Show simple item record

Cocaine-induced psychomotor activity is associated with its ability to induce c- fos mRNA expression in the subthalamic nucleus: effects of dose and repeated treatment

dc.contributor.authorUslaner, Jason M.en_US
dc.contributor.authorCrombag, Hans S.en_US
dc.contributor.authorFerguson, Susan M.en_US
dc.contributor.authorRobinson, Terry E.en_US
dc.date.accessioned2010-06-01T21:13:18Z
dc.date.available2010-06-01T21:13:18Z
dc.date.issued2003-05en_US
dc.identifier.citationUslaner, Jason M.; Crombag, Hans S.; Ferguson, Susan M.; Robinson, Terry E. (2003). "Cocaine-induced psychomotor activity is associated with its ability to induce c- fos mRNA expression in the subthalamic nucleus: effects of dose and repeated treatment." European Journal of Neuroscience 17(10): 2180-2186. <http://hdl.handle.net/2027.42/74300>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74300
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12786985&dopt=citationen_US
dc.description.abstractFactors that modulate the psychomotor activating effects of amphetamine and cocaine, such as environmental novelty and dose, also regulate the ability of these drugs to induce c- fos mRNA expression in the subthalamic nucleus (STN). We hypothesized therefore that engagement of the STN may be important for stimulant-induced psychomotor activation. To further test this hypothesis we examined whether repeated treatment with cocaine, which enhances its psychomotor activating effects (i.e. produces behavioural sensitization), also enhances its ability to induce c- fos expression in the STN. In addition, given that STN activity is thought to be influenced by preproenkephalin mRNA-containing (ENK+) neurons in the caudate–putamen, we also examined whether repeated cocaine treatment alters c- fos expression in ENK+ cells. We report that: (i) cocaine pretreatment enhances the ability of a cocaine challenge to induce c- fos mRNA expression in the STN, and this effect is most robust at challenge doses where behavioural sensitization is observed; (ii) the ability of cocaine to induce c- fos in the STN is independent of the ability of cocaine to engage ENK+ cells. These results support the idea that the STN is involved in stimulant-induced psychomotor activation and sensitization, but suggest that stimulant-induced engagement of the STN is not dependent on ENK+ cells in the caudate–putamen. These findings may have implications concerning the neurobiological mechanisms underlying the behavioural effects of psychostimulant drugs.en_US
dc.format.extent226357 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science, Ltden_US
dc.rights© Federation of European Neuroscience Societiesen_US
dc.subject.otherCaudate–Putamenen_US
dc.subject.otherEnkephalinen_US
dc.subject.otherRaten_US
dc.subject.otherSensitizationen_US
dc.subject.otherSubstance Pen_US
dc.titleCocaine-induced psychomotor activity is associated with its ability to induce c- fos mRNA expression in the subthalamic nucleus: effects of dose and repeated treatmenten_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumBiopsychology and Neuroscience Programs, Department of Psychology, The University of Michigan, East Hall, 525 E. University St., Ann Arbor, MI 48019–1109, USAen_US
dc.identifier.pmid12786985en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74300/1/j.1460-9568.2003.02638.x.pdf
dc.identifier.doi10.1046/j.1460-9568.2003.02638.xen_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceAlbin, R. L., Young, A. B. & Penney, J. B. ( 1989 ) The functional anatomy of basal ganglia disorders. Trends Neurosci., 12, 366 – 375.en_US
dc.identifier.citedreferenceBadiani, A., Oates, M. M., Day, H. E., Watson, S. J., Akil, H. & Robinson, T. E. ( 1998 ) Amphetamine-induced behavior, dopamine release, and c-fos mRNA expression: modulation by environmental novelty. J. Neurosci., 18, 10579 – 10593.en_US
dc.identifier.citedreferenceBadiani, A., Oates, M. M., Day, H. E., Watson, S. J., Akil, H. & Robinson, T. E. ( 1999 ) Environmental modulation of amphetamine-induced c-fos expression in D1 versus D2 striatal neurons. Behav. Brain Res., 103, 203 – 209.en_US
dc.identifier.citedreferenceBanks, K. E. & Gratton, A. ( 1995 ) Possible involvement of medial prefrontal cortex in amphetamine-induced sensitization of mesolimbic dopamine function. Eur. J. Pharmacol., 282, 157 – 167.en_US
dc.identifier.citedreferenceBaunez, C., Cador, M., Dias, C., Robbins, T. W. & Amalric, M. ( 2002 ) Bilateral lesions of the subthalamic nucleus increase motivation for food, but reduce the incentive motivation produced by drugs of abuse. FENS Forum Abstr., 42, 115.en_US
dc.identifier.citedreferenceBrowman, K. E., Badiani, A. & Robinson, T. E. ( 1998 ) Modulatory effect of environmental stimuli on the susceptibility to amphetamine sensitization: a dose-effect study in rats. J. Pharmacol. Exp. Ther., 287, 1007 – 1014.en_US
dc.identifier.citedreferenceBruet, N., Windels, F., Bertrand, A., Feuerstein, C., Poupard, A. & Savasta, M. ( 2001 ) High frequency stimulation of the subthalamic nucleus increases the extracellular contents of striatal dopamine in normal and partially dopaminergic denervated rats. J. Neuropathol. Exp. Neurol., 60, 15 – 24.en_US
dc.identifier.citedreferenceCampbell, G. A., Eckardt, M. J. & Weight, F. F. ( 1985 ) Dopaminergic mechanisms in subthalamic nucleus of rat: analysis using horseradish peroxidase and microiontophoresis. Brain Res., 333, 261 – 270.en_US
dc.identifier.citedreferenceCanales, J. J. & Graybiel, A. M. ( 2000 ) A measure of striatal function predicts motor stereotypy. Nature Neurosci., 3, 377 – 383.en_US
dc.identifier.citedreferenceCanteras, N. S., Shammah-Lagnado, S. J., Silva, B. A. & Ricardo, J. A. ( 1990 ) Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res., 513, 43 – 59.en_US
dc.identifier.citedreferenceCreese, I. & Iversen, S. D. ( 1974 ) The role of forebrain dopamine systems in amphetamine induced stereotyped behavior in the rat. Psychopharmacologia, 39, 345 – 357.en_US
dc.identifier.citedreferenceCrombag, H. S., Badiani, A., Chan, J., Dell'Orco, J., Dineen, S. P. & Robinson, T. E. ( 2001 ) The ability of environmental context to facilitate psychomotor sensitization to amphetamine can be dissociated from its effect on acute drug responsiveness and on conditioned responding. Neuropsychopharmacology, 24, 680 – 690.en_US
dc.identifier.citedreferenceCullinan, W. E., Herman, J. P., Battaglia, D. F., Akil, H. & Watson, S. J. ( 1995 ) Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience, 64, 477 – 505.en_US
dc.identifier.citedreferenceCurran, E. J. & Watson, S. J. Jr ( 1995 ) Dopamine receptor mRNA expression patterns by opioid peptide cells in the nucleus accumbens of the rat: a double in situ hybridization study. J. Comp. Neurol., 361, 57 – 76.en_US
dc.identifier.citedreferenceDay, H. E., Badiani, A., Uslaner, J. M., Oates, M. M., Vittoz, N. M., Robinson, T. E., Watson, S. J. Jr & Akil, H. ( 2001 ) Environmental novelty differentially affects c-fos mRNA expression induced by amphetamine or cocaine in subregions of the bed nucleus of the stria terminalis and amygdala. J. Neurosci., 21, 732 – 740.en_US
dc.identifier.citedreferenceEichler, A. J. & Antelman, S. M. ( 1979 ) Sensitization to amphetamine and stress may involve nucleus accumbens and medial frontal cortex. Brain Res., 176, 412 – 416.en_US
dc.identifier.citedreferenceGerfen, C. R., Young, W. S. & d. ( 1988 ) Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res., 460, 161 – 167.en_US
dc.identifier.citedreferenceGroenewegen, H. J. & Berendse, H. W. ( 1990 ) Connections of the subthalamic nucleus with ventral striatopallidal parts of the basal ganglia in the rat. J. Comp. Neurol., 294, 607 – 622.en_US
dc.identifier.citedreferenceHammond, C., Deniau, J. M., Rizk, A. & Feger, J. ( 1978 ) Electrophysiological demonstration of an excitatory subthalamonigral pathway in the rat. Brain Res., 151, 235 – 244.en_US
dc.identifier.citedreferenceHassani, O. K., Francois, C., Yelnik, J. & Feger, J. ( 1997 ) Evidence for a dopaminergic innervation of the subthalamic nucleus in the rat. Brain Res., 749, 88 – 94.en_US
dc.identifier.citedreferenceIshida, Y., Todaka, K., Kuwahara, I., Ishizuka, Y., Hashiguchi, H., Nishimori, T. & Mitsuyama, Y. ( 1998 ) Methamphetamine induces fos expression in the striatum and the substantia nigra pars reticulata in a rat model of Parkinson's disease. Brain Res., 809, 107 – 114.en_US
dc.identifier.citedreferenceJaber, M., Cador, M., Dumartin, B., Normand, E., Stinus, L. & Bloch, B. ( 1995 ) Acute and chronic amphetamine treatments differently regulate neuropeptide messenger RNA levels and Fos immunoreactivity in rat striatal neurons. Neuroscience, 65, 1041 – 1050.en_US
dc.identifier.citedreferenceKarler, R., Calder, L. D., Chaudhry, I. A. & Turkanis, S. A. ( 1989 ) Blockade of ‘reverse tolerance’ to cocaine and amphetamine by MK-801. Life Sci., 45, 599 – 606.en_US
dc.identifier.citedreferenceKarler, R., Chaudhry, I. A., Calder, L. D. & Turkanis, S. A. ( 1990 ) Amphetamine behavioral sensitization and the excitatory amino acids. Brain Res., 537, 76 – 82.en_US
dc.identifier.citedreferenceKearney, J. A. & Albin, R. L. ( 2000 ) Intrasubthalamic nucleus metabotropic glutamate receptor activation: a behavioral, Fos immunohistochemical and [ 14 C]2-deoxyglucose autoradiographic study. Neuroscience, 95, 409 – 416.en_US
dc.identifier.citedreferenceKelly, P. H. & Iversen, S. D. ( 1976 ) Selective 6OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant-induced locomotor activity in rats. Eur. J. Pharmacol., 40, 45 – 56.en_US
dc.identifier.citedreferenceKelly, P. H., Seviour, P. W. & Iversen, S. D. ( 1975 ) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res., 94, 507 – 522.en_US
dc.identifier.citedreferenceKita, H. & Kitai, S. T. ( 1987 ) Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J. Comp. Neurol., 260, 435 – 452.en_US
dc.identifier.citedreferenceKreiss, D. S., Anderson, L. A. & Walters, J. R. ( 1996 ) Apomorphine and dopamine D (1) receptor agonists increase the firing rates of subthalamic nucleus neurons. Neuroscience, 72, 863 – 876.en_US
dc.identifier.citedreferenceKreiss, D. S., Mastropietro, C. W., Rawji, S. S. & Walters, J. R. ( 1997 ) The response of subthalamic nucleus neurons to dopamine receptor stimulation in a rodent model of Parkinson's disease. J. Neurosci., 17, 6807 – 6819.en_US
dc.identifier.citedreferenceMaj, J., Sowinska, H., Kapturkiewicz, Z. & Sarnak, J. ( 1972 ) The effect of 1-dopa and (+) -amphetamine on the locomotor activity after pimozide and phenoxybenzamine. J. Pharm. Pharmacol., 24, 412 – 414.en_US
dc.identifier.citedreferenceMaurice, N., Deniau, J. M., Glowinski, J. & Thierry, A. M. ( 1998 ) Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the corticosubthalamic circuits. J. Neurosci., 18, 9539 – 9546.en_US
dc.identifier.citedreferenceMintz, I., Hammond, C. & Feger, J. ( 1986 ) Excitatory effect of iontophoretically applied dopamine on identified neurons of the rat subthalamic nucleus. Brain Res., 375, 172 – 175.en_US
dc.identifier.citedreferenceMoratalla, R., Elibol, B., Vallejo, M. & Graybiel, A. M. ( 1996 ) Network-level changes in expression of inducible Fos-Jun proteins in the striatum during chronic cocaine treatment and withdrawal. Neuron, 17, 147 – 156.en_US
dc.identifier.citedreferenceNi, Z., Gao, D., Bouali-Benazzouz, R., Benabid, A. L. & Benazzouz, A. ( 2001 ) Effect of microiontophoretic application of dopamine on subthalamic nucleus neuronal activity in normal rats and in rats with unilateral lesion of the nigrostriatal pathway. Eur. J. Neurosci., 14, 373 – 381.en_US
dc.identifier.citedreferenceOlds, M. E., Jacques, D. B. & Kopyov, O. ( 1998 ) Globus pallidus lesions depress the excitatory responses to apomorphine but not amphetamine in the subthalamic nucleus of the behaving rat with a 6-OHDA nigra lesion. Brain Res., 812, 50 – 64.en_US
dc.identifier.citedreferenceOlds, M. E., Jacques, D. B. & Kopyov, O. ( 1999 ) Subthalamic responses to amphetamine and apomorphine in the behaving rat with a unilateral 6-OHDA lesion in the substantia nigra. Synapse, 34, 228 – 240.en_US
dc.identifier.citedreferenceOstrander, M. M., Badiani, A., Day, H. E. W., Norton, C., Watson, S. E., Akil, H. & Robinson, T. E. ( 2003 ) Environmental context and past drug history modulate amphetamine-induced c-fos mRNA expression in the basal ganglia, central extended amygdala, and associated limbic forebrain. Neuroscience, in press.en_US
dc.identifier.citedreferenceOverton, P. G., Richards, C. D., Berry, M. S. & Clark, D. ( 1999 ) Long-term potentiation at excitatory amino acid synapses on midbrain dopamine neurons. Neuroreport, 10, 221 – 226.en_US
dc.identifier.citedreferenceParent, A. & Smith, Y. ( 1987 ) Organization of efferent projections of the subthalamic nucleus in the squirrel monkey as revealed by retrograde labeling methods. Brain Res., 436, 296 – 310.en_US
dc.identifier.citedreferencePierce, R. C. & Kalivas, P. W. ( 1997 ) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res. Brain Res. Rev., 25, 192 – 216.en_US
dc.identifier.citedreferencePontieri, F. E., Crane, A. M., Seiden, L. S., Kleven, M. S. & Porrino, L. J. ( 1990 ) Metabolic mapping of the effects of intravenous methamphetamine administration in freely moving rats. Psychopharmacology (Berl. ), 102, 175 – 182.en_US
dc.identifier.citedreferencePorrino, L. J., Domer, F. R., Crane, A. M. & Sokoloff, L. ( 1988 ) Selective alterations in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration in rats. Neuropsychopharmacology, 1, 109 – 118.en_US
dc.identifier.citedreferenceRobinson, T. E., Becker, J. B., Moore, C. J., Castaneda, E. & Mittleman, G. ( 1985 ) Enduring enhancement in frontal cortex dopamine utilization in an animal model of amphetamine psychosis. Brain Res., 343, 374 – 377.en_US
dc.identifier.citedreferenceRobinson, T. E. & Berridge, K. C. ( 1993 ) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Brain Res. Rev., 18, 247 – 291.en_US
dc.identifier.citedreferenceRuskin, D. N. & Marshall, J. F. ( 1995 ) D1 dopamine receptors influence Fos immunoreactivity in the globus pallidus and subthalamic nucleus of intact and nigrostriatal-lesioned rats. Brain Res., 703, 156 – 164.en_US
dc.identifier.citedreferenceSchlechter, J. M. & Butcher, L. L. ( 1972 ) Blockade by pimozide of (+)-amphetamine-induced hyperkinesia in mice. J. Pharm. Pharmacol., 24, 408 – 409.en_US
dc.identifier.citedreferenceSgambato, V., Abo, V., Rogard, M., Besson, M. J. & Deniau, J. M. ( 1997 ) Effect of electrical stimulation of the cerebral cortex on the expression of the Fos protein in the basal ganglia. Neuroscience, 81, 93 – 112.en_US
dc.identifier.citedreferenceSmith, I. D. & Grace, A. A. ( 1992 ) Role of the subthalamic nucleus in the regulation of nigral dopamine neuron activity. Synapse, 12, 287 – 303.en_US
dc.identifier.citedreferenceSvenningsson, P. & Le Moine, C. ( 2002 ) Dopamine D1/5 receptor stimulation induces c-fos expression in the subthalamic nucleus: possible involvement of local D5 receptors. Eur. J. Neurosci., 15, 133 – 142.en_US
dc.identifier.citedreferenceUslaner, J., Badiani, A., Day, H. E., Watson, S. J., Akil, H. & Robinson, T. E. ( 2001a ) Environmental context modulates the ability of cocaine and amphetamine to induce c-fos mRNA expression in the neocortex, caudate nucleus, and nucleus accumbens. Brain Res., 920, 106 – 116.en_US
dc.identifier.citedreferenceUslaner, J., Badiani, A., Norton, C., Day, H., Watson, S., Akil, H. & Robinson, T. ( 2001b ) Amphetamine and cocaine induce different patterns of c- fos mRNA expression in the striatum and subthalamic nucleus depending on envrionmental cotext. Eur. J. Neurosci., 13, 1977 – 1983.en_US
dc.identifier.citedreferenceUslaner, J. M., Norton, C. S., Watson, S. J., Akil, H. & Robinson, T. E. ( 2003 ) Amphetamine-induced c-fos mRNA expression in the caudate-putamen and subthalamic nucleus: interactions between dose, environment, and neuronal phenotype. J. Neurochem., 85, 105 – 119.en_US
dc.identifier.citedreferenceVezina, P. & Stewart, J. ( 1990 ) Amphetamine administered to the ventral tegmental area but not to the nucleus accumbens sensitizes rats to systemic morphine: lack of conditioned effects. Brain Res., 516, 99 – 106.en_US
dc.identifier.citedreferenceWolf, M. E. ( 1998 ) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol., 54, 679 – 720.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.