Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers
dc.contributor.author | Tholl, Dorothea | en_US |
dc.contributor.author | Chen, Feng | en_US |
dc.contributor.author | Petri, Jana | en_US |
dc.contributor.author | Gershenzon, Jonathan | en_US |
dc.contributor.author | Pichersky, Eran | en_US |
dc.date.accessioned | 2010-06-01T21:12:52Z | |
dc.date.available | 2010-06-01T21:12:52Z | |
dc.date.issued | 2005-06 | en_US |
dc.identifier.citation | Tholl, Dorothea; Chen, Feng; Petri, Jana; Gershenzon, Jonathan; Pichersky, Eran (2005). "Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers." The Plant Journal 42(5): 757-771. <http://hdl.handle.net/2027.42/74293> | en_US |
dc.identifier.issn | 0960-7412 | en_US |
dc.identifier.issn | 1365-313X | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/74293 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15918888&dopt=citation | en_US |
dc.format.extent | 2002868 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Science Ltd | en_US |
dc.rights | 2005 Blackwell Publishing Ltd | en_US |
dc.subject.other | Floral Volatiles | en_US |
dc.subject.other | Terpenes | en_US |
dc.subject.other | Terpene Synthase | en_US |
dc.subject.other | Nectary | en_US |
dc.subject.other | Arabidopsis | en_US |
dc.subject.other | Ecotype | en_US |
dc.title | Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Natural Resources and Environment | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA | en_US |
dc.contributor.affiliationother | Max Planck Institute for Chemical Ecology, Hans KnÖll Strasse 8, D-07745, Jena, Germany | en_US |
dc.identifier.pmid | 15918888 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/74293/1/j.1365-313X.2005.02417.x.pdf | |
dc.identifier.doi | 10.1111/j.1365-313X.2005.02417.x | en_US |
dc.identifier.source | The Plant Journal | en_US |
dc.identifier.citedreference | Abbott, R.J. and Gomes, M.F. ( 1989 ) Population genetic structure and outcrossing rate of Arabidopsis thaliana (L) Heynh. Heredity, 62, 411 – 418. | en_US |
dc.identifier.citedreference | Aharoni, A., Giri, A.P., Deuerlein, S., Griepink, F., de Kogel, W.J., Verstappen, F.W.A., Verhoeven, H.A., Jongsmaa, M.A., Schwab, W. and Bouwmeester, H.J. ( 2003 ) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell, 15, 2866 – 2884. | en_US |
dc.identifier.citedreference | Alonso, J.M., Stepanova, A.N., Leisse, T.J. et al. ( 2003 ) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 301, 653 – 657. | en_US |
dc.identifier.citedreference | Aubourg, S., Lecharny, A. and Bohlmann, J. ( 2002 ) Genomic analysis of the terpenoid synthase ( AtTPS ) gene family of Arabidopsis thaliana. Mol. Genet. Genomics, 267, 730 – 745. | en_US |
dc.identifier.citedreference | BlÁzquez, M.A., Soowal, L.N., Lee, I. and Weigel, D. ( 1997 ) LEAFY expression and flower initiation in Arabidopsis. Development, 124, 3835 – 3844. | en_US |
dc.identifier.citedreference | Bohlmann, J., Meyer-Gauen, G. and Croteau, R. ( 1998 ) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc. Natl Acad. Sci. USA, 95, 4126 – 4133. | en_US |
dc.identifier.citedreference | Buban, T., Orosz-Kovacs, Z. and Farkas, A. ( 2003 ) The nectary is the primary site of infection by Erwinia amylovora (Burr.) Winslow et al.: a mini review. Plant Syst. Evol. 238, 183 – 194. | en_US |
dc.identifier.citedreference | Cai, Y., Jia, J.-W., Crock, J., Lin, Z.-X., Chen, X.-Y. and Croteau, R. ( 2002 ) A cDNA clone for β -caryophyllene synthase from Artemisia annua. Phytochemistry, 61, 523 – 529. | en_US |
dc.identifier.citedreference | Cane, D.E. ( 1981 ) Biosynthesis of sesquiterpenes. In Biosynthesis of Isoprenoid Compounds, Vol. 1 ( Porter, J.W. and Spurgeon, S.L., eds ). New York: John Wiley & Sons, pp. 283 – 374. | en_US |
dc.identifier.citedreference | Cane, D.E. ( 1999 ) Sesquiterpene biosynthesis: cyclization mechanisms. In Comprehensive Natural Products Chemistry: Isoprenoids Including Carotenoids and Steroids, Vol. 2 ( Barton, S.B., Nakanishi, K. and Meth-Cohn, O., eds ). Oxford: Pergamon, pp. 155 – 200. | en_US |
dc.identifier.citedreference | Cane, D.E. and Xue, Q. ( 1996 ) Trichodiene synthase. Enzymatic formation of multiple sesquiterpenes by alteration of the cyclase active site. J. Am. Chem. Soc. 118, 1563 – 1564. | en_US |
dc.identifier.citedreference | Chen, F., Tholl, D., D'Auria, J.C., Farooq, A., Pichersky, E. and Gershenzon, J. ( 2003 ) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell, 15, 481 – 494. | en_US |
dc.identifier.citedreference | Chen, F., Ro, D.K., Petri, J., Gershenzon, J., Bohlmann, J., Pichersky, E. and Tholl, D. ( 2004 ) Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol. 135, 1956 – 1966. | en_US |
dc.identifier.citedreference | Cowan, M.M. ( 1999 ) Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12, 564 – 582. | en_US |
dc.identifier.citedreference | Croteau, R. and Gershenzon, J. ( 1994 ) Genetic control of monoterpene biosynthesis in mints. In Genetic Engineering of Plant Secondary Metabolism, Recent Advances in Phytochemistry, Vol. 28 ( Ellis, B.E., Kuroki, G.W. and Stafford, H.A., eds ). New York: Plenum Press, pp. 193 – 229. | en_US |
dc.identifier.citedreference | Davis, E.M. and Croteau, R. ( 2000 ) Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. In Topics in Current Chemistry: Biosynthesis – Aromatic Polyketides, Isoprenoids, Alkaloids ( Leeper, F.J. and Vederas, J.C., eds ). Heidelberg: Springer-Verlag, pp. 53 – 95. | en_US |
dc.identifier.citedreference | Davis, A.R., Pylatuik, J.D., Paradis, J.C. and Low, N.H. ( 1998 ) Nectar-carbohydrate production and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae. Planta, 205, 305 – 318. | en_US |
dc.identifier.citedreference | Deans, S.G. and Waterman, P.G. ( 1993 ) Biological activity of volatile oils. In Volatile Oil Crops: Their Biology, Biochemistry and Production ( Hay, R.K.M. and Waterman, P.G., eds ). Essex, England: Longman Scientific and Technical, pp. 97 – 111. | en_US |
dc.identifier.citedreference | Dicke, M. and Van Loon, J.J.A. ( 2000 ) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol. Exp. Appl. 97, 237 – 249. | en_US |
dc.identifier.citedreference | Dobson, H.E.M. ( 1994 ) Floral volatiles in insect biology. In Insect–Plant Interactions ( Bernays, E.A., ed. ). Boca Raton: CRC Press, pp. 47 – 81. | en_US |
dc.identifier.citedreference | Donath, J. and Boland, W. ( 1995 ) Biosynthesis of acyclic homoterpenes – enzyme selectivity and absolute configuration of the nerolidol precursor. Phytochemistry, 39, 785 – 790. | en_US |
dc.identifier.citedreference | Dudareva, N. and Pichersky, E. ( 2000 ) Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 122, 627 – 633. | en_US |
dc.identifier.citedreference | Dudareva, N., Cseke, L., Blanc, V.M. and Pichersky, E. ( 1996 ) Evolution of floral scent in Clarkia – novel patterns of S -linalool synthase gene expression in the C. breweri flower. Plant Cell, 8, 1137 – 1148. | en_US |
dc.identifier.citedreference | Dudareva, N., Martin, D., Kish, C.M., Kolosova, N., Gorenstein, N., FÄldt, J., Miller, B. and Bohlmann, J. ( 2003 ) ( E )- β -ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell, 15, 1227 – 1241. | en_US |
dc.identifier.citedreference | Gershenzon, J. and Kreis, W. ( 1999 ) Biochemistry of terpenoids: monoterpenes, sesquiterpenes, diterpenes, sterols, cardiac glycosides and steroid saponins. In Biochemistry of Plant Secondary Metabolism, Annual Plant Reviews ( Wink, M., ed. ). Sheffield: Academic Press, pp. 222 – 280. | en_US |
dc.identifier.citedreference | Heslop-Harrison, Y. ( 2000 ) Control gates and micro-ecology: the pollen–stigma interaction in perspective. Ann. Bot. 85 ( Suppl. A ), 5 – 13. | en_US |
dc.identifier.citedreference | van der Hoeven, R.S., Monforte, A.J., Breeden, D., Tanksley, S.D. and Steffens, J.C. ( 2000 ) Genetic control and evolution of sesquiterpene biosynthesis in Lycopersicon esculentum and L. hirsutum. Plant Cell, 12, 2283 – 2294. | en_US |
dc.identifier.citedreference | Hoffmann, M.H., Bremer, M., Schneider, K., Burger, F., Stolle, E. and Moritz, G. ( 2003 ) Flower visitors in a natural population of Arabidopsis thaliana. Plant Biol. 5, 491 – 494. | en_US |
dc.identifier.citedreference | Iijima, Y., Davidovich-Rikanati, R., Fridman, E., Gang, D.R., Bar, E., Lewinsohn, E. and Pichersky, E. ( 2004 ) The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol. 136, 3724 – 3736. | en_US |
dc.identifier.citedreference | Jones, M.E. ( 1971 ) Population genetics of Arabidopsis thaliana. 1. Breeding system. Heredity, 27, 39 – 50. | en_US |
dc.identifier.citedreference | Kessler, A. and Baldwin, I.T. ( 2001 ) Defensive function of herbivore-induced plant volatile emissions in nature. Science, 291, 2141 – 2144. | en_US |
dc.identifier.citedreference | Knudsen, J.T., Tollsten, L. and Bergstrom, L.G. ( 1993 ) Floral scents – a checklist of volatile compounds isolated by headspace techniques. Phytochemistry, 33, 253 – 280. | en_US |
dc.identifier.citedreference | KÖllner, T.G., Schnee, C., Gershenzon, J. and Degenhardt, J. ( 2004 ) The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell, 16, 1115 – 1131. | en_US |
dc.identifier.citedreference | KÖnig, W.A., Rieck, A., Saritas, Y., Hardt, I.H. and Kubeczka, K.-H. ( 1996 ) Sesquiterpene hydrocarbons in the essential oil of Meum athamanticum. Phytochemistry, 42, 461 – 464. | en_US |
dc.identifier.citedreference | de Kraker, J.-W., Franssen, M.C.R., de Groot, A., KÖnig, W.A. and Bouwmeester, H.J. ( 1998 ) (+)-Germacrene A biosynthesis. The committed step in the biosynthesis of bitter sesquiterpene lactones in chicory. Plant Physiol. 117, 1381 – 1392. | en_US |
dc.identifier.citedreference | Lichtenthaler, H.K. ( 1999 ) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 47 – 65. | en_US |
dc.identifier.citedreference | Loreto, F. and Velikova, V. ( 2001 ) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 127, 1781 – 1787. | en_US |
dc.identifier.citedreference | Mercke, P., Kappers, I.F., Verstappen, F.W.A., Vorst, O., Dicke, M. and Bouwmeester, H.J. ( 2004 ) Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. Plant Physiol. 135, 2012 – 2024. | en_US |
dc.identifier.citedreference | Pichersky, E. and Gershenzon, J. ( 2002 ) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 5, 237 – 243. | en_US |
dc.identifier.citedreference | Pichersky, E., Raguso, R.A., Lewinsohn, E. and Croteau, R. ( 1994 ) Floral scent production in Clarkia (Onagraceae). 1. Localization and developmental modulation of monoterpene emission and linalool synthase activity. Plant Physiol. 106, 1533 – 1540. | en_US |
dc.identifier.citedreference | Raguso, R.A. and Pichersky, E. ( 1995 ) Floral volatiles from Clarkia breweri and C. concinna (Onagraceae): recent evolution of floral scent and moth pollination. Plant Syst. Evol. 194, 55 – 67. | en_US |
dc.identifier.citedreference | Sharkey, T.D. and Yeh, S.S. ( 2001 ) Isoprene emission from plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 407 – 436. | en_US |
dc.identifier.citedreference | Snape, J.W. and Lawrence, M.J. ( 1971 ) Breeding system of Arabidopsis thaliana. Heredity, 27, 299 – 301. | en_US |
dc.identifier.citedreference | Steele, C.L., Crock, J., Bohlmann, J. and Croteau, R. ( 1998 ) Sesquiterpene synthases from grand fir ( Abies grandis ). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of δ -selinene synthase and γ -humulene synthase. J. Biol. Chem. 273, 2078 – 2089. | en_US |
dc.identifier.citedreference | Tholl, D., Kish, C.M., Orlova, I., Sherman, D., Gershenzon, J., Pichersky, E. and Dudareva, N. ( 2004 ) Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell, 16, 977 – 992. | en_US |
dc.identifier.citedreference | Thornburg, R.W., Carter, C., Powell, A., Mittler, R., Rizhsky, L. and Horner, H.T. ( 2003 ) A major function of the tobacco floral nectary is defense against microbial attack. Plant Syst. Evol. 238, 211 – 218. | en_US |
dc.identifier.citedreference | Trapp, S.C. and Croteau, R.B. ( 2001 ) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics, 158, 811 – 832. | en_US |
dc.identifier.citedreference | Turlings, T.C.J., Loughrin, J.H., McCall, P.J., Rose, U.S.R., Lewis, W.J. and Tumlinson, J.H. ( 1995 ) How caterpillar-damaged plants protect themselves by attracting parasitic waSPS. Proc. Natl Acad. Sci. USA, 92, 4169 – 4174. | en_US |
dc.identifier.citedreference | Warmers, U. and KÖnig, W.A. ( 1999 ) Sesquiterpene constituents of the liverwort Bazzania trilobata. Phytochemistry, 52, 99 – 104. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.