Show simple item record

Cost-Effective Management Alternatives for Snake River Chinook Salmon: a Biological-Economic Synthesis

dc.contributor.authorHalsing, David L.en_US
dc.contributor.authorMoore, Michael R.en_US
dc.date.accessioned2010-06-01T21:09:22Z
dc.date.available2010-06-01T21:09:22Z
dc.date.issued2008-04en_US
dc.identifier.citationHALSING, DAVID L.; MOORE, MICHAEL R. (2008). "Cost-Effective Management Alternatives for Snake River Chinook Salmon: a Biological-Economic Synthesis." Conservation Biology 22(2): 338-350. <http://hdl.handle.net/2027.42/74238>en_US
dc.identifier.issn0888-8892en_US
dc.identifier.issn1523-1739en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74238
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18402583&dopt=citationen_US
dc.description.abstractThe mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon ( Oncorhynchus tshawytscha ). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern ( Sterna caspia ), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80–90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can provide valuable tools for science-based policy and management.en_US
dc.format.extent605627 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights©2008 Society for Conservation Biologyen_US
dc.subject.otherEndangered Species Acten_US
dc.subject.otherIntegrated Assessmenten_US
dc.subject.otherLeslie Matrixen_US
dc.subject.otherSalmon Passage Modelen_US
dc.subject.otherActa De Especies En Peligroen_US
dc.subject.otherEvaluaciÓN Integradaen_US
dc.subject.otherMatriz De Leslieen_US
dc.subject.otherModelo De Pasadizo Para SalmÓNen_US
dc.titleCost-Effective Management Alternatives for Snake River Chinook Salmon: a Biological-Economic Synthesisen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† School of Natural Resources & Environment, University of Michigan, Ann Arbor, MI 48109, U.S.A.en_US
dc.contributor.affiliationother* U.S. Geological Survey, U.S. Department of the Interior, Menlo Park, CA 94025, U.S.A.en_US
dc.identifier.pmid18402583en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74238/1/j.1523-1739.2008.00913.x.pdf
dc.identifier.doi10.1111/j.1523-1739.2008.00913.xen_US
dc.identifier.sourceConservation Biologyen_US
dc.identifier.citedreferenceAillery, M., M. R. Moore, M. Weinberg, G. Schaible, and N. Gollehon. 1999. Salmon recovery measures in the Columbia River Basin: analysis of measures affecting agriculture. Marine Resource Economics 14: 15 – 40.en_US
dc.identifier.citedreferenceAmerican Rivers et al. v. NOAA Fisheries et al. U.S. District Court (for the District of Oregon). 2006. Opinion and order, CV 04-0061-RE.en_US
dc.identifier.citedreferenceAnderson, J., N. Beer, J. Hayes, S. Iltis, M. Moore, D. Salinger, P. Shaw, and R. Zabel. 2002. Columbia River Salmon Passage model (CRiSP). Version 1.6. User manual and theory and calibration. School of Aquatic and Fishery Sciences. University of Washington, Seattle.en_US
dc.identifier.citedreferenceBudy, P., G. P. Thiede, N. Bouwes, C. E. Petrosky, and H. Schaller. 2002. Evidence linking delayed mortality of Snake River salmon to their earlier hydrosystem experience. North American Journal of Fisheries Management 22: 35 – 51.en_US
dc.identifier.citedreferenceCaswell, H. 2001. Matrix population models: construction, analysis, and interpretation. 2nd edition. Sinauer Associates, Sunderland, Massachusetts.en_US
dc.identifier.citedreferenceGarber-Yonts, B., and R. B. Rettig. 1997. Cost-effective recovery of endangered Snake River salmon. Pages 198 – 203 in D. A. Hancock, D. C. Smith, A. Grant, and J. P. Beumer, editors. Developing and sustaining world fisheries resources. CSIRO, Brisbane, Queensland, Australia.en_US
dc.identifier.citedreferenceGood, T. P., M. M. McClure, B. P. Sandford, K. A. Barnas, D. M. Marsh, B. A. Ryan, and E. Casillas. 2007. Quantifying the effect of Caspian Tern predation on threatened and endangered Pacific salmon in the Columbia River estuary. Endangered Species Research 3: 11 – 21.en_US
dc.identifier.citedreferenceHeal, G. M., and E. B. Barbier. 2006. Valuing ecosystem services. The Economists’ Voice 3(3): http://www.bepress.com/ev/vol3/iss3/art2/.en_US
dc.identifier.citedreferenceHuppert, D. D. 1999. Snake River salmon recovery: quantifying the costs. Contemporary Economic Policy 17: 476 – 491.en_US
dc.identifier.citedreferenceHuppert, D. D., D. L. Fluharty, E. Doyle, and A. Benyounes. 1996. Economics of Snake River recovery: a report to the National Marine Fisheries Service. College of Ocean and Fishery Sciences, University of Washington, Seattle.en_US
dc.identifier.citedreferenceISAB (Independent Scientific Advisory Board). 2007. ISAB 2007-1 Latent mortality report. For the Northwest Power and Conservation Council, Columbia River Basin Indian Tribes, and National Marine Fisheries Service. ISAB, Portland. Oregon.en_US
dc.identifier.citedreferenceICBTRT (Interior Columbia Basin Technical Recovery Team), Northwest Fisheries Science Center, National Marine Fisheries Service. 2005. Interior Columbia Basin TRT: viability criteria for application to interior Columbia Basin salmonid ESUs. ICBTRT, Seattle, Washington.en_US
dc.identifier.citedreferenceJCRMS (Joint Columbia River Management Staff). 2006. Joint staff report concerning commercial seasons for spring chinook, steelhead, sturgeon, shad, smelt, and other species and miscellaneous regulations for 2006. Oregon Department of Fish & Wildlife, Salem, Oregon, and Washington Department of Fish & Wildlife, Olympia, Washington. Available from http://wdfw.wa.gov/fish/crc/jan1806jointstaff.pdf ( accessed March 2006 ).en_US
dc.identifier.citedreferenceKareiva, P., M. Marvier, and M. McClure. 2000. Recovery and management options for spring/summer chinook salmon in the Columbia River Basin. Science 290: 977 – 979.en_US
dc.identifier.citedreferenceLoomis, J. 2002. Quantifying recreation use values from removing dams and restoring free-flowing rivers: a contingent behavior travel cost demand model for the lower Snake River. Water Resources Research 38: 1066 – 1073.en_US
dc.identifier.citedreferenceMcClure, M. M., E. E. Holmes, B. L. Sanderson, and C. E. Jordan. 2003. A large-scale, multispecies status assessment: anadromous salmonids in the Columbia River Basin. Ecological Applications 13: 964 – 989.en_US
dc.identifier.citedreferenceMarmorek, D. R., and C. N. Peters, editors. 1998. Plan for analyzing and testing hypotheses (PATH): preliminary decision analysis report on Snake River spring/summer chinook. ESSA Technologies, Vancouver, British Columbia.en_US
dc.identifier.citedreferenceMontgomery, C. A., G. M. Brown Jr., and D. M. Adams. 1994. The marginal cost of species preservation: the northern spotted owl. Journal of Environmental Economics and Management 26: 111 – 128.en_US
dc.identifier.citedreferenceNMFS (National Marine Fisheries Service). 1992. Endangered and threatened species; threatened status for Snake River spring/summer chinook salmon, threatened status for Snake River fall chinook salmon. Federal Register 57: 14653 – 14663.en_US
dc.identifier.citedreferenceNational Wildlife Federation et al. v. National Marine Fisheries Service et al. 2005. U.S. District Court (District of Oregon). Opinion and order of remand, CV 01–640-RE.en_US
dc.identifier.citedreferencePaulsen, C. M., and K. Wernstedt. 1995. Cost-effectiveness analysis for complex managed hydrosystems: an application to the Columbia River Basin. Journal of Environmental Economics and Management 28: 388 – 400.en_US
dc.identifier.citedreferenceRadtke, H. D., C. N. Carter, and S. W. Davis. 2004. Economic evaluation of the Northern pikeminnow management program. Report. Pacific States Marine Fisheries Commission, Portland, Oregon.en_US
dc.identifier.citedreferenceRoby, D. D., D. E. Lyons, D. P. Craig, K. Collis, and G. Visser. 2003. Quantifying the effect of predators on endangered species using a bioenergetics approach: Caspian Terns and juvenile salmonids in the Columbia River estuary. Canadian Journal of Zoology 81: 250 – 265.en_US
dc.identifier.citedreferenceRoughgarden, J. 2001. Guide to diplomatic relations with economists. Bulletin of the Ecological Society of America 82: 85 – 88.en_US
dc.identifier.citedreferenceShogren, J. F., et al. 1999. Why economics matters for endangered species protection. Conservation Biology 13: 1257 – 1261.en_US
dc.identifier.citedreferenceUSACE ( U.S. Army Corps of Engineers). 2002. Lower Snake River juvenile salmon migration feasibility report and environmental impact statement. Appendix I: economics. USACE, Walla Walla, Washington.en_US
dc.identifier.citedreferenceU.S. Department of Energy, Bonneville Power Administration (BPA), U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. 1995. Columbia River system operation review—final environmental impact statement: main report, appendices A, C, E, and I. BPA, Portland, Oregon.en_US
dc.identifier.citedreferenceU.S. Department of the Interior, Bureau of Reclamation. 1999. Snake River flow augmentation impact analysis appendix. U.S. Bureau of Reclamation, Boise, Idaho.en_US
dc.identifier.citedreferenceU.S. Department of the Interior, Bureau of Reclamation. 2003. Pacific Northwest water acquisitions, 2001-2002. U.S. Bureau of Reclamation, Boise, Idaho.en_US
dc.identifier.citedreferenceU.S. Fish and Wildlife Service (USFWS). 2005. Caspian Tern management to reduce predation of juvenile salmonids in the Columbia River estuary, final environmental impact statement. USFWS, Portland, Oregon.en_US
dc.identifier.citedreferenceU.S. Water Resources Council. 1983. Economic and environmental principles and guidelines for water and related land resources implementation studies. U.S. Government Printing Office, Washington, D.C.en_US
dc.identifier.citedreferenceWilliams, J. G., S. G. Smith, R. W. Zabel, W. D. Muir, M. D. Scheuerell, B. P. Sandford, D. M. Marsh, R. A. McNatt, and S. Achord. 2005. Effects of the federal Columbia River power system on salmonid populations. Technical memorandum NMFS-NWFSC-63. National Oceanic and Atmospheric Administration—National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle.en_US
dc.identifier.citedreferenceWilson, P. H. 2003. Using population projection matrices to evaluate recovery strategies for Snake River spring and summer chinook salmon. Conservation Biology 17: 782 – 794.en_US
dc.identifier.citedreferenceZabel, R. W., M. D. Scheuerell, M. M. McClure, and J. G. Williams. 2006. The interplay between climate variability and density dependence in the population viability of chinook salmon. Conservation Biology 20: 190 – 200.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.