Show simple item record

Oxidative Stress and Programmed Cell Death in Diabetic Neuropathy

dc.contributor.authorVincent, Andrea M.en_US
dc.contributor.authorBrownlee, Michaelen_US
dc.contributor.authorRussell, James W.en_US
dc.date.accessioned2010-06-01T21:00:13Z
dc.date.available2010-06-01T21:00:13Z
dc.date.issued2002-04en_US
dc.identifier.citationVINCENT, ANDREA M.; BROWNLEE, MICHAEL; RUSSELL, JAMES W. (2002). "Oxidative Stress and Programmed Cell Death in Diabetic Neuropathy." Annals of the New York Academy of Sciences 959(1 Increasing Healthy Life Span: Conventional Measures and Slowing the Innate Aging Process ): 368-383. <http://hdl.handle.net/2027.42/74096>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74096
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11976211&dopt=citationen_US
dc.description.abstractRecent evidence in both animal models and human sural nerve biopsies indicates an association with oxidative stress, mitochondrial (Mt) membrane depolarization (MMD), and induction of programmed cell death (PCD). In streptozotocin (STZ)-treated diabetic rats, hyperglycemia induces typical apoptotic changes as well as swelling and disruption of the Mt cristae in diabetic dorsal root ganglion neurons (DRG) and Schwann cells (SC), but these changes are only rarely observed in control neurons. In human sural nerve biopsies, from patients with diabetic sensory neuropathy, there is transmission electromicrograph evidence of swelling and disruption of the Mt and cristae compared to patients without peripheral neuropathy. In human SH-SY5Y neurons, rat sensory neurons, and SC, in vivo , there is an increase in reactive oxygen species (ROS) after exposure to 20 mM added glucose. In parallel, there is an initial Mt membrane hyperpolarization followed by depolarization (MMD). In turn, MMD is coupled with cleavage of caspases. Various strategies aimed at inhibiting the oxidative burst, or stabilizing the ΔΨ M , block induction of PCD. First, growth factors such as NGF can block induction of ROS and/or stabilize the ΔΨ M . This, in turn, is associated with inhibition of PCD. Second, reduction of ROS generation in neuronal Mt prevents neuronal PCD. Third, up-regulation of uncoupling proteins (UCPs), which stabilize the ΔΨ M , blocks induction of caspase cleavage. Collectively, these findings indicate that hyperglycemic conditions observed in diabetes mellitus are associated with oxidative stress-induced neuronal and SC death, and targeted therapies aimed at regulating ROS may prove effective in therapy of diabetic neuropathy.en_US
dc.format.extent10742582 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2002 New York Academy of Sciencesen_US
dc.subject.otherOxidative Stressen_US
dc.subject.otherDiabetesen_US
dc.subject.otherApoptosisen_US
dc.subject.otherMitochondriaen_US
dc.subject.otherNeuropathyen_US
dc.titleOxidative Stress and Programmed Cell Death in Diabetic Neuropathyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USAen_US
dc.contributor.affiliationotherDiabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USAen_US
dc.identifier.pmid11976211en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74096/1/j.1749-6632.2002.tb02108.x.pdf
dc.identifier.doi10.1111/j.1749-6632.2002.tb02108.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceGreen, D.R. & J.C. Reed. 1998. Mitochondria and apoptosis. Science 281: 1309 – 1312.en_US
dc.identifier.citedreferenceFeldman, E.L., M.J. Stevens & D.A. Greene. 1997. Pathogenesis of diabetic neuropathy. Clin. Neurosci. 4: 365 – 370.en_US
dc.identifier.citedreference3 Greene, D.A., I. Obrosova, M.J. Stevens & E.L. Feldman. 2000. Pathways of glucose-mediated oxidative stress in diabetic neuropathy. In Antioxidants in Diabetes Management, pp. 111-119. Dekker. New York.en_US
dc.identifier.citedreferenceFujimura, M., Y. Morita-Fujimura, M. Kawase, et al. 1999. Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome c and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J. Neurosci. 19: 3414 – 3422.en_US
dc.identifier.citedreferenceRussell, J.W., H-L. Cheng & D. Golovoy. 2000. Insulin-like growth factor-I promotes myelination of peripheral sensory axons. J. Neuropathol. Exp. Neurol. 59: 575 – 584.en_US
dc.identifier.citedreferenceRussell, J.W., K.A. Sullivan, A.J. Windebank, et al. 1999. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol. Dis. 6: 347 – 363.en_US
dc.identifier.citedreferencevan Golen, C.M. & E.L. Feldman. 2000. Insulin-like growth factor I is the key growth factor in serum that protects neuroblastoma cells from hyperosmotic-induced apoptosis. J. Cell. Physiol. 182: 24 – 32.en_US
dc.identifier.citedreferenceDelaney, C.L., J.W. Russell, H-L. Cheng & E.L. Feldman. 2001. Insulin-like growth factor-I and over-expression of Bcl-xL prevent glucose-mediated apoptosis in Schwann cells. J. Neuropathol. Exp. Neurol. 60: 147 – 160.en_US
dc.identifier.citedreferenceRussell, J., J. Karnes & P. Dyck. 1996. Sural nerve myelinated fiber density differences associated with meaningful changes in clinical and electrophysiological measurements. J. Neurol. Sci. 135: 114 – 117.en_US
dc.identifier.citedreferenceSrinivasan, A., K.A. Roth, R.O. Sayers, et al. 1998. In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death Differ. 5: 1004 – 1016.en_US
dc.identifier.citedreferenceFeldman, E.L., J.W. Russell, K.A. Sullivan & D. Golovoy. 2000. New insights into the pathogenesis of diabetic neuropathy. Curr. Opin. Neurol. 12: 553 – 563.en_US
dc.identifier.citedreferenceSrinivasan, A., M.J. Stevens & J.W. Wiley. 2000. Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. Diabetes 49: 1932 – 1938.en_US
dc.identifier.citedreferenceRussell, J.W., C. Delaney, A.R. Berent, et al. 2001. Diabetes and impaired glucose tolerance induce axonal neuropathy and programmed cell death (PCD) in the obese Zucker rat. Endocr. Soc. Abstr. P1-363: 226.en_US
dc.identifier.citedreferenceRussell, J.W. & E.L. Feldman. 1999. Insulin-like growth factor-I prevents apoptosis in sympathetic neurons exposed to high glucose. Horm. Metab. Res. 31: 90 – 96.en_US
dc.identifier.citedreferenceVanden Hoek, T.L., L.B. Becker, Z. Shao, et al. 1998. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J. Biol. Chem. 273: 18092 – 18098.en_US
dc.identifier.citedreferencePan, Z., D. Sampath, G. Jackson, et al. 1997. Nerve growth factor and oxidative stress in the nervous system. Adv. Exp. Med. Biol. 429: 173 – 193.en_US
dc.identifier.citedreferencePark, D.S., E.J. Morris, L. Stefanis, et al. 1998. Multiple pathways of neuronal death induced by DNA-damaging agents, NGF deprivation, and oxidative stress. J. Neurosci. 18: 830 – 840.en_US
dc.identifier.citedreferenceLieberthal, W., V. Triaca, J.S. Koh, et al. 1998. Role of superoxide in apoptosis induced by growth factor withdrawal. Am. J. Physiol. 275 ( 5, pt. 2 ): F691 – F702.en_US
dc.identifier.citedreferenceNishikawa, T., D. Edelstein, X.L. Du, et al. 2000. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404: 787 – 790.en_US
dc.identifier.citedreferenceBoss, O., S. Samec, A. Paoloni-Giacobino, et al. 1997. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 408: 39 – 42.en_US
dc.identifier.citedreferenceBairoch, A. 1993. The PROSITE dictionary of sites and patterns in proteins: its current status. Nucleic Acids Res. 21: 3097 – 3103.en_US
dc.identifier.citedreferenceStevens, M.J., I. Obrosova, X. Cao, et al. 2000. Effects of dl-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 49: 1006 – 1015.en_US
dc.identifier.citedreferenceLow, P.A., K.K. Nickander & H.J. Tritschler. 1997. The roles of oxidative stress and antioxidant treatment in experimental diabetic neuropathy. Diabetes 46 ( suppl. 2 ): S38 – S42.en_US
dc.identifier.citedreferenceCameron, N.E. & M.A. Cotter. 1997. Metabolic and vascular factors in the pathogenesis of diabetic neuropathy. Diabetes 46 ( suppl. 2 ): S31 – S37.en_US
dc.identifier.citedreferenceBredesen, D.E. & S. Rabizadeh. 1997. p75NTR and apoptosis: Trk-dependent and Trk-independent effects. Trends Neurosci. 20: 287 – 290.en_US
dc.identifier.citedreferenceMuller, Y., K. Tangre & J. Clos. 1997. Autocrine regulation of apoptosis and bcl-2 expression by nerve growth factor in early differentiating cerebellar granule neurons involves low affinity neurotrophin receptor. Neurochem. Int. 31: 177 – 191.en_US
dc.identifier.citedreferenceValverde, A.M., M. Lorenzo, P. Navarro & M. Benito. 1997. Phosphatidylinositol 3-kinase is a requirement for insulin-like growth factor I-induced differentiation, but not for mitogenesis, in fetal brown adipocytes. Mol. Endocrinol. 11: 595 – 607.en_US
dc.identifier.citedreferenceTeruel, T., A.M. Valverde, P. Navarro, et al. 1998. Inhibition of PI 3-kinase and RAS blocks IGF-I and insulin-induced uncoupling protein 1 gene expression in brown adipocytes. J. Cell. Physiol. 176: 99 – 109.en_US
dc.identifier.citedreferenceVincent, A.M., C. Gong, M. Brownlee & J.W. Russell. 2001. Glucose induced neuronal programmed cell death is regulated by manganese superoxide dismutase and uncoupling protein-1. Endocr. Soc. Abstr. P1-289: 210.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.