Show simple item record

Strain-related differences in the crystal growth of white mica and chlorite: a TEM and XRD study of the development of metapelitic microfabrics in the Southern Uplands thrust terrane, Scotland

dc.contributor.authorMerriman, R. J.en_US
dc.contributor.authorRoberts, B.en_US
dc.contributor.authorPeacor, Donald R.en_US
dc.contributor.authorHirons, S. R.en_US
dc.date.accessioned2010-06-01T21:03:12Z
dc.date.available2010-06-01T21:03:12Z
dc.date.issued1995-09en_US
dc.identifier.citationMERRIMAN, R. J.; ROBERTS, B.; PEACOR, D. R.; HIRONS, S. R. (1995). "Strain-related differences in the crystal growth of white mica and chlorite: a TEM and XRD study of the development of metapelitic microfabrics in the Southern Uplands thrust terrane, Scotland." Journal of Metamorphic Geology 13(5): 559-576. <http://hdl.handle.net/2027.42/74144>en_US
dc.identifier.issn0263-4929en_US
dc.identifier.issn1525-1314en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74144
dc.description.abstractTEM and XRD techniques were used to study crystal growth characteristics of the fabric-forming phyllosilicates which developed in response to low-grade metamorphism and tectonic imbrication in part of the Southern Uplands thrust terrane. Prograde regional metamorphism, ranging from late diagenesis through the anchizone to the epizone, was accompanied by the development of a slaty cleavage which is commonly bedding-parallel. TEM-measured mean thicknesses of white mica and chlorite crystallite populations increase with advancing grade and correlate with XRD-measured crystallinity indices. Analytical TEM data show that prograde changes in composition lead to a net loss of Si, Ca and minor Fe from the fabric-forming phyllosilicates. White micas are paragonite-poor phengites with a mean b lattice parameter of 9.037 Å, and indicate an intermediate pressure series of metamorphism with a field gradient of <25° C km -1 . Chlorite compositions evolved from diabantite (with intergrown corrensite) to ripidolite over an estimated temperature range of 150–320° C. Field gradient and temperature estimates suggest that crystal growth and fabric development occurred at burial depths ranging from 6 km to at least 13 km in the thrust terrane. During late diagenesis, crystal growth of white mica and chlorite was predominantly a consequence of polytypic and phase transitions, and resulted in similar size distributions which resemble typical Ostwald ripening curves. Under anchizonal and epizonal conditions, white mica grew more rapidly than chlorite because of its greater ability to store strain energy and recover from subgrain development; as a result crystal thickness distributions are not typical of Ostwald ripening. In contrast, chlorite crystals which grew under these conditions developed subgrain boundaries at high strain rates which were only partially recovered at low strain rates; these retained dislocations reduce the crystallite thicknesses detected by TEM and XRD, compared with those of white mica. These differences in strain-induced crystal growth indicate that white mica (illite) and chlorite crystallinity indices are likely to show significant differences where low-grade metamorphism is closely associated with tectonic fabric development.en_US
dc.format.extent2008946 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1995 Blackwell Scientific Publicationsen_US
dc.subject.otherChloriteen_US
dc.subject.otherCrystallinityen_US
dc.subject.otherCrystal Sizeen_US
dc.subject.otherMica B Parameteren_US
dc.subject.otherPhengiteen_US
dc.subject.otherTectonic Strainen_US
dc.titleStrain-related differences in the crystal growth of white mica and chlorite: a TEM and XRD study of the development of metapelitic microfabrics in the Southern Uplands thrust terrane, Scotlanden_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, Ml 48109–1063, USAen_US
dc.contributor.affiliationotherBritish Geological Survey, Keyworth, Nottingham NG12 5GG, UK (email: k_rjm@ua.mkw.ac.uk )en_US
dc.contributor.affiliationotherBirkbeck College, University of London, Malet Street, London WC1E 7HX, UKen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74144/1/j.1525-1314.1995.tb00243.x.pdf
dc.identifier.doi10.1111/j.1525-1314.1995.tb00243.xen_US
dc.identifier.sourceJournal of Metamorphic Geologyen_US
dc.identifier.citedreferenceAhn, J. H. & Peacor, D. R., 1986. Transmission and analytical electron microscopy of the smectite-to-illite transition. Clays & Clay Minerals, 34, 165 – 186.en_US
dc.identifier.citedreferenceAhn, J. H., Peacor, D. R. & Essene, E. J., 1986. Cation-diffusion-induced characteristic beam damage in transmission electron microscope images of micas. Ultramicroscopy, 19, 375 – 382.en_US
dc.identifier.citedreferenceÁrkai, P., 1991. Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Messozoic rocks of north-east Hungary. Journal of Metamorphic Geology, 9, 723 – 734.en_US
dc.identifier.citedreferenceAtherton, M. P., 1976. Crystal growth models in metamorphic tectonites. Philosophical Transactions of The Royal Society of London, Series A, 283, 255 – 270.en_US
dc.identifier.citedreferenceBaronnet, A., 1992. Polytypism and stacking disorder. In: Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy ( ed. Buseck, P. R. ), Mineralogical Society of America Reviews in Mineralogy, 27, 231 – 288.en_US
dc.identifier.citedreferenceBaronnet, A., 1982. Ostwald ripening in solution. The case of calcite and mica. Estudios Geologicos, 38, 185 – 198.en_US
dc.identifier.citedreferenceBell, I. A. & Wilson, C. J. L., 1981. Deformation of biotite and muscovite: TEM microstructure and deformation model. Tectonophysics, 78, 201 – 228.en_US
dc.identifier.citedreferenceBettison-Varga, L., Mackinnon, I. R. D. & Schiffman, P., 1991. Integrated TEM, XRD and electron microprobe investigation of mixed-layer chlorite-smectite from the Point Sal Ophiolite, California. Journal of Metamorphic Geology, 9, 697 – 710.en_US
dc.identifier.citedreferenceBevins, R. E., Robinson, D. & Rowbotham, G., 1991. Compositional variations in mafic phyllosilicates from regional low-grade metabasites and application of the chlorite geothermometer. Journal of Metamorphic Geology, 9, 711 – 721.en_US
dc.identifier.citedreferenceBons, A.-J., 1988. Intracrystalline deformation and slaty cleavage development in very low-grade slates from the Central Pyrenees. Geologica Ultraiectina, 56.en_US
dc.identifier.citedreferenceBons, A.-J. & Schryvers, D., 1989. High-resolution electron microscopy of stacking irregularities in chlorites from the central Pyrenees. American Mineralogist, 74, 1113 – 1123.en_US
dc.identifier.citedreferenceBritish Geological Survey, 1992. Rhins of Galloway. Scotland Sheet 1 + 3 Solid, 1, 50000 Nottingham, British Geological Survey.en_US
dc.identifier.citedreferenceBuatier, M. D., Peacor, D. R. & O'Neil, J. R., 1992. Smectite-illite transition in Barbados accretionary wedge sediments: TEM and AEM evidence for dissolution/crystallization at low temperature. Clays & Clay Minerals, 40, 65 – 80.en_US
dc.identifier.citedreferenceCathelineau, M. & Nieva, D., 1985. A chlorite solid solution geothermometer. The Los Azufres geothermal system (Mexico). Contributions to Mineralogy & Petrology, 91, 235 – 244.en_US
dc.identifier.citedreferenceDe Caritat, P., Hutcheon, I. & Walshe, J. L., 1993. Chlorite geothermometry: a review. Clays & Clay Minerals, 41, 219 – 239.en_US
dc.identifier.citedreferenceEberl, D. D., 1994. Three zones for illite formation during burial diagenesis and metamorphism. Clays & Clay Minerals, 41, 26 – 37.en_US
dc.identifier.citedreferenceEberl, D. D., Srodon, J., Kralik, M., Taylor, B. E. & Peterman, Z. E., 1990. Ostwald ripening of clays and metamorphic minerals. Science, 248, 474 – 477.en_US
dc.identifier.citedreferenceFettes, D. J. Graham, C. M., Sassi, F. P. & Scolari, A., 1976. The basal spacing of potassic white micas and facies series variation across the Caledonides. Scottish Journal of Geology, 3, 227 – 236.en_US
dc.identifier.citedreferenceFrey, M., 1969. A mixed-layer paragonite/phengite of low-grade metamorphic origin. Contributions to Mineralogy & Petrology, 24, 63 – 65.en_US
dc.identifier.citedreferenceFrey, M., 1987. Very low temperature metamorphism of clastic sedimentary rocks. In: Low Temperature Metamorphism ( ed. Frey, M. ), pp. 9 – 58. Blackie and Son Ltd, Glasgow.en_US
dc.identifier.citedreferenceGuidotti, C. V. & Sassi, F. P., 1986. Classification and correlation of metamorphic facies series by means of muscovite bo data from low-grade metapelites. Neues Jarbuch fÜr Mineralogie Abhandlungen, 153, 363 – 380.en_US
dc.identifier.citedreferenceGuidotti, C. V., Sassi, F. P. & Blencoe, J. G., 1989. Compositional controls on the a and b cell dimensions of 2M 1 muscovite. European Journal of Mineralogy, 1, 71 – 84.en_US
dc.identifier.citedreferenceHey, M. H., 1954. A new review of chlorites. Mineralogical Magazine, 30, 277 – 292.en_US
dc.identifier.citedreferenceHower, J., Eslinger, E. V., Hower, M. & Perry, E. A., 1976. Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725 – 737.en_US
dc.identifier.citedreferenceHuon, S., Burkhard, M. & Hunziker, J-C., 1994. Mineralogical, K-Ar, stable and Sr isotope systematics of K-white mica during very low grade metamorphism of limestones (Helvetic nappes, western Switzerland). Chemical Geology (Isotopes Geoscience Section), 113, 347 – 376.en_US
dc.identifier.citedreferenceInoue, I. & Utada, M., 1991. Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan. American Mineralogist, 76, 628 – 640.en_US
dc.identifier.citedreferenceJiang, W-T. & Peacor, D. R. & Buseck, P. R., 1994. Chlorite geothermometry?-contamination and apparent octahedral vacancies. Clays & Clay Minerals, 42, 593 – 605.en_US
dc.identifier.citedreferenceJiang, W-T. & Peacor, D. R., 1993. Formation and modification of metastable intermediate sodium potassium mica, paragonite, and muscovite in hydrothermally altered metabasites from northern Wales. American Mineralogist, 78, 782 – 793.en_US
dc.identifier.citedreferenceJiang, W-T., Peacor, D. R., Merriman, R. J. & Roberts, B., 1990. Transmission and analytical microscope study of mixed-layer illite-smectite formed as an apparent replacement product of diagenetic illite. Clays & Clay Minerals, 38, 449 – 468.en_US
dc.identifier.citedreferenceKemp, A. E. S., Oliver, G. J. H. & Baldwin, J. R., 1985. Low-grade metamorphism and accretion tectonics: Southern Uplands terrain, Scotland. Mineralogical Magazine, 49, 335 – 344.en_US
dc.identifier.citedreferenceKisch, H. J., 1987. Correlation between indicators of very low-grade metamorphism In: Low Temperature Metamorphism ( ed. Frey, M. ), pp. 227 – 300. Blackie and Son Ltd, Glasgow.en_US
dc.identifier.citedreferenceKisch, H. J., 1991. Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings and interlaboratory standards. Journal of Metamorphic Geology, 9, 665 – 670.en_US
dc.identifier.citedreferenceKnipe. R. J., 1981. The interaction between deformation and metamorphism in slates. Tectonophysics, 78, 249 – 272.en_US
dc.identifier.citedreferenceLaird, J., 1988. Chlorites: metamorphic petrology. In: Hydrous Phyllosilicates ( ed. Bailey, S. W. ), Mineralogical Society of America, Reviews in Mineralogy, 19, 405 – 453.en_US
dc.identifier.citedreferenceLeggett, J. K., McKerrow, W. S. & Eales, M. H., 1979. The Southern Uplands of Scotland: A Lower Palaeozoic accretionary prism. Journal of the Geological Society, London, 136, 755 – 770.en_US
dc.identifier.citedreferenceLi, G., Peacor, D. R., Merriman, R. J. & Roberts, B., 1994. The diagenetic to low-grade metamorphic evolution of matrix white micas in the system muscovite-paragonite in a mudrock from central Wales, UK. Clays & Clay Minerals, 42, 369 – 381.en_US
dc.identifier.citedreferenceLorimer, G. W. & Cliff, G., 1976. Analytical electron microscopy of minerals In: Electron Microscopy in Mineralogy ( ed. Wenk, H. R. ), pp. 501 – 519. Springer-Verlag, New York.en_US
dc.identifier.citedreferenceMcCurry, J. A. & Anderson, T. B., 1989. Landward vergence in the Lower Palaeozoic Southern Uplands-Longford-Down terrane, British Isles. Geology, 17, 630 – 633.en_US
dc.identifier.citedreferenceMcKerrow, W. S., 1987. Introduction: The Southern Uplands Controversy. Journal of the Geological Society, London, 144, 735 – 736.en_US
dc.identifier.citedreferenceMcKerrow, W. S., Leggett, J. K. & Eales, M. H., 1977. Imbricate thrust model of the Southern Uplands of Scotland. Nature, 267, 237 – 239.en_US
dc.identifier.citedreferenceMeike, A., 1989. In situ deformation of micas: a high-voltage electron-microscope study. American Mineralogist, 74, 780 – 796.en_US
dc.identifier.citedreferenceMerriman, R. J. & Roberts, B., 1993. The low grade metamorphism of Lower Palaeozoic strata on the Rhins of Galloway, SW Scotland. Technical Report of the British Geological Survey, WG/92/40.en_US
dc.identifier.citedreferenceMerriman, R. J., Roberts, B. & Peacor, D. R., 1990. A transmission electron microscope study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, U K. Contributions to Mineralogy & Petrology, 106, 27 – 40.en_US
dc.identifier.citedreferenceNeedham. D. T., 1993. The structure of the western part of the Southern Uplands of Scotland. Journal of the Geological Society, London, 150, 341 – 354.en_US
dc.identifier.citedreferenceOliver, G. J. H., Smellie, J. L., Thomas, L. J., Casey, D. M., Kemp, A. E. S., Evans, L. J., Baldwin, J. R. & Hepworth, B. C., 1984. Early Palaeozoic metamorphic history of the Midland Valley, the Southern Uplands-Longford-Down massif and the Lake District, British Isles. Transactions of the Royal Society of Edinburgh: Earth Science, 75, 259 – 273.en_US
dc.identifier.citedreferenceOliver, G. J. H. & Leggett, J. K., 1980. Metamorphism in an accretionary prism: prehnite-pumpellyite facies metamorphism of the Southern Uplands of Scotland. Transactions of the Royal Society of Edinburgh: Earth Science, 71, 235 – 246.en_US
dc.identifier.citedreferenceOstwald, W., 1900. Über die vermeintliche Isomeric des roten und gelben Quecksilberoxyds und die OberflÄchenspannung fester KÖrper. Zeitschrift fÜr physikalische Chemie Stochiometrie und Verwandtschaftslehre, 34, 495 – 503.en_US
dc.identifier.citedreferencePadan, A., Kisch, H. J. & Shagam, R., 1982. Use of the lattice parameter b0 of dioctahedral illite/muscovite, for the characterization of P/T gradients of incipient metamorphism. Contributions to Mineralogy & Petrology, 79, 85 – 95.en_US
dc.identifier.citedreferencePeacor, D. R., 1992. Diagenesis and low-grade metamorphism of shales and slates. In: Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy ( ed. Buseck, P. R. ), Mineralogical Society of America Reviews in Mineralogy, 27, 335 – 380.en_US
dc.identifier.citedreferenceRietan, P. H., 1977. Energetics of metamorphic crystallization. Lithos, 10, 121 – 128.en_US
dc.identifier.citedreferenceRoberts, B., Morrison, C. & Hirons, S. R., 1990. Low grade metamorphism of the Manx Group, Isle of Man: a comparative study of white mica “crystallinity” techniques. Journal of the Geological Society, London, 147, 271 – 277.en_US
dc.identifier.citedreferenceRoberts, B., Merriman, R. J. & Pratt, W., 1991. The influence of strain, lithology and stratigraphical depth on white mica (illite) crystallinity in mudrocks from the vicinity of the Corris Slate Belt, Wales: implications for the timing of metamorphism in the Welsh Basin. Geological Magazine, 128, 633 – 645.en_US
dc.identifier.citedreferenceSassi, F. P. & Scolari, A., 1974. The b0 value of the potassic white micas as a barometric indicator in low-grade metamorphism of pelitic schists. Contributions to Mineralogy & Petrology, 45, 143 – 152.en_US
dc.identifier.citedreferenceShau, Y-H., Peacor, D. R. & Essene, E. J., 1990. Corrensite and Mixed-layer chlorite/corrensite in metabasalt from Northern Taiwan: TEM/AEM, EMPA, XRD and optical studies. Contributions to Mineralogy & Petrology, 105, 123 – 142.en_US
dc.identifier.citedreferenceShau, Y-H., Feather, M. E., Essene, E. J. & Peacor, D. R., 1991. Genesis and solvus relations of submicroscopically intergrown paragonite and phengite in a blueschist from northern California. Contributions to Mineralogy & Petrology, 106, 367 – 378.en_US
dc.identifier.citedreferenceSorby, H. C. 1853. On the origin of slaty cleavage. New Philosophical Journal (Edinburgh), 55, 137 – 148.en_US
dc.identifier.citedreferenceStone, P., 1995. The Geology of the Rhins of Galloway District. Memoir of the British Geological Survey Sheet 1+3 (Scotland). HMSO for British Geological Survey, London.en_US
dc.identifier.citedreferenceUrai, J. L., Means, W. D. & Lister, G. S., 1986. Dynamic recrystallization of minerals. In: Mineral and Rock Deformation: Laboratory Studies ( eds Hobbs, B. E. & Heard, H. C. ), The Paterson Volume. Geophysical Monograph, 36, 161 – 199.en_US
dc.identifier.citedreferenceVelde, B., 1965. Phengitic micas: synthesis, stability, and natural occurrence. American Journal of Science, 263, 886 – 913.en_US
dc.identifier.citedreferenceWarr, L. N. & Rice, A. H. N., 1994. Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141 – 152.en_US
dc.identifier.citedreferenceWhite, S. H. & Knipe, R. J., 1978. Microstructure and cleavage development in selected slates. Contributions to Mineralogy & Petrology, 66, 165 – 174.en_US
dc.identifier.citedreferenceWilson, C. J. L. & Bell, I. A., 1979. Deformation of biotite and muscovite: optical microstructure. Tectonophysics, 58, 179 – 200.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.