Show simple item record

Is the Capacity for Optic Nerve Regeneration Related to Continued Retinal Ganglion Cell Production in the Frog?

dc.contributor.authorTaylor, J. S. H.en_US
dc.contributor.authorJack, J. L.en_US
dc.contributor.authorEaster, Stephen S.en_US
dc.date.accessioned2010-06-01T21:17:30Z
dc.date.available2010-06-01T21:17:30Z
dc.date.issued1989-11en_US
dc.identifier.citationTaylor, J. S. H.; Jack, J. L.; Easter, S. S. (1989). "Is the Capacity for Optic Nerve Regeneration Related to Continued Retinal Ganglion Cell Production in the Frog?." European Journal of Neuroscience 1(6): 626-638. <http://hdl.handle.net/2027.42/74362>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74362
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12106120&dopt=citationen_US
dc.description.abstractIn the central nervous system of fish and frogs, some, but not all, axons can regenerate. Retinal ganglion cells are among those that can. The retinae of fish and frogs produce new retinal neurons, including ganglion cells, for months or years after hatching. We have evaluated the hypothesis that retinal axonal regeneration is obligatorily linked to continued production of new ganglion cells. We used bromodeoxyuridine immunocytochemistry to assess retinal neurogenesis in juvenile, yearling, and 10 year old Xenopus laevis. Retinal ganglion cell genesis was vigorous in the marginal retina of the juveniles, but in the yearlings and the 10 year olds, no new ganglion cells were produced there. Cellular proliferation in the central retina was evident at all three ages, but none of the cells produced centrally were in the ganglion cell layer. Regeneration was examined in vivo by cutting one optic nerve and then, weeks later, injecting the eye with tritiated proline. Autoradiographs of brain sections showed that the optic nerves of all three ages regenerated. Regeneration in vitro was assessed using retinal explants from frogs of all three ages. In all cases, the cultures produced neurites, with some age-specific differences in the patterns of outgrowth. We conclude that retinal axonal regeneration is not linked obligatorily to maintained neurogenesis.en_US
dc.format.extent3567625 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1989 European Neuroscience Associationen_US
dc.subject.otherRetinotectalen_US
dc.subject.otherXenopusen_US
dc.subject.otherDevelopmenten_US
dc.subject.otherOptic Nerveen_US
dc.subject.otherRegenerationen_US
dc.titleIs the Capacity for Optic Nerve Regeneration Related to Continued Retinal Ganglion Cell Production in the Frog?en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biology, University of Michigan, Ann Arbor, MI-48109, USAen_US
dc.contributor.affiliationotherThe MRC Neural Development and Regeneration Group, Department of Zoology, University of Edinburgh, Edinburgh EH9 3JT, UKen_US
dc.contributor.affiliationotherDepartment of Human Anatomy, University of Oxford, Oxford OX1 3QX, UKen_US
dc.identifier.pmid12106120en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74362/1/j.1460-9568.1989.tb00368.x.pdf
dc.identifier.doi10.1111/j.1460-9568.1989.tb00368.xen_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceAgranoff, B. W., Field, P., and Gaze, R. M. ( 1976 ) Neurite outgrowth from explanted Xenopus retina: an effect of prior optic nerve section. Brain Res. 113: 225 – 234.en_US
dc.identifier.citedreferenceAguayo, A. J. ( 1985 ) In: Coleman, C. W. ( ed. ) Synaptic Plasticity pp. 457 – 484. The Guildford Press, New York.en_US
dc.identifier.citedreferenceAltman, J. ( 1970 ) In: Himwich, W. A. ( ed. ) Developmental Neurobiology pp. 197 – 237. Springfield: Thomas.en_US
dc.identifier.citedreferenceAlvarez-Buylla, A. and Nottebohm, F. ( 1988 ) Migration of young neurons in adult avian brain. Nature (Lond.) 335: 353 – 354.en_US
dc.identifier.citedreferenceAttardi, D. G. and Sperry, R. W. ( 1963 ) Preferential selection of central pathways by regenerating optic fibers. Exp. Neurol. 7: 46 – 64.en_US
dc.identifier.citedreferenceBahr, M., Vaneslow, J., and Thanos, S. ( 1988 ) In vitro regeneration of adult rat ganglion cell axons from retinal explants. Exp. Brain Res. 73: 393 – 401.en_US
dc.identifier.citedreferenceBarber, P. C. ( 1981 ) Axonal growth by newly-formed vomeronasal neurosensory cells in the normal adult mouse. Brain Res. 216: 229 – 237.en_US
dc.identifier.citedreferenceBeach, D. H. and Jacobson, M. ( 1979 ) Patterns of cell proliferation in the retina of the clawed frog during development. J. Comp. Neurol. 198: 603 – 611.en_US
dc.identifier.citedreferenceBeazley, L. D., Darby, J. E., and Perry, V. H. ( 1986 ) Cell death in the retinal ganglion cell layer during optic nerve regeneration for the frog Rana pipiens. Vision Res. 26: 543 – 556.en_US
dc.identifier.citedreferenceBjÖrklund, A. and Stenevi, U. ( 1979 ) Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system. Physiol. Revs 59: 62 – 100.en_US
dc.identifier.citedreferenceBregman, B. S. and Goldberger, M. E. ( 1982 ) Anatomical plasticity and sparing function after spinal cord damage in neonatal cats. Science 217: 553 – 555.en_US
dc.identifier.citedreferenceBunt, S. M. and Fill-Moebs, P. ( 1984 ) Selection of pathways by regenerating spinal cord fiber tracts. Dev. Brain Res. 16: 307 – 311.en_US
dc.identifier.citedreferenceDunlop, S. A. and Beazley, L. D. ( 1984 ) A morphometric study of the retinal ganglion cell layer and optic nerve from metamorphosis in Xenopus laevis. Vision Res. 24: 417 – 427.en_US
dc.identifier.citedreferenceFord-Holevinski, T. S., Hopkins, J. M., McCoy, J. P. and Agranoff, B. W. ( 1986 ) Laminin supports neurite outgrowth from explants of axotomised adult rat retinal neurons. Dev. Brain Res. 28: 121 – 126.en_US
dc.identifier.citedreferenceFreidman, B. and Aguayo, A. ( 1985 ) Injured neurons in the olfactory bulb of the adult rat grow axons along peripheral nerve grafts. J. Neurosci. 6: 1616 – 1625.en_US
dc.identifier.citedreferenceGash, D. M. and Sladek, J. R., ( eds ) ( 1988 ) Transplantation into the mammalian central nervous system. Prog. in Brain Res. 78:en_US
dc.identifier.citedreferenceGaze, R. M. ( 1959 ) Regeneration of the optic nerve in Xenopus laevis. Q. J. Exp. Physiol. 44: 290 – 308.en_US
dc.identifier.citedreferenceGaze, R. M. and Grant, P. ( 1978 ) The diencephalic course of regenerating retinotectal fibres in Xenopus.. J. Embryol. Exp. Morph. 44: 201 – 216.en_US
dc.identifier.citedreferenceGaze, R. M. and Jacobson, M. ( 1963 ) A study of the retinotectal projection during regeneration of the optic nerve in the frog. Proc. R. Soc. Ser B (London) B175: 420 – 448.en_US
dc.identifier.citedreferenceGoldberg, S. and Frank, B. ( 1980 ) Will central nervous system, in the adult mammal regenerate after bypassing a lesion? A study in the mouse and chick visual systems. Exp. Neurol. 70: 675 – 689.en_US
dc.identifier.citedreferenceGrafe, M. R. ( 1983 ) Developmental factors affecting regeneration in the central nervous system: early but not late formed mitral cells reinnervate olfactory cortex after neonatal tract section. J. Neurosci. 3: 617 – 630.en_US
dc.identifier.citedreferenceGrant, P. and Tseng, Y. ( 1986 ) Embryonic and regenerating Xenopus retinal fibers are intriniscally different. Dev. Biol. 114: 475 – 491.en_US
dc.identifier.citedreferenceGrant, S. and Keating, M. J. ( 1986 ) Ocular migration and the metamorphic and postmetamorphic maturation of the retinotectal system, in Xenopus laevis: an autoradiographic and morphometric study. J. Embryol. Exp. Morph. 92: 43 – 69.en_US
dc.identifier.citedreferenceGratzner, H. G. ( 1982 ) Monoclonal antibody to 5-bromo- and 5-iododeoxy-uridine: a new reagent for detection of DNA replication. Science 218: 474 – 475.en_US
dc.identifier.citedreferenceGraydon, M. L. and Giorgi, P. ( 1984 ) Topography of the retinal ganglion cell layer of Xenopus.. J. Anat. 139: 145 – 157.en_US
dc.identifier.citedreferenceHadani, M., Harel, A., Solomon, A., Belkin, M., Lavie, V., and Schwartz, M. ( 1984 ) Substances originating from the optic nerve of neonatal rabbit induce regeneration-associated response in the injured optic nerve of adult rabbit. Proc. Natl. Acad. Sci. USA 81: 7965 – 7969.en_US
dc.identifier.citedreferenceHarris, W. A., Holt, C. E., Smith, T. A., and Gallenson, N. ( 1985 ) Growth cones of developing retinal cells in vivo, on culture surfaces, and in collagen matrices. J. Neurosci. Res. 13: 101 – 122.en_US
dc.identifier.citedreferenceHolder, N. and Clarke, J. W. D. ( 1988 ) Is there a correlation between continous neurogenesis and directed axon regeneration in the vertebrate nervous system? Trends in Neurosci. 11: 94 – 99.en_US
dc.identifier.citedreferenceHollyfield, J. G. ( 1971 ) Differential growth of the neural retina in Xenopus laevis larvae. Dev. Biol. 24: 264 – 286.en_US
dc.identifier.citedreferenceHopkins, J. M., Ford-Holevinski, T. S., McCoy, J. P., and Agranoff, B. W. ( 1985 ) Laminin and optic nerve regeneration in the goldfish. J. Neurosci. 5: 3030 – 3038.en_US
dc.identifier.citedreferenceHoskins, S. G. and Grobstein, P. ( 1985 ) Development of the ipsilateral projection in the frog Xenopus laevis. I. Retinal distribution of ipsilaterally projecting cells in normal and experimentally manipulated frogs. J. Neurosci. 5: 911 – 919.en_US
dc.identifier.citedreferenceHumphrey, M. F. and Beazley, L. D. ( 1985 ) Retinal ganglion cell death during optic nerve regeneration in the frog Hyla moorei. J. Comp. Neurol. 236: 382 – 402.en_US
dc.identifier.citedreferenceJacobson, M. ( 1976 ) Histogenesis of retina in the clawed frog with implications for patterns of development of retinotectal connections. Brain Res. 103: 541 – 545.en_US
dc.identifier.citedreferenceJacobson, R. D., Virag, I., and Skene, J. H. P. ( 1986 ) A protein associated with axon growth, GAP-43, is widely distributed and developmentally regulated in rat CNS. J. Neurosci; 6: 1843 – 1855.en_US
dc.identifier.citedreferenceJenkins, S. and Straznicky, C. ( 1986 ) Naturally occurring and induced cell death: a retinal whole mount autoradiographic study in Xenopus. Anat. Embryol. 174: 59 – 66.en_US
dc.identifier.citedreferenceJohns, P. R. ( 1982 ) Formation of photoreceptors in larval and adult goldfish. J. Neurosci. 2: 178 – 198.en_US
dc.identifier.citedreferenceJohns, P. R. and Fernald, R. D. ( 1981 ) Genesis of rods in teleost fish retina. Nature (Lond.) 293: 141 – 142.en_US
dc.identifier.citedreferenceJohns, P. R., Heacock, A. M., and Agranoff, B. W. ( 1978 ) Neurites in explant cultures of adult goldfish retina derive from ganglion cells. Brain Res. 142: 531 – 537.en_US
dc.identifier.citedreferenceKaplan, M. S. and Hinds, J. W. ( 1977 ) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197: 1092 – 1094.en_US
dc.identifier.citedreferenceKalil, K. and Reh, T. A. ( 1979 ) Regrowth of severed axons in the neonatal central nervous system: establishment of normal connections. Science 205: 1158 – 1161.en_US
dc.identifier.citedreferenceKalil, K. and Skene, H. J. P. ( 1986 ) Elevated synthesis of an axonally transported protein correlates with axon outgrowth in normal and injured pyramidal tracts. J. Neurosci. 6: 2563 – 2570.en_US
dc.identifier.citedreferenceKollros, J. J. ( 1988 ) Towards an understanding of tectal development in frogs. In: Pollack, E. D. and Bibb, H. D. ( eds ) Developmental Neurobiology of the Frog pp. 207 – 229. Alan R. Liss Inc., New York.en_US
dc.identifier.citedreferenceKollros, J. J. and Thiesse, M. I. ( 1988 ) Control of tectal cell number during larval development in Rana pipiens.. J. Comp. Neurol. 278: 430 – 445.en_US
dc.identifier.citedreferenceLavie, V., Harel, A., Doron, A., Solomon, A., Lobel, D., Belkin, M., Ben-Basat, S., Sharma, S., and Schwartz, M. ( 1987 ) Morphological response of injured adult rabbit optic nerve to implants containing media conditioned by growing optic nerves. Brain Res. 419: 166 – 172.en_US
dc.identifier.citedreferenceLyon, M. J. and Stelzner, D. J. ( 1987 ) Tests of the regenerative capacity of tectal efferent axons in the frog, Rana pipiens.. J. Comp. Neurol. 255: 511 – 525.en_US
dc.identifier.citedreferenceMatthey, R. ( 1927 ) RecupÉration de la vue aprÈs rÉsection des nerfs optiques chez le Triton. C. R. Soc. Biol. 93: 904 – 906.en_US
dc.identifier.citedreferenceMcCart, R. and Straznicky, C. ( 1988 ) Lack of axon regeneration of isthmic neurons in juvenile Xenopus. Neurosci. Letts 92: 143 – 148.en_US
dc.identifier.citedreferenceMonti-Graziadei, G. A. and Graziadei, P. P. C. ( 1979 ) Neurogenesis and neuron regeneration in the olfactory system of mammals II. Degeneration and reconstitution of the olfactory sensory neurons after axotomy. J. Neurocytol. 8: 197 – 213.en_US
dc.identifier.citedreferenceMoya, K. L., Benowitz, L. I., Jhaveri, S., and Schneider, G. E. ( 1988 ) Changes in rapidly transported proteins in developing hamster retinofugal axons. J. Neurosci. 8: 4445 – 4454.en_US
dc.identifier.citedreferenceRager, G. and Rager, U. ( 1976 ) Generation and degeneration of retinal ganglion cells in the chicken. Exp. Brain Res. 25: 551 – 553.en_US
dc.identifier.citedreferenceRakic, P. and Riley, K. P. ( 1983 ) Over production and elimination of retinal axons in the foetal rhesus monkey. Science 219: 1441 – 1444.en_US
dc.identifier.citedreferenceReh, T. A. and Constantine-Paton, M. ( 1983 ) Qualitative and quantitative measures of plasticity during the normal development of the Rana pipiens retinotectal projection. Dev. Brain Res. 10: 187 – 200.en_US
dc.identifier.citedreferenceRichardson, P. M., Issa, U. M. K., and Shemie, S. ( 1982 ) Regeneration and retrograde degeneration of axons in the rat optic nerve. J. Neurocytol. 11: 949 – 966.en_US
dc.identifier.citedreferenceSkene, J. H. P. and Willard, M. ( 1981 ) Changes in axonally transported proteins during regeneration in toad retinal ganglion cells. J. Cell Biol. 89: 86 – 95.en_US
dc.identifier.citedreferenceSo, K. F. and Aguayo, A. J. ( 1985 ) Lengthy regrowth of cut axons from ganglion cells after peripheral nerve transplantation into the retina of adult rats. Brain Res. 328: 349 – 354.en_US
dc.identifier.citedreferenceSo, K. F., Schneider, G. E., and Ayers, S. ( 1981 ) Lesions of the brachium of the superior colliculus in neonate hamsters: correlations of anatomy with behaviour. Exp. Neurol. 72: 379 – 400.en_US
dc.identifier.citedreferenceStelzner, D. J. and Strauss, J. A. ( 1986 ) A quantitative analysis of frog optic nerve regeneration: is retrograde ganglion cell death or collateral axonal loss related to selective reinnervation?. J. Comp. Neurol. 245: 83 – 106.en_US
dc.identifier.citedreferenceStraznicky, C. and Gaze, R. M. ( 1971 ) The growth of the retina in Xenopus laevis; an autoradiographic study. J. Embryol. Exp. Morph. 26: 67 – 79.en_US
dc.identifier.citedreferenceStraznicky, C. and Hiscock, J. ( 1984 ) Post metamorphic retinal growth in Xenopus. Anat. Embryol. 169: 103 – 109.en_US
dc.identifier.citedreferenceTaylor, J. S. H. and Gaze, R. M. ( 1985 ) The effects of fibre environment on the paths taken by regenerating optic nerve fibres in Xenopus. J. Embryol. Exp. Morph. 89: 383 – 401.en_US
dc.identifier.citedreferenceVillegas-PÉrez, M. P., Vidal-Sanz, M., Bray, G. M., and Aguayo, A. J. ( 1988 ) Influences of peripheral nerve grafts on the survival and regrowth of axotomised retinal ganglion cells in adult rats. J. Neurosci. 8: 265 – 280.en_US
dc.identifier.citedreferenceWigley, C. B. and Berry, M. ( 1988 ) Regeneration of adult rat retinal ganglion cell processes in monolayer culture: comparisons between cultures of adult and neonatal neurons. Dev. Brain Res. 42: 85 – 98.en_US
dc.identifier.citedreferenceWilson, M. A. ( 1971 ) Optic nerve fibre counts and retinal ganglion cell counts during development of Xenopus laevis (Daudin). Q. J. Exp. Physiol. 56: 83 – 91.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.