Show simple item record

Inhibition of stem cell factor reduces pulmonary cytokine levels during allergic airway responses

dc.contributor.authorBerlin, A. A.en_US
dc.contributor.authorLincoln, Pamela M.en_US
dc.contributor.authorTomkinson, A.en_US
dc.contributor.authorLukacs, Nicholas W.en_US
dc.date.accessioned2010-06-01T21:18:34Z
dc.date.available2010-06-01T21:18:34Z
dc.date.issued2004-04en_US
dc.identifier.citationBERLIN, A. A.; LINCOLN, P.; TOMKINSON, A.; LUKACS, N. W. (2004). "Inhibition of stem cell factor reduces pulmonary cytokine levels during allergic airway responses." Clinical & Experimental Immunology 136(1): 15-20. <http://hdl.handle.net/2027.42/74379>en_US
dc.identifier.issn0009-9104en_US
dc.identifier.issn1365-2249en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74379
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15030509&dopt=citationen_US
dc.description.abstractStem cell factor (SCF) has a significant role in the inflammation and activation of allergic airway responses. When monoclonal anti-SCF was administered intratracheally during allergen challenge there was a significant alteration of eosinophil accumulation and airway hyperreactivity (AHR). Anti-SCF treatment also attenuated pulmonary cytokine and chemokine levels. In particular, there was an antibody dose-dependent decrease in interleukin (IL)-5 and tumour necrosis factor (TNF)- α . There was also a significant reduction of CCL2 and CCL5, which correlated with the reduction in AHR. Mice treated with anti-SCF demonstrated a significant decrease in pulmonary gob-5 gene expression, which has been shown to correlate to goblet cell hyperplasia/metaplasia relating to airway mucus production. Blocking SCF-mediated activation within the airway using a monoclonal antibody indicates that this cytokine may represent a viable target for therapeutic intervention that could affect multiple aspects of allergen-induced immunopathology.en_US
dc.format.extent142152 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rightsBlackwell Publishing Ltd, 2004en_US
dc.subject.otherAsthmaen_US
dc.subject.otherCytokinesen_US
dc.subject.otherMucusen_US
dc.subject.otherStem Cell Factoren_US
dc.titleInhibition of stem cell factor reduces pulmonary cytokine levels during allergic airway responsesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* University of Michigan Medical School, Department of Pathology, Ann Arbor, MI, anden_US
dc.contributor.affiliationother† Bayer Biotechnology, Berkley, CA, USAen_US
dc.identifier.pmid15030509en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74379/1/j.1365-2249.2004.02404.x.pdf
dc.identifier.doi10.1111/j.1365-2249.2004.02404.xen_US
dc.identifier.sourceClinical & Experimental Immunologyen_US
dc.identifier.citedreferenceHoltzman MJ, Morton JD, Shornick LP et al. Immunity, inflammation, and remodeling in the airway epithelial barrier: epithelial-viral-allergic paradigm. Physiol Rev 2002; 82: 19 – 46.en_US
dc.identifier.citedreferenceIchihara M, Hotta T, Asano H et al. Effects of stem cell factor (SCF) on human marrow neutrophil, neutrophil/macrophage mixed, macrophage and eosinophil progenitor cell growth. Int J Hematol 1994; 59: 81 – 9.en_US
dc.identifier.citedreferenceLeigh BR, Webb S, Hancock SL, Knox SJ. Stem cell factor enhances the survival of irradiated human bone marrow maintained in SCID mice. Stem Cells (Dayt) 1994; 12: 430 – 5.en_US
dc.identifier.citedreferenceGalli SJ, Tsai M, Wershil BK. The c-kit receptor, stem cell factor, and mast cells. What each is teaching us about the others. Am J Pathol 1993; 142: 965 – 74.en_US
dc.identifier.citedreferenceNewlands GF, Coulson PS, Wilson RA. Stem cell factor dependent hyperplasia of mucosal-type mast cells but not eosinophils in Schistosoma mansoni-infected rats. Parasite Immunol 1995; 17: 595 – 8.en_US
dc.identifier.citedreferenceIrani AM, Schwartz LB. Human mast cell heterogeneity. Allergy Proc 1994; 15: 303 – 8.en_US
dc.identifier.citedreferenceTei H, Kasugai T, Tsujimura T et al. Characterization of cultured mast cells derived from Ws/Ws mast cell-deficient rats with a small deletion at tyrosine kinase domain of c-kit. Blood 1994; 83: 916 – 25.en_US
dc.identifier.citedreferenceTsai M, Shih LS, Newlands GF et al. The rat c-kit ligand, stem cell factor, induces the development of connective tissue-type and mucosal mast cells in vivo. Analysis by anatomical distribution, histochemistry, and protease phenotype. J Exp Med 1991; 174: 125 – 31.en_US
dc.identifier.citedreferenceSperr WR, Agis H, Czerwenka K et al. Effects of cyclosporin A and FK-506 on stem cell factor-induced histamine secretion and growth of human mast cells. J Allergy Clin Immunol 1996; 98: 389 – 99.en_US
dc.identifier.citedreferenceJippo-Kanemoto T, Adachi S, Ebi Y et al. BALB/3T3 fibroblast-conditioned medium attracts cultured mast cells derived from W/W but not from mi/mi mutant mice, both of which are deficient in mast cells. Blood 1992; 80: 1933 – 9.en_US
dc.identifier.citedreferenceGalli SJ, Tsai M, Gordon JR, Geissler EN, Wershil BK. Analyzing mast cell development and function using mice carrying mutations at W/c-kit or Sl/MGF (SCF) loci. Ann NY Acad Sci 1992; 664: 69 – 88.en_US
dc.identifier.citedreferenceLongley BJ, Tyrrell L, Ma Y et al. Chymase cleavage of stem cell factor yields a bioactive, soluble product. Proc Natl Acad Sci USA 1997; 94: 9017 – 21.en_US
dc.identifier.citedreferenceMaurer M, Echtenacher B, Hultner L et al. The c-kit ligand, stem cell factor, can enhance innate immunity through effects on mast cells. J Exp Med 1998; 188: 2343 – 8.en_US
dc.identifier.citedreferenceLukacs NW, Strieter RM, Lincoln PM et al. Stem cell factor (c-kit ligand) influences eosinophil recruitment and histamine levels in allergic airway inflammation. J Immunol 1996; 156: 3945 – 51.en_US
dc.identifier.citedreferenceUndem BJ, Lichtenstein LM, Hubbard WC, Meeker S, Ellis JL. Recombinant stem cell factor-induced mast cell activation and smooth muscle contraction in human bronchi. Am J Respir Cell Mol Biol 1994; 11: 646 – 50.en_US
dc.identifier.citedreferenceCampbell E, Hogaboam C, Lincoln P, Lukacs NW. Stem cell factor-induced airway hyperreactivity in allergic and normal mice. Am J Pathol 1999; 154: 1259 – 65.en_US
dc.identifier.citedreferenceOliveira SH, Hogaboam CM, Berlin A, Lukacs NW. SCF-induced airway hyperreactivity is dependent on leukotriene production. Am J Physiol Lung Cell Mol Physiol 2001; 280: L1242 – 9.en_US
dc.identifier.citedreferenceOlsson N, Rak S, Nilsson G. Demonstration of mast cell chemotactic activity in bronchoalveolar lavage fluid collected from asthmatic patients before and during pollen season. J Allergy Clin Immunol 2000; 105: 455 – 61.en_US
dc.identifier.citedreferenceFinotto S, Buerke M, Lingnau K, Schmitt E, Galle PR, Neurath MF. Local administration of antisense phosphorothioate oligonucleotides to the c-kit ligand, stem cell factor, suppresses airway inflammation and IL-4 production in a murine model of asthma. J Allergy Clin Immunol 2001; 107: 279 – 86.en_US
dc.identifier.citedreferenceYuan Q, Austen KF, Friend DS, Heidtman M, Boyce JA. Human peripheral blood eosinophils express a functional c-kit receptor for stem cell factor that stimulates very late antigen 4 (VLA-4)-mediated cell adhesion to fibronectin and vascular cell adhesion molecule 1 (VCAM-1). J Exp Med 1997; 186: 313 – 23.en_US
dc.identifier.citedreferenceOliveira SH, Taub DD, Nagel J et al. Stem cell factor induces eosinophil activation and degranulation: mediator release and gene array analysis. Blood 2002; 100: 4291 – 7.en_US
dc.identifier.citedreferenceLukacs NW, Prosser DM, Wiekowski M, Lira SA, Cook DN. Requirement for the chemokine receptor CCR6 in allergic pulmonary inflammation. J Exp Med 2001; 194: 551 – 5.en_US
dc.identifier.citedreferenceCampbell EM, Kunkel SL, Strieter RM, Lukacs NW. Temporal role of chemokines in a murine model of cockroach allergen-induced airway hyperreactivity and eosinophilia. J Immunol 1998; 161: 7047 – 53.en_US
dc.identifier.citedreferenceCampbell EM, Charo IF, Kunkel SL et al. Monocyte chemoattractant protein-1 mediates cockroach allergen-induced bronchial hyperreactivity in normal but not CCR2-/- mice: the role of mast cells. J Immunol 1999; 163: 2160 – 7.en_US
dc.identifier.citedreferenceCampbell E, Kunkel SL, Strieter RM, Lukacs NW. Differential roles of IL-18 in allergic airway disease: induction of eotaxin by resident cell populations exacerbates eosinophil accumulation. J Immunol 2000; 164: 1096 – 102.en_US
dc.identifier.citedreferenceLukacs NW, Tekkanat KK, Berlin A et al. Respiratory syncytial virus predisposes mice to augmented allergic airway responses via IL-13-mediated mechanisms. J Immunol 2001; 167: 1060 – 5.en_US
dc.identifier.citedreferenceNakanishi A, Morita S, Iwashita H et al. Role of gob-5 in mucus overproduction and airway hyperresponsiveness in asthma. Proc Natl Acad Sci USA 2001; 98: 5175 – 80.en_US
dc.identifier.citedreferenceHoshino M, Morita S, Iwashita H et al. Increased expression of the human Ca 2+ -activated Cl – channel 1 (CaCC1) gene in the asthmatic airway. Am J Respir Crit Care Med 2002; 165: 1132 – 6.en_US
dc.identifier.citedreferenceBarnes PJ. Cytokine-directed therapies for asthma. J Allergy Clin Immunol 2001; 108: S72 – 6.en_US
dc.identifier.citedreferencevan Houwelingen AH, Kool M, de Jager SC et al. Mast cell-derived TNF-alpha primes sensory nerve endings in a pulmonary hypersensitivity reaction. J Immunol 2002; 168: 5297 – 302.en_US
dc.identifier.citedreferenceThomas PS. Tumour necrosis factor-alpha: the role of this multifunctional cytokine in asthma. Immunol Cell Biol 2001; 79: 132 – 40.en_US
dc.identifier.citedreferenceConti P, DiGioacchino M. MCP-1 and RANTES are mediators of acute and chronic inflammation. Allergy Asthma Proc 2001; 22: 133 – 7.en_US
dc.identifier.citedreferenceLukacs NW, Tekkanat KK. Role of chemokines in asthmatic airway inflammation. Immunol Rev 2000; 177: 21 – 30.en_US
dc.identifier.citedreferenceLukacs NW. Role of chemokines in the pathogenesis of asthma. Nat Rev Immunol 2001; 1: 108 – 16.en_US
dc.identifier.citedreferenceGleich GJ. Mechanisms of eosinophil-associated inflammation. J Allergy Clin Immunol 2000; 105: 651 – 63.en_US
dc.identifier.citedreferenceBroide D, Sriramarao P. Eosinophil trafficking to sites of allergic inflammation. Immunol Rev 2001; 179: 163 – 72.en_US
dc.identifier.citedreferenceSriramarao P, Broide DH. Differential regulation of eosinophil adhesion under conditions of flow in vivo. Ann NY Acad Sci 1996; 796: 218 – 25.en_US
dc.identifier.citedreferenceBorchers MT, Crosby J, Farmer S et al. Blockade of CD49d inhibits allergic airway pathologies independent of effects on leukocyte recruitment. Am J Physiol Lung Cell Mol Physiol 2001; 280: L813 – 21.en_US
dc.identifier.citedreferenceTournoy KG, Kips JC, Schou C, Pauwels RA. Airway eosinophilia is not a requirement for allergen-induced airway hyperresponsiveness. Clin Exp Allergy 2000; 30: 79 – 85.en_US
dc.identifier.citedreferenceAlam R, York J, Boyars M et al. Increased MCP-1, RANTES, and MIP-1alpha in bronchoalveolar lavage fluid of allergic asthmatic patients. Am J Respir Crit Care Med 1996; 153: 1398 – 404.en_US
dc.identifier.citedreferenceFolkard SG, Westwick J, Millar AB. Production of interleukin-8, RANTES and MCP-1 in intrinsic and extrinsic asthmatics. Eur Respir J 1997; 10: 2097 – 104.en_US
dc.identifier.citedreferenceHolgate ST, Bodey KS, Janezic A, Frew AJ, Kaplan AP, Teran LM. Release of RANTES, MIP-1 alpha, and MCP-1 into asthmatic airways following endobronchial allergen challenge. Am J Respir Crit Care Med 1997; 156: 1377 – 83.en_US
dc.identifier.citedreferenceConti P, Barbacane RC, Gioacchino MD, Reale M. Will MCP-1 and RANTES take center stage in inflammatory diseases including asthma? Allergy Asthma Proc 1998; 19: 121 – 3.en_US
dc.identifier.citedreferenceJahnz-Rozyk KM, Kuna P, Pirozynska E. Monocyte chemotactic and activating factor/monocyte chemoattractant protein (MCAF/MCP-1) in bronchoalveolar lavage fluid from patients with atopic asthma and chronic bronchitis. J Invest Allergol Clin Immunol. 1997; 7: 254 – 9.en_US
dc.identifier.citedreferenceGonzalo JA, Lloyd CM, Wen D et al. The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness [In Process Citation]. J Exp Med 1998; 188: 157 – 67.en_US
dc.identifier.citedreferenceCampbell EM, Charo IF, Kunkel SL et al. Monocyte chemoattractant protein-1 mediates cockroach allergen-induced bronchial hyperreactivity in normal but not CCR2-/- mice: the role of mast cells [In Process Citation]. J Immunol 1999; 163: 2160 – 7.en_US
dc.identifier.citedreferenceTillie-Leblond I, Hammad H, Desurmont S et al. CC chemokines and interleukin-5 in bronchial lavage fluid from patients with status asthmaticus. Potential implication in eosinophil recruitment. Am J Respir Crit Care Med 2000; 162: 586 – 92.en_US
dc.identifier.citedreferenceNitschke M, Sohn K, Dieckmann D, Gibbs BF, Wolff HH, Amon U. Effects of basophil-priming and stimulating cytokines on histamine release from isolated human skin mast cells. Arch Dermatol Res 1996; 288: 463 – 8.en_US
dc.identifier.citedreferenceBaghestanian M, Hofbauer R, Kiener HP et al. The c-kit ligand stem cell factor and anti-IgE promote expression of monocyte chemoattractant protein-1 in human lung mast cells. Blood 1997; 90: 4438 – 49.en_US
dc.identifier.citedreferenceOliveira SH, Lukacs NW. Stem cell factor and IgE-stimulated murine mast cells produce chemokines (CCL2, CCL17, CCL22) and express chemokine receptors. Inflamm Res 2001; 50: 168 – 74.en_US
dc.identifier.citedreferenceMatsukawa A, Hogaboam CM, Lukacs NW et al. Expression and contribution of endogenous IL-13 in an experimental model of sepsis. J Immunol 2000; 164: 2738 – 44.en_US
dc.identifier.citedreferenceSette C, Dolci S, Geremia R, Rossi P. The role of stem cell factor and of alternative c-kit gene products in the establishment, maintenance and function of germ cells. Int J Dev Biol 2000; 44: 599 – 608.en_US
dc.identifier.citedreferenceAshman LK. The biology of stem cell factor and its receptor C-kit. Int J Biochem Cell Biol 1999; 31: 1037 – 51.en_US
dc.identifier.citedreferenceZhang S, Howarth PH, Roche WR, Wasserman SI, Bischoff SC, Dahinden CA. Cytokine production by cell cultures from bronchial subepithelial myofibroblasts. J Pathol 1996; 180: 95 – 101.en_US
dc.identifier.citedreferenceFrangogiannis NG, Perrard JL, Mendoza LH et al. Stem cell factor induction is associated with mast cell accumulation after canine myocardial ischemia and reperfusion. Circulation 1998; 98: 687 – 98.en_US
dc.identifier.citedreferenceKassel O, Schmidlin F, Duvernelle C, Gasser B, Massard G, Frossard N. Human bronchial smooth muscle cells in culture produce stem cell factor. Eur Respir J 1999; 13: 951 – 4.en_US
dc.identifier.citedreferenceMiyamoto T, Sasaguri Y, Sasaguri T et al. Expression of stem cell factor in human aortic endothelial and smooth muscle cells. Atherosclerosis 1997; 129: 207 – 13.en_US
dc.identifier.citedreferenceToda M, Tulic MK, Levitt RC, Hamid Q. A calcium-activated chloride channel (HCLCA1) is strongly related to IL-9 expression and mucus production in bronchial epithelium of patients with asthma. J Allergy Clin Immunol 2002; 109: 246 – 50.en_US
dc.identifier.citedreferenceZhou Y, Dong Q, Louahed J et al. Characterization of a calcium-activated chloride channel as a shared target of Th2 cytokine pathways and its potential involvement in asthma. Am J Respir Cell Mol Biol 2001; 25: 486 – 91.en_US
dc.identifier.citedreferenceLoewen ME, Bekar LK, Gabriel SE, Walz W, Forsyth GW. pCLCA1 becomes a cAMP-dependent chloride conductance mediator in Caco-2 cells. Biochem Biophys Res Commun 2002; 298: 531 – 6.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.