Show simple item record

Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers

dc.contributor.authorTholl, Dorotheaen_US
dc.contributor.authorChen, Fengen_US
dc.contributor.authorPetri, Janaen_US
dc.contributor.authorGershenzon, Jonathanen_US
dc.contributor.authorPichersky, Eranen_US
dc.date.accessioned2010-06-01T21:12:52Z
dc.date.available2010-06-01T21:12:52Z
dc.date.issued2005-06en_US
dc.identifier.citationTholl, Dorothea; Chen, Feng; Petri, Jana; Gershenzon, Jonathan; Pichersky, Eran (2005). "Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers." The Plant Journal 42(5): 757-771. <http://hdl.handle.net/2027.42/74293>en_US
dc.identifier.issn0960-7412en_US
dc.identifier.issn1365-313Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74293
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15918888&dopt=citationen_US
dc.format.extent2002868 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 Blackwell Publishing Ltden_US
dc.subject.otherFloral Volatilesen_US
dc.subject.otherTerpenesen_US
dc.subject.otherTerpene Synthaseen_US
dc.subject.otherNectaryen_US
dc.subject.otherArabidopsisen_US
dc.subject.otherEcotypeen_US
dc.titleTwo sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowersen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherMax Planck Institute for Chemical Ecology, Hans KnÖll Strasse 8, D-07745, Jena, Germanyen_US
dc.identifier.pmid15918888en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74293/1/j.1365-313X.2005.02417.x.pdf
dc.identifier.doi10.1111/j.1365-313X.2005.02417.xen_US
dc.identifier.sourceThe Plant Journalen_US
dc.identifier.citedreferenceAbbott, R.J. and Gomes, M.F. ( 1989 ) Population genetic structure and outcrossing rate of Arabidopsis thaliana (L) Heynh. Heredity, 62, 411 – 418.en_US
dc.identifier.citedreferenceAharoni, A., Giri, A.P., Deuerlein, S., Griepink, F., de Kogel, W.J., Verstappen, F.W.A., Verhoeven, H.A., Jongsmaa, M.A., Schwab, W. and Bouwmeester, H.J. ( 2003 ) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell, 15, 2866 – 2884.en_US
dc.identifier.citedreferenceAlonso, J.M., Stepanova, A.N., Leisse, T.J. et al. ( 2003 ) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 301, 653 – 657.en_US
dc.identifier.citedreferenceAubourg, S., Lecharny, A. and Bohlmann, J. ( 2002 ) Genomic analysis of the terpenoid synthase ( AtTPS ) gene family of Arabidopsis thaliana. Mol. Genet. Genomics, 267, 730 – 745.en_US
dc.identifier.citedreferenceBlÁzquez, M.A., Soowal, L.N., Lee, I. and Weigel, D. ( 1997 ) LEAFY expression and flower initiation in Arabidopsis. Development, 124, 3835 – 3844.en_US
dc.identifier.citedreferenceBohlmann, J., Meyer-Gauen, G. and Croteau, R. ( 1998 ) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc. Natl Acad. Sci. USA, 95, 4126 – 4133.en_US
dc.identifier.citedreferenceBuban, T., Orosz-Kovacs, Z. and Farkas, A. ( 2003 ) The nectary is the primary site of infection by Erwinia amylovora (Burr.) Winslow et al.: a mini review. Plant Syst. Evol. 238, 183 – 194.en_US
dc.identifier.citedreferenceCai, Y., Jia, J.-W., Crock, J., Lin, Z.-X., Chen, X.-Y. and Croteau, R. ( 2002 ) A cDNA clone for β -caryophyllene synthase from Artemisia annua. Phytochemistry, 61, 523 – 529.en_US
dc.identifier.citedreferenceCane, D.E. ( 1981 ) Biosynthesis of sesquiterpenes. In Biosynthesis of Isoprenoid Compounds, Vol. 1 ( Porter, J.W. and Spurgeon, S.L., eds ). New York: John Wiley & Sons, pp. 283 – 374.en_US
dc.identifier.citedreferenceCane, D.E. ( 1999 ) Sesquiterpene biosynthesis: cyclization mechanisms. In Comprehensive Natural Products Chemistry: Isoprenoids Including Carotenoids and Steroids, Vol. 2 ( Barton, S.B., Nakanishi, K. and Meth-Cohn, O., eds ). Oxford: Pergamon, pp. 155 – 200.en_US
dc.identifier.citedreferenceCane, D.E. and Xue, Q. ( 1996 ) Trichodiene synthase. Enzymatic formation of multiple sesquiterpenes by alteration of the cyclase active site. J. Am. Chem. Soc. 118, 1563 – 1564.en_US
dc.identifier.citedreferenceChen, F., Tholl, D., D'Auria, J.C., Farooq, A., Pichersky, E. and Gershenzon, J. ( 2003 ) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell, 15, 481 – 494.en_US
dc.identifier.citedreferenceChen, F., Ro, D.K., Petri, J., Gershenzon, J., Bohlmann, J., Pichersky, E. and Tholl, D. ( 2004 ) Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol. 135, 1956 – 1966.en_US
dc.identifier.citedreferenceCowan, M.M. ( 1999 ) Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12, 564 – 582.en_US
dc.identifier.citedreferenceCroteau, R. and Gershenzon, J. ( 1994 ) Genetic control of monoterpene biosynthesis in mints. In Genetic Engineering of Plant Secondary Metabolism, Recent Advances in Phytochemistry, Vol. 28 ( Ellis, B.E., Kuroki, G.W. and Stafford, H.A., eds ). New York: Plenum Press, pp. 193 – 229.en_US
dc.identifier.citedreferenceDavis, E.M. and Croteau, R. ( 2000 ) Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. In Topics in Current Chemistry: Biosynthesis – Aromatic Polyketides, Isoprenoids, Alkaloids ( Leeper, F.J. and Vederas, J.C., eds ). Heidelberg: Springer-Verlag, pp. 53 – 95.en_US
dc.identifier.citedreferenceDavis, A.R., Pylatuik, J.D., Paradis, J.C. and Low, N.H. ( 1998 ) Nectar-carbohydrate production and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae. Planta, 205, 305 – 318.en_US
dc.identifier.citedreferenceDeans, S.G. and Waterman, P.G. ( 1993 ) Biological activity of volatile oils. In Volatile Oil Crops: Their Biology, Biochemistry and Production ( Hay, R.K.M. and Waterman, P.G., eds ). Essex, England: Longman Scientific and Technical, pp. 97 – 111.en_US
dc.identifier.citedreferenceDicke, M. and Van Loon, J.J.A. ( 2000 ) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol. Exp. Appl. 97, 237 – 249.en_US
dc.identifier.citedreferenceDobson, H.E.M. ( 1994 ) Floral volatiles in insect biology. In Insect–Plant Interactions ( Bernays, E.A., ed. ). Boca Raton: CRC Press, pp. 47 – 81.en_US
dc.identifier.citedreferenceDonath, J. and Boland, W. ( 1995 ) Biosynthesis of acyclic homoterpenes – enzyme selectivity and absolute configuration of the nerolidol precursor. Phytochemistry, 39, 785 – 790.en_US
dc.identifier.citedreferenceDudareva, N. and Pichersky, E. ( 2000 ) Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 122, 627 – 633.en_US
dc.identifier.citedreferenceDudareva, N., Cseke, L., Blanc, V.M. and Pichersky, E. ( 1996 ) Evolution of floral scent in Clarkia – novel patterns of S -linalool synthase gene expression in the C. breweri flower. Plant Cell, 8, 1137 – 1148.en_US
dc.identifier.citedreferenceDudareva, N., Martin, D., Kish, C.M., Kolosova, N., Gorenstein, N., FÄldt, J., Miller, B. and Bohlmann, J. ( 2003 ) ( E )- β -ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell, 15, 1227 – 1241.en_US
dc.identifier.citedreferenceGershenzon, J. and Kreis, W. ( 1999 ) Biochemistry of terpenoids: monoterpenes, sesquiterpenes, diterpenes, sterols, cardiac glycosides and steroid saponins. In Biochemistry of Plant Secondary Metabolism, Annual Plant Reviews ( Wink, M., ed. ). Sheffield: Academic Press, pp. 222 – 280.en_US
dc.identifier.citedreferenceHeslop-Harrison, Y. ( 2000 ) Control gates and micro-ecology: the pollen–stigma interaction in perspective. Ann. Bot. 85 ( Suppl. A ), 5 – 13.en_US
dc.identifier.citedreferencevan der Hoeven, R.S., Monforte, A.J., Breeden, D., Tanksley, S.D. and Steffens, J.C. ( 2000 ) Genetic control and evolution of sesquiterpene biosynthesis in Lycopersicon esculentum and L. hirsutum. Plant Cell, 12, 2283 – 2294.en_US
dc.identifier.citedreferenceHoffmann, M.H., Bremer, M., Schneider, K., Burger, F., Stolle, E. and Moritz, G. ( 2003 ) Flower visitors in a natural population of Arabidopsis thaliana. Plant Biol. 5, 491 – 494.en_US
dc.identifier.citedreferenceIijima, Y., Davidovich-Rikanati, R., Fridman, E., Gang, D.R., Bar, E., Lewinsohn, E. and Pichersky, E. ( 2004 ) The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol. 136, 3724 – 3736.en_US
dc.identifier.citedreferenceJones, M.E. ( 1971 ) Population genetics of Arabidopsis thaliana. 1. Breeding system. Heredity, 27, 39 – 50.en_US
dc.identifier.citedreferenceKessler, A. and Baldwin, I.T. ( 2001 ) Defensive function of herbivore-induced plant volatile emissions in nature. Science, 291, 2141 – 2144.en_US
dc.identifier.citedreferenceKnudsen, J.T., Tollsten, L. and Bergstrom, L.G. ( 1993 ) Floral scents – a checklist of volatile compounds isolated by headspace techniques. Phytochemistry, 33, 253 – 280.en_US
dc.identifier.citedreferenceKÖllner, T.G., Schnee, C., Gershenzon, J. and Degenhardt, J. ( 2004 ) The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell, 16, 1115 – 1131.en_US
dc.identifier.citedreferenceKÖnig, W.A., Rieck, A., Saritas, Y., Hardt, I.H. and Kubeczka, K.-H. ( 1996 ) Sesquiterpene hydrocarbons in the essential oil of Meum athamanticum. Phytochemistry, 42, 461 – 464.en_US
dc.identifier.citedreferencede Kraker, J.-W., Franssen, M.C.R., de Groot, A., KÖnig, W.A. and Bouwmeester, H.J. ( 1998 ) (+)-Germacrene A biosynthesis. The committed step in the biosynthesis of bitter sesquiterpene lactones in chicory. Plant Physiol. 117, 1381 – 1392.en_US
dc.identifier.citedreferenceLichtenthaler, H.K. ( 1999 ) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 47 – 65.en_US
dc.identifier.citedreferenceLoreto, F. and Velikova, V. ( 2001 ) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 127, 1781 – 1787.en_US
dc.identifier.citedreferenceMercke, P., Kappers, I.F., Verstappen, F.W.A., Vorst, O., Dicke, M. and Bouwmeester, H.J. ( 2004 ) Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. Plant Physiol. 135, 2012 – 2024.en_US
dc.identifier.citedreferencePichersky, E. and Gershenzon, J. ( 2002 ) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 5, 237 – 243.en_US
dc.identifier.citedreferencePichersky, E., Raguso, R.A., Lewinsohn, E. and Croteau, R. ( 1994 ) Floral scent production in Clarkia (Onagraceae). 1. Localization and developmental modulation of monoterpene emission and linalool synthase activity. Plant Physiol. 106, 1533 – 1540.en_US
dc.identifier.citedreferenceRaguso, R.A. and Pichersky, E. ( 1995 ) Floral volatiles from Clarkia breweri and C. concinna (Onagraceae): recent evolution of floral scent and moth pollination. Plant Syst. Evol. 194, 55 – 67.en_US
dc.identifier.citedreferenceSharkey, T.D. and Yeh, S.S. ( 2001 ) Isoprene emission from plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 407 – 436.en_US
dc.identifier.citedreferenceSnape, J.W. and Lawrence, M.J. ( 1971 ) Breeding system of Arabidopsis thaliana. Heredity, 27, 299 – 301.en_US
dc.identifier.citedreferenceSteele, C.L., Crock, J., Bohlmann, J. and Croteau, R. ( 1998 ) Sesquiterpene synthases from grand fir ( Abies grandis ). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of δ -selinene synthase and γ -humulene synthase. J. Biol. Chem. 273, 2078 – 2089.en_US
dc.identifier.citedreferenceTholl, D., Kish, C.M., Orlova, I., Sherman, D., Gershenzon, J., Pichersky, E. and Dudareva, N. ( 2004 ) Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell, 16, 977 – 992.en_US
dc.identifier.citedreferenceThornburg, R.W., Carter, C., Powell, A., Mittler, R., Rizhsky, L. and Horner, H.T. ( 2003 ) A major function of the tobacco floral nectary is defense against microbial attack. Plant Syst. Evol. 238, 211 – 218.en_US
dc.identifier.citedreferenceTrapp, S.C. and Croteau, R.B. ( 2001 ) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics, 158, 811 – 832.en_US
dc.identifier.citedreferenceTurlings, T.C.J., Loughrin, J.H., McCall, P.J., Rose, U.S.R., Lewis, W.J. and Tumlinson, J.H. ( 1995 ) How caterpillar-damaged plants protect themselves by attracting parasitic waSPS. Proc. Natl Acad. Sci. USA, 92, 4169 – 4174.en_US
dc.identifier.citedreferenceWarmers, U. and KÖnig, W.A. ( 1999 ) Sesquiterpene constituents of the liverwort Bazzania trilobata. Phytochemistry, 52, 99 – 104.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.