Show simple item record

Raising the antioxidant levels within mouse muscle fibres does not affect contraction-induced injury

dc.contributor.authorRader, Erik P.en_US
dc.contributor.authorSong, Wooken_US
dc.contributor.authorVan Remmen, Hollyen_US
dc.contributor.authorRichardson, Arlan G.en_US
dc.contributor.authorFaulkner, John A.en_US
dc.date.accessioned2010-06-01T21:15:27Z
dc.date.available2010-06-01T21:15:27Z
dc.date.issued2006-07-01en_US
dc.identifier.citationRader, Erik P.; Song, Wook; Van Remmen, Holly; Richardson, Arlan; Faulkner, John A. (2006). "Raising the antioxidant levels within mouse muscle fibres does not affect contraction-induced injury." Experimental Physiology 91(4): 781-789. <http://hdl.handle.net/2027.42/74330>en_US
dc.identifier.issn0958-0670en_US
dc.identifier.issn1469-445Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74330
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16675501&dopt=citationen_US
dc.format.extent838609 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights©2006 The Physiological Societyen_US
dc.titleRaising the antioxidant levels within mouse muscle fibres does not affect contraction-induced injuryen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumInstitute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Biomedical Engineeringen_US
dc.contributor.affiliationotherDepartment of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USAen_US
dc.identifier.pmid16675501en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74330/1/expphysiol.2005.033043.pdf
dc.identifier.doi10.1113/expphysiol.2005.033043en_US
dc.identifier.sourceExperimental Physiologyen_US
dc.identifier.citedreferenceBalnave CD & Allen DG ( 1995 ). Intracellular calcium and force in single mouse muscle fibres following repeated contractions with stretch. J Physiol 488, 25 – 36.en_US
dc.identifier.citedreferenceBeckman JS, Minor RL Jr, White CW, Repine JE, Rosen GM & Freeman BA ( 1988 ). Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance. J Biol Chem 263, 6884 – 6892.en_US
dc.identifier.citedreferenceBischoff R ( 1994 ). The satellite cell and muscle regeneration. In Myology, ed. Engel AG & Franzini-Armstrong C, pp. 97 – 118. McGraw-Hill, Inc NY, U S A.en_US
dc.identifier.citedreferenceBrickson S, Ji LL, Schell K, Olabisi R, Schneider B & Best TM ( 2003 ). M1/70 attenuates blood-borne neutrophil oxidants, activation, and myofiber damage following stretch injury. J Appl Physiol 95, 969 – 976.en_US
dc.identifier.citedreferenceBrooks SV & Faulkner JA ( 1988 ). Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol 404, 71 – 82.en_US
dc.identifier.citedreferenceBrooks SV & Faulkner JA ( 1990 ). Contraction-induced injury: recovery of skeletal muscles in young and old mice. Am J Physiol 258, C436 – C442.en_US
dc.identifier.citedreferenceBrooks SV, Zerba E & Faulkner JA ( 1995 ). Injury to muscle fibres after single stretches of passive and maximally stimulated muscles in mice. J Physiol 488, 459 – 469.en_US
dc.identifier.citedreferenceCarpenter S & Karpati G ( 1989 ). Segmental necrosis and its demarcation in experimental micropuncture injury of skeletal muscle fibers. J Neuropathol Exp Neurol 48, 154 – 170.en_US
dc.identifier.citedreferenceChance B, Siess H & Boveris A ( 1979 ). Hydrogen peroxide metabolism in mammalian organs. Physiol Rev 59, 527 – 605.en_US
dc.identifier.citedreferenceChen X, Liang H, Van Remmen H, Vijg J & Richardson A ( 2004 ). Catalase transgenic mice: characterization and sensitivity to oxidative stress. Arch Biochem Biophys 422, 197 – 210.en_US
dc.identifier.citedreferenceChen X, Mele J, Giese H, Van Remmen H, Dolle ET, Steinhelper M, Richardson A & Vijg J ( 2003 ). A strategy for the ubiquitous overexpression of human catalase and CuZn superoxide dismutase genes in transgenic mice. Mech Ageing Dev 124, 219 – 227.en_US
dc.identifier.citedreferenceEcheverria OM, Ninomiya JG & Vazquez-Nin GH ( 1987 ). Microscopical and electrophysiological studies on the healing-over of striated fibers of cremaster muscle of the guinea pig. Acta Anat 128, 274 – 280.en_US
dc.identifier.citedreferenceEddleman CS, Bittner GD & Fishman HM ( 2000 ). Barrier permeability at cut axonal ends progressively decreases until an ionic seal is formed. Biophys J 79, 1883 – 1890.en_US
dc.identifier.citedreferenceFaulkner JA, Brooks SV & Zerba E ( 1995 ). Muscle atrophy and weakness with aging: contraction-induced injury as an underlying mechanism. J Gerontol A Biol Sci Med Sci 50, 124 – 129.en_US
dc.identifier.citedreferenceFaulkner JA, Jones DA & Round JM ( 1989 ). Injury to skeletal muscles of mice by forced lengthening during contractions. Q J Exp Physiol 74, 661 – 670.en_US
dc.identifier.citedreferenceFriden J & Lieber RL ( 1998 ). Segmental muscle fiber lesions after repetitive eccentric contractions. Cell Tissue Res 293, 165 – 171.en_US
dc.identifier.citedreferenceHamer PW, McGeachie JM, Davies MJ & Grounds MD ( 2002 ). Evans Blue Dye as an in vivo marker of myofibre damage: optimising parameters for detecting initial myofibre membrane permeability. J Anat 200, 69 – 79.en_US
dc.identifier.citedreferenceHan D, Antunes F, Canali R, Rettori D & Cadenas E ( 2003 ). Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278, 5557 – 5563.en_US
dc.identifier.citedreferenceJackson MJ, Jones DA & Edwards RHT ( 1984 ). Experimental skeletal muscle damage: the nature of the calcium-activated degenerative processes. Eur J Clin Invest 14, 369 – 374.en_US
dc.identifier.citedreferenceKoh TJ & Brooks SV ( 2001 ). Lengthening contractions are not required to induce protection from contraction-induced muscle injury. Am J Physiol Regul Integr Comp Physiol 281, R155 – R161.en_US
dc.identifier.citedreferenceKoh TJ & Escobedo J ( 2003 ). Cytoskeletal disruption and small heat shock protein translocation immediately after lengthening contractions. Am J Physiol Cell Physiol 286, C713 – C722.en_US
dc.identifier.citedreferenceKoh TJ, Peterson JM, Pizza FX & Brooks SV ( 2003 ). Passive stretches protect skeletal muscle of adult and old mice from lengthening contraction-injury. J Gerontol 58A, 592 – 597.en_US
dc.identifier.citedreferenceKomulainen J, Takala T, Kuipers H & Hesselink M ( 1998 ). The disruption of myofibre structures in rat skeletal muscle after forced lengthening contractions. Eur J Physiol 436, 735 – 741.en_US
dc.identifier.citedreferenceLovering RM & De Deyne PG ( 2004 ). Contractile function, sarcolemma integrity, and the loss of dystrophin after skeletal muscle eccentric contraction-induced injury. Am J Physiol Cell Physiol 286, C230 – C238.en_US
dc.identifier.citedreferenceMcArdle A, Dillmann W, Mestril R, Faulkner JA & Jackson MJ ( 2004 a ). Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. FASEB J 18, 355 – 357.en_US
dc.identifier.citedreferenceMcArdle A, van der Meulen JH, Catapano M, Symons MC, Faulkner JA & Jackson MJ ( 1999 ). Free radical activity following contraction-induced injury to the extensor digitorum longus muscles of rats. Free Radic Biol Med 26, 1085 – 1091.en_US
dc.identifier.citedreferenceMcArdle A, van der Meulen JH, Close GL, Pattwell D, Van Remmen H, Huang T, Richardson AG, Epstein CJ, Faulkner JA & Jackson MJ ( 2004 b ). Role of mitochondrial superoxide dismutase in contraction-induced generation of reactive oxygen species in skeletal muscle extracellular space. Am J Physiol Cell Physiol 286, C1152 – C1158.en_US
dc.identifier.citedreferenceMcCully KK & Faulkner JA ( 1985 ). Injury to skeletal-muscle fibers of mice following lengthening contractions. J Appl Physiol 59, 119 – 126.en_US
dc.identifier.citedreferenceMcNeil PL, Vogel SS, Miyake K & Terasaki M ( 2000 ). Patching plasma membrane disruptions with cytoplasmic membrane. J Cell Sci 113, 1891 – 1902.en_US
dc.identifier.citedreferenceMacpherson PC, Schork MA & Faulkner JA ( 1996 ). Contraction-induced injury to single fiber segments from fast and slow muscles of rats by single stretches. Am J Physiol 271, C1438 – C1446.en_US
dc.identifier.citedreferenceOkado-Matsumoto A & Fridovich I ( 2001 ). Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J Biol Chem 276, 38388 – 38393.en_US
dc.identifier.citedreferencePizza FX, Koh TJ, McGregor SJ & Brooks SV ( 2002 ). Muscle inflammatory cells after passive stretches, isometric contractions, and lengthening contractions. J Appl Physiol 92, 1873 – 1878.en_US
dc.identifier.citedreferencePizza FX, McLoughlin TJ, McGregor SJ, Calomeni EP & Gunning WT ( 2001 ). Neutrophils injure cultured skeletal myotubes. Am J Physiol Cell Physiol 281, C335 – C341.en_US
dc.identifier.citedreferencePizza FX, Peterson JM, Baas JH & Koh TJ ( 2005 ). Neutrophils contribute to muscle injury and impair its resolution after lengthening contractions in mice. J Physiol 562, 899 – 913.en_US
dc.identifier.citedreferenceRaineri I, Carlson EJ, Gacayan R, Carra S, Oberley TD, Huang T & Epstein CJ ( 2001 ). Strain-dependent high-level expression of a transgene for manganese superoxide dismutase is associated with growth retardation and decreased fertility. Free Radic Biol Med 31, 1018 – 1030.en_US
dc.identifier.citedreferenceSturtz LA, Diekert K, Jensen LT, Lill R & Culotta VC ( 2001 ). A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 276, 38084 – 38089.en_US
dc.identifier.citedreferencevan der Meulen JH, Jackson MJ & Faulkner JA ( 1997 ). Contraction-induced injury to the extensor digitorum longus muscles of rats: the role of vitamin E. J Appl Physiol 83, 817 – 823.en_US
dc.identifier.citedreferenceVan Remmen H, Salvador C, Yang H, Huang TT, Epstein CJ & Richardson A ( 1999 ). Characterization of the antioxidant status of the heterozygous manganese superoxide dismutase knockout mouse. Arch Biochem Biophys 363, 91 – 97.en_US
dc.identifier.citedreferenceZerba E, Komorowski TE & Faulkner JA ( 1990 ). Free radical injury to skeletal muscles of young, adult, and old mice. Am J Physiol 258, C429 – C435.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.