle.net/2027.42/74055>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74055
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=14617170&dopt=citationen_US
dc.description.abstractLegionella pneumophila can replicate inside amoebae and also alveolar macrophages to cause Legionnaires’ Disease in susceptible hosts. When nutrients become limiting, a stringent-like response coordinates the differentiation of L. pneumophila to a transmissive form, a process mediated by the two-component system LetA/S and the sigma factors RpoS and FliA. Here we demonstrate that the broadly conserved RNA binding protein CsrA is a global repressor of L. pneumophila transmission phenotypes and an essential activator of intracellular replication. By analysing csrA expression and the phenotypes of csrA single and double mutants and a strain that expresses csrA constitutively, we demonstrate that, during replication in broth, CsrA represses every post-exponential phase phenotype examined, including cell shape shortening, motility, pigmentation, stress resistance, sodium sensitivity, cytotoxicity and efficient macrophage infection. At the transition to the post-exponential phase, LetA/S relieves CsrA repression to induce transmission phenotypes by both FliA-dependent and -independent pathways. For L. pneumophila to avoid lysosomal degradation in macrophages, CsrA repression must be relieved by LetA/S before phagocytosis; conversely, before intracellular bacteria can replicate, CsrA repression must be restored. The reciprocal regulation of replication and transmission exemplified by CsrA likely enhances the fitness of microbes faced with fluctuating environments.en_US
dc.format.extent418251 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2003 Blackwell Publishing Ltden_US
dc.titleLegionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replicationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109–0620, USA.en_US
dc.identifier.pmid14617170en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74055/1/j.1365-2958.2003.03706.x.pdf
dc.identifier.doi10.1046/j.1365-2958.2003.03706.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAarons, S., Abbas, A., Adams, C., Fenton, A., and O'Gara, F. ( 2000 ) A regulatory RNA (PrrB RNA) modulates expression of secondary metabolite genes in Pseudomonas fluorescens F113. J Bacteriol 182: 3913 – 3919.en_US
dc.identifier.citedreferenceAlli, O. A. T., Gao, L. -Y., Pedersen, L. L., Zink, S., Radulic, M., Doric, M., and Abu Kwaik, Y. ( 2000 ) Temporal pore formation-mediated egress from macrophages and alveolar epithelial cells by Legionella pneumophila. Infect Immun 68: 6431 – 6440.en_US
dc.identifier.citedreferenceAltier, C., Suyemoto, M., and Lawhon, S. D. ( 2000a ) Regulation of Salmonella enterica serovar typhimurium invasion genes by csrA. Infect Immun 68: 6790 – 6797.en_US
dc.identifier.citedreferenceAltier, C., Suyemoto, M., Ruiz, A. I., Burnham, K. D., and Maurer, R. ( 2000b ) Characterization of two novel regulatory genes affecting Salmonella invasion gene expression. Mol Microbiol 35: 635 – 646.en_US
dc.identifier.citedreferenceBachman, M. A., and Swanson, M. S. ( 2001 ) RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase. Mol Microbiol 40: 1201 – 1214.en_US
dc.identifier.citedreferenceBaker, C. S., Morozov, I., Suzuki, K., Romeo, T., and Babitzke, P. ( 2002 ) CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol Microbiol 44: 1599 – 1610.en_US
dc.identifier.citedreferenceBandyopadhyay, P., and Steinman, H. M. ( 1998 ) Legionella pneumophila catalase-peroxidases: cloning of the katB gene and studies of KatB function. J Bacteriol 180: 5369 – 5374.en_US
dc.identifier.citedreferenceBerger, K. H., and Isberg, R. R. ( 1993 ) Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Micro 7: 7 – 19.en_US
dc.identifier.citedreferenceBerger, K. H., Merriam, J. J., and Isberg, R. I. ( 1994 ) Altered intracellular targeting properties associated with mutations in the Legionella pneumophila dotA gene. Mol Microbiol 14: 809 – 822.en_US
dc.identifier.citedreferenceBlumer, C., Heeb, S., Pessi, G., and Haas, D. ( 1999 ) Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA 96: 14073 – 14078.en_US
dc.identifier.citedreferenceByrne, B., and Swanson, M. S. ( 1998 ) Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66: 3029 – 3034.en_US
dc.identifier.citedreferenceCatrenich, C. E., and Johnson, W. ( 1989 ) Characterization of the selective inhibition of growth of virulent Legionella pneumophila by supplemented Mueller-Hinton medium. Infect Immun 57: 1862 – 1864.en_US
dc.identifier.citedreferenceChatterjee, A., Cui, Y., Liu, Y., Dumenyo, C. K., and Chatterjee, A. K. ( 1995 ) Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-l-homoserine lactone. Appl Environ Microbiol 61: 1959 – 1967.en_US
dc.identifier.citedreferenceChilcott, G. S., and Hughes, K. T. ( 2000 ) Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64: 694 – 708.en_US
dc.identifier.citedreferenceCoers, J., Monahan, C., and Roy, C. R. ( 1999 ) Modulation of phagosome biogenesis by Legionella pneumophila creates an organelle permissive for intracellular growth. Nature Cell Biol 7: 451 – 453.en_US
dc.identifier.citedreferenceCui, Y., Chatterjee, A., Liu, Y., Dumenyo, C. K., and Chatterjee, A. K. ( 1995 ) Identification of a global repressor gene, rsmA, of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N-(3-oxohexanoyl)-l-homoserine lactone, and pathogenicity in soft-rotting Erwinia spp. J Bacteriol 177: 5108 – 5115.en_US
dc.identifier.citedreferenceCui, Y., Chatterjee, A., and Chatterjee, A. K. ( 2001 ) Effects of the two-component system comprising GacA and GacS of Erwinia carotovora subsp. carotovora on the production of global regulatory rsmB RNA, extracellular enzymes, and harpinEcc. Mol Plant Microbe Interact 14: 516 – 526.en_US
dc.identifier.citedreferenceEichelberg, K., and Galan, J. E. ( 2000 ) The flagellar sigma factor FliA (sigma (28) regulates the expression of Salmonella genes associated with the centisome 63 type III secretion system. Infect Immun 68: 2735 – 2743.en_US
dc.identifier.citedreferenceFaulkner, G., and Garduno, R. A. ( 2002 ) Ultrastructural analysis of differentiation in Legionella pneumophila. J Bacteriol 184: 7025 – 7041.en_US
dc.identifier.citedreferenceFettes, P. S., Forsbach-Birk, V., Lynch, D., and Marre, R. ( 2001 ) Overexpresssion of a Legionella pneumophila homologue of the E. coli regulator csrA affects cell size, flagellation, and pigmentation. Int J Med Microbiol 291: 353 – 360.en_US
dc.identifier.citedreferenceFields, B. S. ( 1996 ) The molecular ecology of legionellae. Trends Micro 4: 286 – 290.en_US
dc.identifier.citedreferenceFrey, J., Bagdasarian, M., Feiss, D., Frankline, F. C. H., and Deshusses, J. ( 1983 ) Stable cosmid vectors that enable the introduction of cloned fragments into a wide range of Gram-negative bacteria. Gene 24: 299 – 308.en_US
dc.identifier.citedreferenceGarduno, R. A., Garduno, E., Hiltz, M., and Hoffman, P. S. ( 2002 ) Intracellular growth of Legionella pneumophila gives rise to a differentiated form dissimilar to stationary-phase forms. Infect Immun 70: 6273 – 6283.en_US
dc.identifier.citedreferenceGeorge, J. R., Pine, L., Reeves, M. W., and Harrell, W. K. ( 1980 ) Amino acid requirements of Legionella pneumophila. J Clin Microbiol 11: 286 – 291.en_US
dc.identifier.citedreferenceHales, L. M., and Shuman, H. A. ( 1999 ) The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii. J Bacteriol 181: 4879 – 4889.en_US
dc.identifier.citedreferenceHammer, B. K., and Swanson, M. S. ( 1999 ) Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol Microbiol 33: 721 – 731.en_US
dc.identifier.citedreferenceHammer, B. K., Suzuki, E., and Swanson, M. ( 2002 ) A two-component regulator induces the transmission phenotype of stationary phase Legionella pneumophila. Mol Microbiol 44: 107 – 118.en_US
dc.identifier.citedreferenceHeeb, S., and Haas, D. ( 2001 ) Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria. Mol Plant Microbe Interact 14: 1351 – 1363.en_US
dc.identifier.citedreferenceHeeb, S., Blumer, C., and Haas, D. ( 2002 ) Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 184: 1046 – 1056.en_US
dc.identifier.citedreferenceHeuner, K., Bender-Beck, L., Brand, B. C., Luck, P. C., Mann, K. H., Marre, R., et al. ( 1995 ) Cloning and genetic characterization of the flagellum subunit gene (flaA) of Legionella pneumophila serogroup 1. Infect Immun 63: 2499 – 2507.en_US
dc.identifier.citedreferenceHeuner, K., Hacker, J., and Brand, B. C. ( 1997 ) The alternative sigma factor sigma28 of Legionella pneumophila restores flagellation and motility to an Escherichia coli fliA mutant. J Bacteriol 179: 17 – 23.en_US
dc.identifier.citedreferenceHeuner, K., Brand, B. C., and Hacker, J. ( 1999 ) The expression of the flagellum of Legionella pneumophila is modulated by different environmental factors. FEMS Microbiol Lett 175: 69 – 77.en_US
dc.identifier.citedreferenceHeuner, K., Dietrich, C., Skriwan, C., Steinert, M., and Hacker, J. ( 2002 ) Influence of the alternative sigma (28) factor on virulence and flagellum expression of Legionella pneumophila. Infect Immun 70: 1604 – 1608.en_US
dc.identifier.citedreferenceHoffman, P. ( 1984 ) Bacterial physiology. In Legionella: Proceedings of the 2nd International Symposium. Thornsberry, C., Balows, A., Feeley, J. C., and Jakubowski, W., (eds). Washington, D.C.: American Society for Microbiology, pp. 61 – 67.en_US
dc.identifier.citedreferenceHorwitz, M. A. ( 1983 ) The Legionnaires’ disease bacterium ( Legionella pneumophila ) inhibits phagosome lysosome fusion in human monocytes. J Exp Med 158: 2108 – 2126.en_US
dc.identifier.citedreferenceHorwitz, M. A., and Silverstein, S. C. ( 1980 ) Legionnaires’ disease bacterium ( Legionella pneumophila ) multiplies intracellularly in human monocytes. J Clin Invest 66: 441 – 450.en_US
dc.identifier.citedreferenceJackson, D. W., Suzuki, K., Oakford, L., Simecka, J. W., Hart, M. E., and Romeo, T. ( 2002 ) Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 184: 290 – 301.en_US
dc.identifier.citedreferenceKirby, J. E., Vogel, J. P., Andrews, H. L., and Isberg, R. R. ( 1998 ) Evidence of pore-forming ability by Legionella pneumophila. Mol Microbiol 27: 323 – 336.en_US
dc.identifier.citedreferenceLynch, D., Fieser, N., Gloggler, K., Forsbach-Birk, V., and Marre, R. ( 2003 ) The response regulator LetA regulates the stationary-phase stress response in Legionella pneumophila and is required for efficient infection of Acanthamoeba castellanii. FEMS Microbiol Lett 219: 241 – 248.en_US
dc.identifier.citedreferenceMcDade, J. E., Shepard, C. C., Fraser, D. W., Tsai, T. R., Redus, M. A., and Dowdle, W. R. ( 1977 ) Legionnaires’ disease: isolation of a bacterium and demonstration of its role in other respiratory diseases. N Engl J Med 297: 1197 – 1203.en_US
dc.identifier.citedreferenceMcLean, I. W., and Nakane, P. K. ( 1974 ) Periodate-lysine-paraformaldehyde fixative. A new fixative for immunoelectron microscopy. J Histochem Cytochem 22: 1077 – 1083.en_US
dc.identifier.citedreferencePernestig, A. K., Melefors, O., and Georgellis, D. ( 2001 ) Identification of UvrY as the cognate response regulator for the BarA sensor kinase in Escherichia coli. J Biol Chem 276: 225 – 231.en_US
dc.identifier.citedreferencePernestig, A. K., Georgellis, D., Romeo, T., Suzuki, K., Tomenius, H., Normark, S., and Melefors, O. ( 2003 ) The Escherichia coli BarA-UvrY two-component system is needed for efficient switching between glycolytic and gluconeogenic carbon sources. J Bacteriol 185: 843 – 853.en_US
dc.identifier.citedreferencePessi, G., Williams, F., Hindle, Z., Heurlier, K., Holden, M. T., Camara, M., et al. ( 2001 ) The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J Bacteriol 183: 6676 – 6683.en_US
dc.identifier.citedreferenceRomeo, T. ( 1998 ) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29: 1321 – 1330.en_US
dc.identifier.citedreferenceRomeo, T., Gong, M., Liu, M. Y., and Brun-Zinkernagel, A. M. ( 1993 ) Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 175: 4744 – 4755.en_US
dc.identifier.citedreferenceRowbotham, T. J. ( 1980 ) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33: 1179 – 1183.en_US
dc.identifier.citedreferenceRowbotham, T. J. ( 1986 ) Current views on the relationships between amoebae, legionellae and man. Isr J Med Sci 22: 678 – 689.en_US
dc.identifier.citedreferenceRoy, C. R., and Isberg, R. R. ( 1997 ) Topology of Legionella pneumophila DotA: an inner membrane protein required for replication in macrophages. Infect Immun 65: 571 – 578.en_US
dc.identifier.citedreferenceRoy, C. R., Berger, K. H., and Isberg, R. R. ( 1998 ) Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol Microbiol 28: 663 – 674.en_US
dc.identifier.citedreferenceSabnis, N. A., Yang, H., and Romeo, T. ( 1995 ) Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. J Biol Chem 270: 29096 – 29104.en_US
dc.identifier.citedreferenceSadosky, A. B., Wiater, L. A., and Shuman, H. A. ( 1993 ) Identification of Legionella pneumophila genes required for growth within and killing of human macrophages. Infect Immun 61: 5361 – 5373.en_US
dc.identifier.citedreferenceSegal, G., Russo, J. J., and Shuman, H. A. ( 1999 ) Relationships between a new type IV secretion system and the icm/dot virulence system of Legionella pneumophila. Mol Microbiol 34: 799 – 809.en_US
dc.identifier.citedreferenceShaw, E. I., Dooley, C. A., Fischer, E. R., Scidmore, M. A., Fields, K. A., and Hackstadt, T. ( 2000 ) Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol Microbiol 37: 913 – 925.en_US
dc.identifier.citedreferenceSteinert, M., Engelhard, H., Flugel, M., Wintermeyer, E., and Hacker, J. ( 1995 ) The Lly protein protects Legionella pneumophila from light but does not directly influence its intracellular survival in Hartmannella vermiformis. Appl Environ Microbiol 61: 2428 – 2430.en_US
dc.identifier.citedreferenceStone, B. J., and Abu Kwaik, Y. ( 1999 ) Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. J Bacteriol 181: 1395 – 1402.en_US
dc.identifier.citedreferenceSturgill-Koszycki, S., and Swanson, M. S. ( 2000 ) Legionella pneumophila replication vacuoles mature into acidic, endocytic organelles. J Exp Med 192: 1261 – 1272.en_US
dc.identifier.citedreferenceSuzuki, K., Wang, X., Weilbacher, T., Pernestig, A. K., Melefors, O., Georgellis, D., et al. ( 2002 ) Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J Bacteriol 184: 5130 – 5140.en_US
dc.identifier.citedreferenceSwanson, M. S., and Isberg, R. R. ( 1995 ) Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect Immun 63: 3609 – 3620.en_US
dc.identifier.citedreferenceVogel, J. P., Roy, C., and Isberg, R. R. ( 1996 ) Use of salt to isolate Legionella pneumophila mutants unable to replicate in macrophages. Ann N Y Acad Sci 797: 271 – 272.en_US
dc.identifier.citedreferenceVogel, J. P., Andrews, H. L., Wong, S. K., and Isberg, R. R. ( 1998 ) Conjugative transfer by the virulence system of Legionella pneumophila. Science 279: 873 – 876.en_US
dc.identifier.citedreferenceWarren, W. J., and Miller, R. D. ( 1979 ) Growth of Legionnaires disease bacterium ( Legionella pneumophila ) in chemically defined medium. J Clin Microbiol 10: 50 – 55.en_US
dc.identifier.citedreferenceWei, B., Shin, S., LaPorte, D., Wolfe, A. J., and Romeo, T. ( 2000 ) Global regulatory mutations in csrA and rpoS cause severe central carbon stress in Escherichia coli in the presence of acetate. J Bacteriol 182: 1632 – 1640.en_US
dc.identifier.citedreferenceWei, B. L., Brun-Zinkernagel, A. M., Simecka, J. W., Pruss, B. M., Babitzke, P., and Romeo, T. ( 2001 ) Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40: 245 – 256.en_US
dc.identifier.citedreferenceWeilbacher, T., Suzuki, K., Dubey, A. K., Wang, X., Gudapaty, S., Morozov, I., et al. ( 2003 ) A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol 48: 657 – 670.en_US
dc.identifier.citedreferenceWiater, L. A., Sadosky, A. B., and Shuman, H. A. ( 1994 ) Mutagenesis of Legionella pneumophila using Tn903 dlllacZ: identification of a growth-phase-regulated pigmentation gene. Mol Microbiol 11: 641 – 653.en_US
dc.identifier.citedreferenceWintermeyer, E., Flugel, M., Ott, M., Steinert, M., Rdest, U., Mann, K. H., and Hacker, J. ( 1994 ) Sequence determination and mutational analysis of the lly locus of Legionella pneumophila. Infect Immun 62: 1109 – 1117.en_US
dc.identifier.citedreferenceYang, H., Liu, M. Y., and Romeo, T. ( 1996 ) Coordinate genetic regulation of glycogen catabolism and biosynthesis in Escherichia coli via the CsrA gene product. J Bacteriol 178: 1012 – 1017.en_US
dc.identifier.citedreferenceZusman, T., Gal-Mor, O., and Segal, G. ( 2002 ) Characterization of a Legionella pneumophila relA insertion mutant and toles of RelA and RpoS in virulence gene expression. J Bacteriol 184: 67 – 75.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.