Strain-related differences in the crystal growth of white mica and chlorite: a TEM and XRD study of the development of metapelitic microfabrics in the Southern Uplands thrust terrane, Scotland
dc.contributor.author | Merriman, R. J. | en_US |
dc.contributor.author | Roberts, B. | en_US |
dc.contributor.author | Peacor, Donald R. | en_US |
dc.contributor.author | Hirons, S. R. | en_US |
dc.date.accessioned | 2010-06-01T21:03:12Z | |
dc.date.available | 2010-06-01T21:03:12Z | |
dc.date.issued | 1995-09 | en_US |
dc.identifier.citation | MERRIMAN, R. J.; ROBERTS, B.; PEACOR, D. R.; HIRONS, S. R. (1995). "Strain-related differences in the crystal growth of white mica and chlorite: a TEM and XRD study of the development of metapelitic microfabrics in the Southern Uplands thrust terrane, Scotland." Journal of Metamorphic Geology 13(5): 559-576. <http://hdl.handle.net/2027.42/74144> | en_US |
dc.identifier.issn | 0263-4929 | en_US |
dc.identifier.issn | 1525-1314 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/74144 | |
dc.description.abstract | TEM and XRD techniques were used to study crystal growth characteristics of the fabric-forming phyllosilicates which developed in response to low-grade metamorphism and tectonic imbrication in part of the Southern Uplands thrust terrane. Prograde regional metamorphism, ranging from late diagenesis through the anchizone to the epizone, was accompanied by the development of a slaty cleavage which is commonly bedding-parallel. TEM-measured mean thicknesses of white mica and chlorite crystallite populations increase with advancing grade and correlate with XRD-measured crystallinity indices. Analytical TEM data show that prograde changes in composition lead to a net loss of Si, Ca and minor Fe from the fabric-forming phyllosilicates. White micas are paragonite-poor phengites with a mean b lattice parameter of 9.037 Å, and indicate an intermediate pressure series of metamorphism with a field gradient of <25° C km -1 . Chlorite compositions evolved from diabantite (with intergrown corrensite) to ripidolite over an estimated temperature range of 150–320° C. Field gradient and temperature estimates suggest that crystal growth and fabric development occurred at burial depths ranging from 6 km to at least 13 km in the thrust terrane. During late diagenesis, crystal growth of white mica and chlorite was predominantly a consequence of polytypic and phase transitions, and resulted in similar size distributions which resemble typical Ostwald ripening curves. Under anchizonal and epizonal conditions, white mica grew more rapidly than chlorite because of its greater ability to store strain energy and recover from subgrain development; as a result crystal thickness distributions are not typical of Ostwald ripening. In contrast, chlorite crystals which grew under these conditions developed subgrain boundaries at high strain rates which were only partially recovered at low strain rates; these retained dislocations reduce the crystallite thicknesses detected by TEM and XRD, compared with those of white mica. These differences in strain-induced crystal growth indicate that white mica (illite) and chlorite crystallinity indices are likely to show significant differences where low-grade metamorphism is closely associated with tectonic fabric development. | en_US |
dc.format.extent | 2008946 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.rights | 1995 Blackwell Scientific Publications | en_US |
dc.subject.other | Chlorite | en_US |
dc.subject.other | Crystallinity | en_US |
dc.subject.other | Crystal Size | en_US |
dc.subject.other | Mica B Parameter | en_US |
dc.subject.other | Phengite | en_US |
dc.subject.other | Tectonic Strain | en_US |
dc.title | Strain-related differences in the crystal growth of white mica and chlorite: a TEM and XRD study of the development of metapelitic microfabrics in the Southern Uplands thrust terrane, Scotland | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Geology and Earth Sciences | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | University of Michigan, Ann Arbor, Ml 48109–1063, USA | en_US |
dc.contributor.affiliationother | British Geological Survey, Keyworth, Nottingham NG12 5GG, UK (email: k_rjm@ua.mkw.ac.uk ) | en_US |
dc.contributor.affiliationother | Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/74144/1/j.1525-1314.1995.tb00243.x.pdf | |
dc.identifier.doi | 10.1111/j.1525-1314.1995.tb00243.x | en_US |
dc.identifier.source | Journal of Metamorphic Geology | en_US |
dc.identifier.citedreference | Ahn, J. H. & Peacor, D. R., 1986. Transmission and analytical electron microscopy of the smectite-to-illite transition. Clays & Clay Minerals, 34, 165 – 186. | en_US |
dc.identifier.citedreference | Ahn, J. H., Peacor, D. R. & Essene, E. J., 1986. Cation-diffusion-induced characteristic beam damage in transmission electron microscope images of micas. Ultramicroscopy, 19, 375 – 382. | en_US |
dc.identifier.citedreference | Árkai, P., 1991. Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Messozoic rocks of north-east Hungary. Journal of Metamorphic Geology, 9, 723 – 734. | en_US |
dc.identifier.citedreference | Atherton, M. P., 1976. Crystal growth models in metamorphic tectonites. Philosophical Transactions of The Royal Society of London, Series A, 283, 255 – 270. | en_US |
dc.identifier.citedreference | Baronnet, A., 1992. Polytypism and stacking disorder. In: Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy ( ed. Buseck, P. R. ), Mineralogical Society of America Reviews in Mineralogy, 27, 231 – 288. | en_US |
dc.identifier.citedreference | Baronnet, A., 1982. Ostwald ripening in solution. The case of calcite and mica. Estudios Geologicos, 38, 185 – 198. | en_US |
dc.identifier.citedreference | Bell, I. A. & Wilson, C. J. L., 1981. Deformation of biotite and muscovite: TEM microstructure and deformation model. Tectonophysics, 78, 201 – 228. | en_US |
dc.identifier.citedreference | Bettison-Varga, L., Mackinnon, I. R. D. & Schiffman, P., 1991. Integrated TEM, XRD and electron microprobe investigation of mixed-layer chlorite-smectite from the Point Sal Ophiolite, California. Journal of Metamorphic Geology, 9, 697 – 710. | en_US |
dc.identifier.citedreference | Bevins, R. E., Robinson, D. & Rowbotham, G., 1991. Compositional variations in mafic phyllosilicates from regional low-grade metabasites and application of the chlorite geothermometer. Journal of Metamorphic Geology, 9, 711 – 721. | en_US |
dc.identifier.citedreference | Bons, A.-J., 1988. Intracrystalline deformation and slaty cleavage development in very low-grade slates from the Central Pyrenees. Geologica Ultraiectina, 56. | en_US |
dc.identifier.citedreference | Bons, A.-J. & Schryvers, D., 1989. High-resolution electron microscopy of stacking irregularities in chlorites from the central Pyrenees. American Mineralogist, 74, 1113 – 1123. | en_US |
dc.identifier.citedreference | British Geological Survey, 1992. Rhins of Galloway. Scotland Sheet 1 + 3 Solid, 1, 50000 Nottingham, British Geological Survey. | en_US |
dc.identifier.citedreference | Buatier, M. D., Peacor, D. R. & O'Neil, J. R., 1992. Smectite-illite transition in Barbados accretionary wedge sediments: TEM and AEM evidence for dissolution/crystallization at low temperature. Clays & Clay Minerals, 40, 65 – 80. | en_US |
dc.identifier.citedreference | Cathelineau, M. & Nieva, D., 1985. A chlorite solid solution geothermometer. The Los Azufres geothermal system (Mexico). Contributions to Mineralogy & Petrology, 91, 235 – 244. | en_US |
dc.identifier.citedreference | De Caritat, P., Hutcheon, I. & Walshe, J. L., 1993. Chlorite geothermometry: a review. Clays & Clay Minerals, 41, 219 – 239. | en_US |
dc.identifier.citedreference | Eberl, D. D., 1994. Three zones for illite formation during burial diagenesis and metamorphism. Clays & Clay Minerals, 41, 26 – 37. | en_US |
dc.identifier.citedreference | Eberl, D. D., Srodon, J., Kralik, M., Taylor, B. E. & Peterman, Z. E., 1990. Ostwald ripening of clays and metamorphic minerals. Science, 248, 474 – 477. | en_US |
dc.identifier.citedreference | Fettes, D. J. Graham, C. M., Sassi, F. P. & Scolari, A., 1976. The basal spacing of potassic white micas and facies series variation across the Caledonides. Scottish Journal of Geology, 3, 227 – 236. | en_US |
dc.identifier.citedreference | Frey, M., 1969. A mixed-layer paragonite/phengite of low-grade metamorphic origin. Contributions to Mineralogy & Petrology, 24, 63 – 65. | en_US |
dc.identifier.citedreference | Frey, M., 1987. Very low temperature metamorphism of clastic sedimentary rocks. In: Low Temperature Metamorphism ( ed. Frey, M. ), pp. 9 – 58. Blackie and Son Ltd, Glasgow. | en_US |
dc.identifier.citedreference | Guidotti, C. V. & Sassi, F. P., 1986. Classification and correlation of metamorphic facies series by means of muscovite bo data from low-grade metapelites. Neues Jarbuch fÜr Mineralogie Abhandlungen, 153, 363 – 380. | en_US |
dc.identifier.citedreference | Guidotti, C. V., Sassi, F. P. & Blencoe, J. G., 1989. Compositional controls on the a and b cell dimensions of 2M 1 muscovite. European Journal of Mineralogy, 1, 71 – 84. | en_US |
dc.identifier.citedreference | Hey, M. H., 1954. A new review of chlorites. Mineralogical Magazine, 30, 277 – 292. | en_US |
dc.identifier.citedreference | Hower, J., Eslinger, E. V., Hower, M. & Perry, E. A., 1976. Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725 – 737. | en_US |
dc.identifier.citedreference | Huon, S., Burkhard, M. & Hunziker, J-C., 1994. Mineralogical, K-Ar, stable and Sr isotope systematics of K-white mica during very low grade metamorphism of limestones (Helvetic nappes, western Switzerland). Chemical Geology (Isotopes Geoscience Section), 113, 347 – 376. | en_US |
dc.identifier.citedreference | Inoue, I. & Utada, M., 1991. Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan. American Mineralogist, 76, 628 – 640. | en_US |
dc.identifier.citedreference | Jiang, W-T. & Peacor, D. R. & Buseck, P. R., 1994. Chlorite geothermometry?-contamination and apparent octahedral vacancies. Clays & Clay Minerals, 42, 593 – 605. | en_US |
dc.identifier.citedreference | Jiang, W-T. & Peacor, D. R., 1993. Formation and modification of metastable intermediate sodium potassium mica, paragonite, and muscovite in hydrothermally altered metabasites from northern Wales. American Mineralogist, 78, 782 – 793. | en_US |
dc.identifier.citedreference | Jiang, W-T., Peacor, D. R., Merriman, R. J. & Roberts, B., 1990. Transmission and analytical microscope study of mixed-layer illite-smectite formed as an apparent replacement product of diagenetic illite. Clays & Clay Minerals, 38, 449 – 468. | en_US |
dc.identifier.citedreference | Kemp, A. E. S., Oliver, G. J. H. & Baldwin, J. R., 1985. Low-grade metamorphism and accretion tectonics: Southern Uplands terrain, Scotland. Mineralogical Magazine, 49, 335 – 344. | en_US |
dc.identifier.citedreference | Kisch, H. J., 1987. Correlation between indicators of very low-grade metamorphism In: Low Temperature Metamorphism ( ed. Frey, M. ), pp. 227 – 300. Blackie and Son Ltd, Glasgow. | en_US |
dc.identifier.citedreference | Kisch, H. J., 1991. Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings and interlaboratory standards. Journal of Metamorphic Geology, 9, 665 – 670. | en_US |
dc.identifier.citedreference | Knipe. R. J., 1981. The interaction between deformation and metamorphism in slates. Tectonophysics, 78, 249 – 272. | en_US |
dc.identifier.citedreference | Laird, J., 1988. Chlorites: metamorphic petrology. In: Hydrous Phyllosilicates ( ed. Bailey, S. W. ), Mineralogical Society of America, Reviews in Mineralogy, 19, 405 – 453. | en_US |
dc.identifier.citedreference | Leggett, J. K., McKerrow, W. S. & Eales, M. H., 1979. The Southern Uplands of Scotland: A Lower Palaeozoic accretionary prism. Journal of the Geological Society, London, 136, 755 – 770. | en_US |
dc.identifier.citedreference | Li, G., Peacor, D. R., Merriman, R. J. & Roberts, B., 1994. The diagenetic to low-grade metamorphic evolution of matrix white micas in the system muscovite-paragonite in a mudrock from central Wales, UK. Clays & Clay Minerals, 42, 369 – 381. | en_US |
dc.identifier.citedreference | Lorimer, G. W. & Cliff, G., 1976. Analytical electron microscopy of minerals In: Electron Microscopy in Mineralogy ( ed. Wenk, H. R. ), pp. 501 – 519. Springer-Verlag, New York. | en_US |
dc.identifier.citedreference | McCurry, J. A. & Anderson, T. B., 1989. Landward vergence in the Lower Palaeozoic Southern Uplands-Longford-Down terrane, British Isles. Geology, 17, 630 – 633. | en_US |
dc.identifier.citedreference | McKerrow, W. S., 1987. Introduction: The Southern Uplands Controversy. Journal of the Geological Society, London, 144, 735 – 736. | en_US |
dc.identifier.citedreference | McKerrow, W. S., Leggett, J. K. & Eales, M. H., 1977. Imbricate thrust model of the Southern Uplands of Scotland. Nature, 267, 237 – 239. | en_US |
dc.identifier.citedreference | Meike, A., 1989. In situ deformation of micas: a high-voltage electron-microscope study. American Mineralogist, 74, 780 – 796. | en_US |
dc.identifier.citedreference | Merriman, R. J. & Roberts, B., 1993. The low grade metamorphism of Lower Palaeozoic strata on the Rhins of Galloway, SW Scotland. Technical Report of the British Geological Survey, WG/92/40. | en_US |
dc.identifier.citedreference | Merriman, R. J., Roberts, B. & Peacor, D. R., 1990. A transmission electron microscope study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, U K. Contributions to Mineralogy & Petrology, 106, 27 – 40. | en_US |
dc.identifier.citedreference | Needham. D. T., 1993. The structure of the western part of the Southern Uplands of Scotland. Journal of the Geological Society, London, 150, 341 – 354. | en_US |
dc.identifier.citedreference | Oliver, G. J. H., Smellie, J. L., Thomas, L. J., Casey, D. M., Kemp, A. E. S., Evans, L. J., Baldwin, J. R. & Hepworth, B. C., 1984. Early Palaeozoic metamorphic history of the Midland Valley, the Southern Uplands-Longford-Down massif and the Lake District, British Isles. Transactions of the Royal Society of Edinburgh: Earth Science, 75, 259 – 273. | en_US |
dc.identifier.citedreference | Oliver, G. J. H. & Leggett, J. K., 1980. Metamorphism in an accretionary prism: prehnite-pumpellyite facies metamorphism of the Southern Uplands of Scotland. Transactions of the Royal Society of Edinburgh: Earth Science, 71, 235 – 246. | en_US |
dc.identifier.citedreference | Ostwald, W., 1900. Über die vermeintliche Isomeric des roten und gelben Quecksilberoxyds und die OberflÄchenspannung fester KÖrper. Zeitschrift fÜr physikalische Chemie Stochiometrie und Verwandtschaftslehre, 34, 495 – 503. | en_US |
dc.identifier.citedreference | Padan, A., Kisch, H. J. & Shagam, R., 1982. Use of the lattice parameter b0 of dioctahedral illite/muscovite, for the characterization of P/T gradients of incipient metamorphism. Contributions to Mineralogy & Petrology, 79, 85 – 95. | en_US |
dc.identifier.citedreference | Peacor, D. R., 1992. Diagenesis and low-grade metamorphism of shales and slates. In: Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy ( ed. Buseck, P. R. ), Mineralogical Society of America Reviews in Mineralogy, 27, 335 – 380. | en_US |
dc.identifier.citedreference | Rietan, P. H., 1977. Energetics of metamorphic crystallization. Lithos, 10, 121 – 128. | en_US |
dc.identifier.citedreference | Roberts, B., Morrison, C. & Hirons, S. R., 1990. Low grade metamorphism of the Manx Group, Isle of Man: a comparative study of white mica “crystallinity” techniques. Journal of the Geological Society, London, 147, 271 – 277. | en_US |
dc.identifier.citedreference | Roberts, B., Merriman, R. J. & Pratt, W., 1991. The influence of strain, lithology and stratigraphical depth on white mica (illite) crystallinity in mudrocks from the vicinity of the Corris Slate Belt, Wales: implications for the timing of metamorphism in the Welsh Basin. Geological Magazine, 128, 633 – 645. | en_US |
dc.identifier.citedreference | Sassi, F. P. & Scolari, A., 1974. The b0 value of the potassic white micas as a barometric indicator in low-grade metamorphism of pelitic schists. Contributions to Mineralogy & Petrology, 45, 143 – 152. | en_US |
dc.identifier.citedreference | Shau, Y-H., Peacor, D. R. & Essene, E. J., 1990. Corrensite and Mixed-layer chlorite/corrensite in metabasalt from Northern Taiwan: TEM/AEM, EMPA, XRD and optical studies. Contributions to Mineralogy & Petrology, 105, 123 – 142. | en_US |
dc.identifier.citedreference | Shau, Y-H., Feather, M. E., Essene, E. J. & Peacor, D. R., 1991. Genesis and solvus relations of submicroscopically intergrown paragonite and phengite in a blueschist from northern California. Contributions to Mineralogy & Petrology, 106, 367 – 378. | en_US |
dc.identifier.citedreference | Sorby, H. C. 1853. On the origin of slaty cleavage. New Philosophical Journal (Edinburgh), 55, 137 – 148. | en_US |
dc.identifier.citedreference | Stone, P., 1995. The Geology of the Rhins of Galloway District. Memoir of the British Geological Survey Sheet 1+3 (Scotland). HMSO for British Geological Survey, London. | en_US |
dc.identifier.citedreference | Urai, J. L., Means, W. D. & Lister, G. S., 1986. Dynamic recrystallization of minerals. In: Mineral and Rock Deformation: Laboratory Studies ( eds Hobbs, B. E. & Heard, H. C. ), The Paterson Volume. Geophysical Monograph, 36, 161 – 199. | en_US |
dc.identifier.citedreference | Velde, B., 1965. Phengitic micas: synthesis, stability, and natural occurrence. American Journal of Science, 263, 886 – 913. | en_US |
dc.identifier.citedreference | Warr, L. N. & Rice, A. H. N., 1994. Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141 – 152. | en_US |
dc.identifier.citedreference | White, S. H. & Knipe, R. J., 1978. Microstructure and cleavage development in selected slates. Contributions to Mineralogy & Petrology, 66, 165 – 174. | en_US |
dc.identifier.citedreference | Wilson, C. J. L. & Bell, I. A., 1979. Deformation of biotite and muscovite: optical microstructure. Tectonophysics, 58, 179 – 200. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.