Show simple item record

Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli

dc.contributor.authorWagner, Patrick L.en_US
dc.contributor.authorLivny, Jonathanen_US
dc.contributor.authorNeely, Melody N.en_US
dc.contributor.authorAcheson, David W. K.en_US
dc.contributor.authorFriedman, David I.en_US
dc.contributor.authorWaldor, Matthew K.en_US
dc.date.accessioned2010-06-01T21:11:18Z
dc.date.available2010-06-01T21:11:18Z
dc.date.issued2002-05en_US
dc.identifier.citationWagner, Patrick L . ; Livny, Jonathan; Neely, Melody N . ; Acheson, David W. K . ; Friedman, David I . ; Waldor, Matthew K . (2002). "Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli ." Molecular Microbiology 44(4): 957-970. <http://hdl.handle.net/2027.42/74269>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74269
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12010491&dopt=citationen_US
dc.description.abstractThe stx genes of many Shiga toxin-encoding Escherichia coli (STEC) strains are encoded by prophages of the λ bacteriophage family. In the genome of the Stx1-encoding phage H-19B, the stx 1 AB genes are found ≈ 1 kb downstream of the late phage promoter, p R ′, but are known to be regulated by the associated iron-regulated promoter, p Stx1 . Growth of H-19B lysogens in low iron concentrations or in conditions that induce the prophage results in increased Stx1 production. Although the mechanism by which low iron concentration induces Stx1 production is well understood, the mechanisms by which phage induction enhances toxin production have not been extensively characterized. The studies reported here identify the factors that contribute to Stx1 production after induction of the H-19B prophage. We found that replication of the phage genome, with the associated increase in stx 1 AB copy number, is the most quantitatively important mechanism by which H-19B induction increases Stx1 production. Three promoters are shown to be involved in stx 1 AB transcription after phage induction, the iron-regulated p Stx1 and the phage-regulated p R and p R ′ promoters, the relative importance of which varies with environmental conditions. Late phage transcription initiating at the p R ′ promoter, contrary to previous findings in the related Stx2-encoding phage φ361, was found to be unnecessary for high-level Stx1 production after phage induction. Finally, we present evidence that phage-mediated lysis regulates the quantity of Stx1 produced by determining the duration of Stx1 accumulation and provides a mechanism for Stx1 release. By amplifying stx 1 AB copy number, regulating stx 1 AB transcription and allowing for Stx1 release, the biology of the Stx-encoding phages contributes greatly to the production of Stx, the principal virulence factor of STEC.en_US
dc.format.extent1043473 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2002 Blackwell Science Ltd.en_US
dc.titleBacteriophage control of Shiga toxin 1 production and release by Escherichia colien_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, MI 48109-0619, USA.en_US
dc.contributor.affiliationotherProgram in Cellular and Molecular Biology, anden_US
dc.identifier.pmid12010491en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74269/1/j.1365-2958.2002.02950.x.pdf
dc.identifier.doi10.1046/j.1365-2958.2002.02950.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAcheson, D.W.K., and Keusch, G.T. ( 1996 ) Which Shiga-toxin producing types of E. coli are important? Am Soc Microbiol News 62: 302 – 306.en_US
dc.identifier.citedreferenceAcheson, D.W.K., Kane, A.V., Keusch, G.T., and Donohue-Rolfe, A. ( 1989 ) High yield purification and subunit characterization of Shiga-like toxin II. In 29th Interscience Conference on Antimicrobial Agents and Chemotherapy, Abstract 901.en_US
dc.identifier.citedreferenceAl-Jumaili, I., Burke, D.A., Scotland, S.M., Al-Mardini, H.M., and Record, C.O. ( 1992 ) A method of enhancing verocytotoxin production by Escherichia coli. FEMS Microbiol Lett 93: 121 – 126.en_US
dc.identifier.citedreferenceAusubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. ( 1999 ) Current Protocols in Molecular Biology. New York: John Wiley & Sons.en_US
dc.identifier.citedreferenceBarksdale, L., Garmise, L., and Horibata, K. ( 1960 ) Virulence, toxinogeny and lysogeny in Corynebacterium diphtheriae. Ann NY Acad Sci 88: 1093 – 1098.en_US
dc.identifier.citedreferenceButler, T., Islam, M.R., Azad, M.A.K., and Jones, P.K. ( 1987 ) Risk factors for development of hemolytic uremic syndrome during shigellosis. J Pediatrics 110: 894 – 897.en_US
dc.identifier.citedreferenceCalderwood, S.B., and Mekalanos, J.J. ( 1987 ) Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J Bacteriol 169: 4759 – 4764.en_US
dc.identifier.citedreferenceCalderwood, S.B., Auclair, F., Donohue-Rolfe, A., Keusch, G.T., and Mekalanos, J.J. ( 1987 ) Nucleotide sequence of the Shiga-like toxin genes of Escherichia coli. Proc Natl Acad Sci USA 84: 4364 – 4368.en_US
dc.identifier.citedreferenceCampbell, A., and Botstein, D. ( 1983 ) Evolution of lambdoid phages. In Lambda II. Hendrix, R.W., et al. (eds). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.en_US
dc.identifier.citedreferenceCarter, A.O., Borczyk, A.A., Carlson, J.A.K., Harvey, B., Hochin, J.C., Karmali, M.A., et al. ( 1987 ) A severe outbreak of Escherichia coli O157:H7-associated hemorrhagic colitis in a nursing home. N Engl J Med 317: 1496 – 1500.en_US
dc.identifier.citedreferenceCourt, D., Brady, C., Rosenberg, M., Wulff, D.L., Behr, M., Mahoney, M., and Izumi, S.U. ( 1980 ) Control of transcription termination: a rho-dependent termination site in bacteriophage lambda. J Mol Biol 138: 231 – 254.en_US
dc.identifier.citedreferenceDaniels, D.L., Subbarao, M.N., Blattner, F.R., and Lozeron, H.A. ( 1988 ) Q-mediated late gene transcription of bacteriophage lambda: RNA start point and RNase III processing sites in vivo. Virology 167: 568 – 577.en_US
dc.identifier.citedreferenceDas, A. ( 1992 ) How the phage lambda N gene product suppresses transcription termination: communication of RNA polymerase with regulatory proteins mediated by signals in nascent RNA. J Bacteriol 174: 6711 – 6716.en_US
dc.identifier.citedreferenceDatsenko, K.A., and Wanner, B.L. ( 2000 ) One-step inactivation of chromosomal genes in Escherichia coli using PCR products. Proc Natl Acad Sci USA 97: 6640 – 6645.en_US
dc.identifier.citedreferenceDatz, M., Janetzki-Mittman, C., Franke, S., Gunzer, F., Schmidt, H., and Karch, H. ( 1996 ) Analysis of the enterohemorrhagic Escherichia coli O157 DNA region containing lambdoid phage gene p Shiga-like toxin structural genes. Appl Environ Microbiol 62: 791 – 797.en_US
dc.identifier.citedreferenceDavis, B.M., and Waldor, M.K. ( 2002 ) Mobile genetic elements and bacterial pathogenesis. In Mobile DNA II. Craig, N.L., et al. (eds). Washington, DC: American Society for Microbiology Press pp. 1040 – 1059.en_US
dc.identifier.citedreferenceDe Grandis, S., Ginsberg, J., Toone, M., Climie, S., Friesen, J., and Brunton, J. ( 1987 ) Nucleotide sequence and promoter mapping of the Escherichia coli Shiga-like toxin operon of bacteriophage H-19B. J Bacteriol 169: 4313 – 4319.en_US
dc.identifier.citedreferenceDonnenberg, M.S., and Kaper, J.B. ( 1991 ) Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive selection suicide vector. Infect Immun 59: 4310 – 4317.en_US
dc.identifier.citedreferenceDonohue-Rolfe, A., Keusch, G.T., Edson, C., Thorley-Lawson, D., and Jacewicz, M. ( 1984 ) Pathogenesis of Shigella diarrhea. IX. Simplified high yield purification of Shigella toxin and characterization of subunit composition and function by the use of subunit-specific monoclonal and polyclonal antibodies. J Exp Med 160: 1767 – 1781.en_US
dc.identifier.citedreferenceDonohue-Rolfe, A., Acheson, D.W.K., Kane, A.V., and Keusch, G.T. ( 1989 ) Purification of Shiga toxin and Shiga-like toxins I and II by receptor analog affinity chromato-graphy with immobilized P1 glycoprotein and production of cross-reactive monoclonal antibodies. Infect Immun 57: 3888 – 3893.en_US
dc.identifier.citedreferenceFriedman, D.I., and Court, D.L. ( 2001 ) Bacteriophage lambda: alive and well and still doing its thing. Curr Opin Microbiol 4: 201 – 207.en_US
dc.identifier.citedreferenceFriedman, D.I., and Gottesman, M. ( 1983 ) Lytic mode of lambda development. In Lambda II. Hendrix, R.W., et al. (eds). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 21 – 51.en_US
dc.identifier.citedreferenceFurth, M.E., and Wickner, S.H. ( 1983 ) Lambda DNA replication. In Lambda II. Hendrix, R.W., et al. (eds). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 145 – 173.en_US
dc.identifier.citedreferenceGriffin, P.M. ( 1995 ) Escherichia coli O157:H7 and other enterohemorrhagic Escherichia coli. In Infections of the Gastrointestinal Tract. Blaser, M.J., Smith, P.D., Ravdin, J.I., Greenberg, H.B. & Guerrant, R.L. (eds). New York: Raven Press, pp. 739 – 762.en_US
dc.identifier.citedreferenceHead, S.C., Petric, M., Richardson, S., Roscoe, M., and Karmali, M.A. ( 1988 ) Purification and characterization of verocytotoxin 2. FEMS Microbiol Lett 51: 211 – 216.en_US
dc.identifier.citedreferenceHendrix, R.W., Lawrence, J.G., Hatfull, G.F., and Casjens, S. ( 2000 ) The origins and ongoing evolution of viruses. Trends Microbiol 8: 504 – 508.en_US
dc.identifier.citedreferenceHochhut, B., and Waldor, M.K. ( 1999 ) Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol Microbiol 32: 99 – 110.en_US
dc.identifier.citedreferenceHuang, A., de Grandis, S., Friesen, J., Karmali, M., Petric, M., Congi, R., and Brunton, J.L. ( 1986 ) Cloning and expression of the genes specifying Shiga-like toxin production in Escherichia coli H19. J Bacteriol 166: 375 – 379.en_US
dc.identifier.citedreferenceHuang, A., Friesen, J., and Brunton, J.L. ( 1987 ) Characterization of a bacteriophage that carries the genes for production of Shiga-like toxin 1 in Escherichia coli. J Bacteriol 169: 4308 – 4312.en_US
dc.identifier.citedreferenceHull, A.E., Acheson, D.W.K., Donohue-Rolfe, A., Keusch, G.T., and Echeverria, P. ( 1991 ) Comparison of DNA probe and mitomycin C-enhanced immunoblot assay for the detection of Shiga-like toxin producing E. coli in stool specimens. In Proceedings of the ASM 91st General Meeting. Washington, DC: American Society for Microbiology Press, p. 390.en_US
dc.identifier.citedreferenceHull, A.E., Acheson, D.W.K., Echeverria, P., Donohue-Rolfe, A., and Keusch, G.T. ( 1993 ) Mitomycin immunoblot colony assay for detection of Shiga like toxin-producing Escheri-chia coli in fecal samples: comparison with DNA probes. J Clin Microbiol 31: 1167 – 1172.en_US
dc.identifier.citedreferenceJackson, M.P., Newland, J.W., Holmes, R.K., and O’Brien, A.D. ( 1987 ) Nucleotide sequence analysis of the structural genes for Shiga-like toxin I encoded by bacteriophage 933J from Escherichia coli. Microb Pathog 2: 147 – 153.en_US
dc.identifier.citedreferenceKarch, H., Schmidt, H., Janetzki-Mittmann, C., Scheef, J., and Kroger, M. ( 1999 ) Shiga toxins even when different are encoded at identical positions in the genomes of related temperate bacteriophages. Mol Gen Genet 262: 600 – 607.en_US
dc.identifier.citedreferenceKozlov, Y.V., Kabishev, A.A., Lukyanov, E.V., and Bayev, A.A. ( 1988 ) The primary structure of the operons coding for Shigella dysenteriae toxin and temperate phage H30 Shiga-like toxin. Gene 67: 213 – 221.en_US
dc.identifier.citedreferenceLittle, J.W. ( 1995 ) The SOS regulatory system. In Regulation of Gene Expression in Escherichia coli. Lynn, E.C.C. & Lynch, A.S. (eds). Georgetown, TX: R.G. Landis, pp. 453 – 479.en_US
dc.identifier.citedreferenceMakino, K., Ishii, K., Yasunaga, T., Hattori, M., Yokoyama, K., Yutsudo, C.H., et al. ( 1998 ) Complete nucleotide sequences of 93-kb and 3.3-kb plasmids of an enterohemorrhagic Escherichia coli O157: H7 derived from Sakai outbreak. DNA Res 5: 1 – 9.en_US
dc.identifier.citedreferenceMekalanos, J.J. ( 1983 ) Duplication and amplification of toxin genes in Vibrio cholerae. Cell 35: 253 – 263.en_US
dc.identifier.citedreferenceMizutani, S., Nakazono, N., and Sugino, Y. ( 1999 ) The so-called chromosomal verotoxin genes are actually carried by defective prophages. DNA Res 6: 141 – 143.en_US
dc.identifier.citedreferenceMuhldorfer, I., Hacker, J., Keusch, G.T., Acheson, D.W., Tschape, H., Kane, A.V., et al. ( 1996 ) Regulation of the Shiga-like toxin II operon in Escherichia coli. Infect Immun 64: 495 – 502.en_US
dc.identifier.citedreferenceNeely, M.N., and Friedman, D.I. ( 1998a ) Arrangement and functional identification of genes in the regulatory region of lambdoid phage H-19B, a carrier of a Shiga-like toxin. Gene 223: 105 – 113.en_US
dc.identifier.citedreferenceNeely, M.N., and Friedman, D.I. ( 1998b ) Functional and genetic analysis of regulatory regions of coliphage H-19B: location of Shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol Microbiol 28: 1255 – 1267.en_US
dc.identifier.citedreferenceNewland, J.W., and Neill, R.J. ( 1988 ) DNA probes for Shiga-like toxins I and II and for toxin-converting bacteriophages. J Clin Microbiol 26: 1292 – 1297.en_US
dc.identifier.citedreferenceOchman, H., Lawrence, J.G., and Groisman, E.A. ( 2000 ) Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299 – 304.en_US
dc.identifier.citedreferencePavia, A.T., Nichols, C.R., Green, D.P., Tauxe, R.V., Mottice, S., Greene, K.D., et al. ( 1990 ) Hemolytic–uremic syndrome during an outbreak of Escherichia coli O157:H7 infections in institutions for mentally retarded persons: clinical and epidemiologic observations. J Pediatrics 116: 544 – 551.en_US
dc.identifier.citedreferencePlunkett, G., III, Rose, D.J., Durfee, T.J., and Blattner, F.R. ( 1999 ) Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J Bacteriol 181: 1767 – 1778.en_US
dc.identifier.citedreferenceRichardson, J.P., and Greenblatt, J. ( 1996 ) Control of RNA chain elongation and termination. In Escherichia coli and Salmonella enterica. Neidhardt, F.C., et al. (eds). Washington, DC: American Society for Microbiology Press, pp. 822 – 848.en_US
dc.identifier.citedreferenceRoberts, J.W., and Devoret, R. ( 1983 ) Lysogenic induction. In Lambda II. Hendrix, R.W., et al. (eds). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 123 – 144.en_US
dc.identifier.citedreferenceRoberts, J.W., Yarnell, W., Bartlett, E., Guo, J., Marr, M., Ko, D.C., et al. ( 1998 ) Antitermination by bacteriophage lambda Q protein. Cold Spring Harbor Symp Quant Biol LXIII: 319 – 325.en_US
dc.identifier.citedreferenceSigner, E.R. ( 1969 ) Plasmid formation: a new mode of lysogeny by phage lambda. Nature 223: 158 – 160.en_US
dc.identifier.citedreferenceSmith, H.W., and Linggood, M.A. ( 1971 ) The transmissible nature of enterotoxin production in a human enteropathogenic strain of Escherichia coli. J Med Microbiol 4: 301 – 305.en_US
dc.identifier.citedreferenceSung, L.M., Jackson, M.P., O’Brien, A.D., and Holmes, R.K. ( 1990 ) Transcription of the Shiga-like toxin type II and Shiga-like toxin type II variant operons of Escherichia coli. J Bacteriol 172: 6386 – 6395.en_US
dc.identifier.citedreferenceUnkmeir, A., and Schmidt, H. ( 2000 ) Structural analysis of phage-borne stx genes and their flanking sequences in Shiga toxin-producing Escherichia coli and Shigella dysenteriae type 1 strains. Infect Immun 68: 4856 – 4864.en_US
dc.identifier.citedreferenceWagner, P.L., Acheson, D.W.K., and Waldor, M.K. ( 1999 ) Isogenic lysogens of diverse Shiga toxin 2-encoding bacteriophages produce markedly different amounts of Shiga toxin. Infect Immun 67: 6710 – 6714.en_US
dc.identifier.citedreferenceWagner, P.L., Neely, M.N., Zhang, X., Acheson, D.W.K., Waldor, M.K., and Friedman, D.I. ( 2001a ) Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J Bacteriol 183: 2081 – 2085.en_US
dc.identifier.citedreferenceWagner, P.L., Acheson, D.W.K., and Waldor, M.K. ( 2001b ) Human neutrophils and their products induce Shiga toxin production by enterohemorrhagic Escherichia coli. Infect Immun 69: 1934 – 1937.en_US
dc.identifier.citedreferenceWong, C.S., Jelacic, S., Habeeb, R.L., Watkins, S.L., and Tarr, P.I. ( 2000 ) The risk of the hemolytic–uremic syndrome after antibiotic treatment of Escherichia coli 0157:H7 infections. N Engl J Med 342: 1930 – 1936.en_US
dc.identifier.citedreferenceYoung, R., Wang, I.-N., and Roof, W.D. ( 2000 ) Phages will out: strategies of host cell lysis. Trends Microbiol 8: 120 – 128.en_US
dc.identifier.citedreferenceYu, D., Ellis, H.M., Lee, E.C., Jenkins, N.A., Copeland, N.G., and Court, D.L. ( 2000 ) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97: 5978 – 5983.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.