Show simple item record

Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants

dc.contributor.authorSuding, Katharine Nashen_US
dc.contributor.authorLavorel, Sandraen_US
dc.contributor.authorChapin, F. S.en_US
dc.contributor.authorCornelissen, Johannes H. C.en_US
dc.contributor.authorDíaz, Sandraen_US
dc.contributor.authorGarnier, Ericen_US
dc.contributor.authorGoldberg, Deborah E.en_US
dc.contributor.authorHooper, David U.en_US
dc.contributor.authorJackson, Stephen T.en_US
dc.contributor.authorNavas, Marie-Laureen_US
dc.date.accessioned2010-06-01T21:19:00Z
dc.date.available2010-06-01T21:19:00Z
dc.date.issued2008-05en_US
dc.identifier.citationSUDING, KATHARINE N.; LAVOREL, SANDRA; CHAPIN, F. S.; CORNELISSEN, JOHANNES H. C.; DÍAZ, SANDRA; GARNIER, ERIC; GOLDBERG, DEBORAH; HOOPER, DAVID U.; JACKSON, STEPHEN T.; NAVAS, MARIE-LAURE (2008). "Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants." Global Change Biology 14(5): 1125-1140. <http://hdl.handle.net/2027.42/74386>en_US
dc.identifier.issn1354-1013en_US
dc.identifier.issn1365-2486en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74386
dc.description.abstractPredicting ecosystem responses to global change is a major challenge in ecology. A critical step in that challenge is to understand how changing environmental conditions influence processes across levels of ecological organization. While direct scaling from individual to ecosystem dynamics can lead to robust and mechanistic predictions, new approaches are needed to appropriately translate questions through the community level. Species invasion, loss, and turnover all necessitate this scaling through community processes, but predicting how such changes may influence ecosystem function is notoriously difficult. We suggest that community-level dynamics can be incorporated into scaling predictions using a trait-based response–effect framework that differentiates the community response to environmental change (predicted by response traits) and the effect of that change on ecosystem processes (predicted by effect traits). We develop a response-and-effect functional framework, concentrating on how the relationships among species' response, effect, and abundance can lead to general predictions concerning the magnitude and direction of the influence of environmental change on function. We then detail several key research directions needed to better scale the effects of environmental change through the community level. These include (1) effect and response trait characterization, (2) linkages between response-and-effect traits, (3) the importance of species interactions on trait expression, and (4) incorporation of feedbacks across multiple temporal scales. Increasing rates of extinction and invasion that are modifying communities worldwide make such a research agenda imperative.en_US
dc.format.extent219502 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 Blackwell Publishing Ltden_US
dc.subject.otherCommunity Dynamicsen_US
dc.subject.otherDiversityen_US
dc.subject.otherEcosystem Responsesen_US
dc.subject.otherEffect and Response Frameworken_US
dc.subject.otherFunctional Traitsen_US
dc.subject.otherGlobal Changeen_US
dc.subject.otherLeaf-level Scalingen_US
dc.subject.otherPhysiologyen_US
dc.titleScaling environmental change through the community-level: a trait-based response-and-effect framework for plantsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumEcology and Evolutionary Biology, 830 N. University, University of Michigan, Ann Arbor, MI, 48109-1048, USA ,en_US
dc.contributor.affiliationotherEcology and Evolutionary Biology, University of California Irvine, Irvine CA 92697-2525, USA ,en_US
dc.contributor.affiliationother† CNRS UniversitÉ Joseph Fourier, BP 53 X 38041, Grenoble, Cedex 9, France ,en_US
dc.contributor.affiliationother† Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA ,en_US
dc.contributor.affiliationother§ Department Systems Ecology, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands ,en_US
dc.contributor.affiliationother¶ Instituto Multidisciplinario de BiologÍa Vegetal (CONICET-UNC), and FCEFyN, Universidad Nacional de CÓrdoba, C. C. 495, 5000 CÓrdoba, Argentina ,en_US
dc.contributor.affiliationother∥ Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS - 1919, Route de Mende - F 34293 Montpellier, Cedex 5, France ,en_US
dc.contributor.affiliationother†† Department of Biology, Western Washington University, Bellingham, WA 98225, USA ,en_US
dc.contributor.affiliationother†† Department of Botany and Program in Ecology, 1000 E. University Ave., University of Wyoming, Laramie, WY 82071, USA ,en_US
dc.contributor.affiliationother§§ DÉpartement des Sciences pour la Protection des Plantes et Ecologie, Ecole Nationale SupÉrieure Agronomique de Montpellier, 2 Place Viala, 34060 Montpellier, Cedex 1, Franceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74386/1/j.1365-2486.2008.01557.x.pdf
dc.identifier.doi10.1111/j.1365-2486.2008.01557.xen_US
dc.identifier.sourceGlobal Change Biologyen_US
dc.identifier.citedreferenceAckerly DD ( 2003 ) Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences, 164, S165 – S184.en_US
dc.identifier.citedreferenceAckerly DD, Bazzaz FA ( 1995 ) Plant-growth and reproduction along CO 2 gradients – nonlinear responses and implications for community change. Global Change Biology, 1, 199 – 207.en_US
dc.identifier.citedreferenceAckerly DD, Cornwell WK ( 2007 ) A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters, 10, 135 – 145.en_US
dc.identifier.citedreferenceAgrawal AA, Ackerly D, Adler F et al. ( 2007 ) Filling key gaps in population and community ecology. Frontiers in Ecology and the Environment, 5, 145 – 152.en_US
dc.identifier.citedreferenceArendt JD ( 1997 ) Adaptive intrinsic growth rates: an integration across taxa. The Quarterly Review of Biology, 72, 149 – 177.en_US
dc.identifier.citedreferenceBalmford A, Bruner A, Cooper P et al. ( 2002 ) Ecology – economic reasons for conserving wild nature. Science, 297, 950 – 953.en_US
dc.identifier.citedreferenceBalvanera P, Kremen C, Martinez-Ramos M ( 2005 ) Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecological Applications, 15, 360 – 375.en_US
dc.identifier.citedreferenceBardgett RD, Wardle DA ( 2003 ) Herbivore-mediated linkages between aboveground and belowground communities. Ecology, 84, 2258 – 2268.en_US
dc.identifier.citedreferenceBazzaz FA ( 1993 ) Scaling in biological systems: population and community perspectives. In: Scaling Physiological Processes: Leaf to Globe ( eds Ehleringer JR, Field CB ), pp. 233 – 254. Academic Press Inc., New York.en_US
dc.identifier.citedreferenceBelyea LR, Lancaster J ( 1999 ) Assembly rules within a contingent ecology. Oikos, 86, 402 – 416.en_US
dc.identifier.citedreferenceBooth RK, Jackson ST, Forman SL, Kutzbach JE, Bettis EA, Kreig J, Wright DK ( 2005 ) A severe centennial-scale drought in mid-continental North America 4200 years ago and apparent global linkages. Holocene, 15, 321 – 328.en_US
dc.identifier.citedreferenceBret-Harte MS, Garcia EA, Sacre VM, Whorley JR, Wagner JL, Lippert SC, Chapin FS ( 2004 ) Plant and soil responses to neighbour removal and fertilization in Alaskan tussock tundra. Journal of Ecology, 92, 635 – 647.en_US
dc.identifier.citedreferenceBruno JF, Stachowicz JJ, Bertness MD ( 2003 ) Inclusion of facilitation into ecological theory. Trends in Ecology & Evolution, 18, 119 – 125.en_US
dc.identifier.citedreferenceBunker DE, DeClerck F, Bradford JC et al. ( 2005 ) Species loss and aboveground carbon storage in a tropical forest. Science, 310, 1029 – 1031.en_US
dc.identifier.citedreferenceCallaway RM, Brooker RW, Choler P et al. ( 2002 ) Positive interactions among alpine plants increase with stress. Nature, 417, 844 – 848.en_US
dc.identifier.citedreferenceCardillo M, Mace GM, Jones KE et al. ( 2005 ) Multiple causes of high extinction risk in large mammal species. Science, 309, 1239 – 1241.en_US
dc.identifier.citedreferenceCavender-Bares J, Ackerly DA, Baum D et al. ( 2004 ) Phylogenetic overdispersion in Floridian oak communities. American Naturalist, 163, 823 – 843.en_US
dc.identifier.citedreferenceChalcraft DR, Resetarits WJ ( 2003 ) Predator identity and ecological impacts: functional redundancy or functional diversity? Ecology, 84, 2407 – 2418.en_US
dc.identifier.citedreferenceChapin FS, Autumn K, Pugnaire F ( 1993 ) Evolution of suites of traits in response to environmental-stress. American Naturalist, 142, S78 – S92.en_US
dc.identifier.citedreferenceChapin FS, Bret-Harte MS, Hobbie SE, Zhong HL ( 1996 ) Plant functional types as predictors of transient responses of arctic vegetation to global change. Journal of Vegetation Science, 7, 347 – 358.en_US
dc.identifier.citedreferenceChapin FS, Zavaleta ES, Eviner VT et al. ( 2000 ) Consequences of changing biodiversity. Nature, 405, 234 – 242.en_US
dc.identifier.citedreferenceClark JS, Carpenter SR, Barber M et al. ( 2001 ) Ecological forecasts: an emerging imperative. Science, 293, 657 – 660.en_US
dc.identifier.citedreferenceClark JS, Macklin E, Wood L ( 1998 ) Stages and spatial scales of recruitment limitation in southern Appalachian forests. Ecological Monographs, 68, 213 – 235.en_US
dc.identifier.citedreferenceCorbin JD, D'Antonio CM ( 2004 ) Competition between native perennial and exotic annual grasses: implications for an historical invasion. Ecology, 85, 1273 – 1283.en_US
dc.identifier.citedreferenceCornelissen JHC, Aerts R, Cerabolini B, Werger MJA, van der Heijden MGA ( 2001 ) Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia, 129, 611 – 619.en_US
dc.identifier.citedreferenceCornwell WK, Schwilk DW, Ackerly DD ( 2006 ) A trait-based test for habitat filtering: convex hull volume. Ecology, 87, 1465 – 1471.en_US
dc.identifier.citedreferenceCostanza R, dArge R, deGroot R et al. ( 1997 ) The value of the world's ecosystem services and natural capital. Nature, 387, 253 – 260.en_US
dc.identifier.citedreferenceCraine JM, Tilman D, Wedin D et al. ( 2002 ) Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Functional Ecology, 16, 563 – 574.en_US
dc.identifier.citedreferenceCurrie DJ ( 2001 ) Projected effects of climate change on patterns of vertebrate and tree species richness in the conterminous United States. Ecosystems, 4, 216 – 225.en_US
dc.identifier.citedreferenceDaehler CC, Goergen EM ( 2005 ) Experimental restoration of an indigenous Hawaiian grassland after invasion by Buffel grass ( Cenchrus ciliaris ). Restoration Ecology, 13, 380 – 389.en_US
dc.identifier.citedreferenceD'Antonio CM, Kark S ( 2002 ) Impacts and extent of biotic invasions in terrestrial ecosystems. Trends in Ecology & Evolution, 17, 202 – 204.en_US
dc.identifier.citedreferenceD'Antonio CM, Tunison JT, Loh RK ( 2000 ) Variation in the impact of exotic grasses on native plant composition in relation to fire across an elevation gradient in Hawaii. Austral Ecology, 25, 507 – 522.en_US
dc.identifier.citedreferenceD'Antonio CM, Vitousek PM ( 1992 ) Biological invasions by exotic grasses, the grass fire cycle, and global change. Annual Review of Ecology and Systematics, 23, 63 – 87.en_US
dc.identifier.citedreferenceDavies KF, Margules CR, Lawrence KF ( 2000 ) Which traits of species predict population declines in experimental forest fragments? Ecology, 81, 1450 – 1461.en_US
dc.identifier.citedreferenceDe Bello F, Leps J, Sebastia MT ( 2005 ) Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean. Journal of Applied Ecology, 42, 824 – 833.en_US
dc.identifier.citedreferenceDÍaz S ( 1995 ) Elevated CO 2 responsiveness, interactions at the community level and plant functional types. Journal of Biogeography, 22, 289 – 295.en_US
dc.identifier.citedreferenceDÍaz S, Cabido M ( 1997 ) Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science, 8, 463 – 474.en_US
dc.identifier.citedreferenceDÍaz S, Cabido M ( 2001 ) Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16, 646 – 655.en_US
dc.identifier.citedreferenceDÍaz S, Fraser LH, Grime JP, Falczuk V ( 1998 ) The impact of elevated CO 2 on plant-herbivore interactions: experimental evidence of moderating effects at the community level. Oecologia, 117, 177 – 186.en_US
dc.identifier.citedreferenceDÍaz S, Hodgson JG, Thompson K et al. ( 2004 ) The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 15, 295 – 304.en_US
dc.identifier.citedreferenceDÍaz S, Lavorel S, McIntyre S et al. ( 2007 ) Plant trait responses to grazing – a global synthesis. Global Change Biology, 13, 313 – 341.en_US
dc.identifier.citedreferenceDÍaz S, Noy-Meir I, Cabido M et al. ( 2001 ) Can grazing response of herbaceous plants be predicted from simple vegetative traits? Journal of Applied Ecology, 38, 497 – 508.en_US
dc.identifier.citedreferenceDÍaz S, Symstad AJ, Chapin FS et al. ( 2003 ) Functional diversity revealed by removal experiments. Trends in Ecology & Evolution, 18, 140 – 146.en_US
dc.identifier.citedreferenceElmqvist T, Folke C, Nystrom M, Peterson G, Bengtsson J, Walker B, Norberg J ( 2003 ) Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment, 1, 488 – 494.en_US
dc.identifier.citedreferenceEngelhardt KAM ( 2006 ) Relating effect and response traits in submerged aquatic macrophytes. Ecological Applications, 16, 1808 – 1820.en_US
dc.identifier.citedreferenceEpstein HE, Calef MP, Walker MD, Chapin FS, Starfield AM ( 2004 ) Detecting changes in arctic tundra plant communities in response to warming over decadal time scales. Global Change Biology, 10, 1325 – 1334.en_US
dc.identifier.citedreferenceFargione J, Brown CS, Tilman D ( 2003 ) Community assembly and invasion: an experimental test of neutral versus niche processes. Proceedings of the National Academy of Sciences of the United States of America, 100, 8916 – 8920.en_US
dc.identifier.citedreferenceFarquhar GD, Sharkey TD ( 1982 ) Stomatal conductance and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 33, 317 – 345.en_US
dc.identifier.citedreferenceField CB, Chapin FS, Matson PA, Mooney HA ( 1992 ) Responses of terrestrial ecosystems to the changing atmosphere – a resource-based approach. Annual Review of Ecology and Systematics, 23, 201 – 235.en_US
dc.identifier.citedreferenceForys EA, Allen CR ( 2002 ) Functional group change within and across scales following invasions and extinctions in the everglades ecosystem. Ecosystems, 5, 339 – 347.en_US
dc.identifier.citedreferenceFraser LH, Grime JP ( 1999 ) Interacting effects of herbivory and fertility on a synthesized plant community. Journal of Ecology, 87, 514 – 525.en_US
dc.identifier.citedreferenceGamarra JGP, Montoya JM, Alonso D, Sole RV ( 2005 ) Competition and introduction regime shape exotic bird communities in Hawaii. Biological Invasions, 7, 297 – 307.en_US
dc.identifier.citedreferenceGarnier E, Cortez J, Billes G et al. ( 2004 ) Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630 – 2637.en_US
dc.identifier.citedreferenceGitay H, Noble IR ( 1997 ) What are functional types and how should we seek them? In: Plant Functional Types: Their Relevance to Ecosystem Properties and Global Change ( eds Smith TM, Shugart HH, Woodward FI ), pp. 3 – 19. Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceGoldberg DE ( 1990 ) Components of resource competition in plant communities. In: Perspectives in Plant Competition ( eds Grace J, Tilman D ), pp. 27 – 49. Academic Press, San Diego, CA.en_US
dc.identifier.citedreferenceGoldberg DE ( 1996 ) Competitive ability: definitions, contingency and correlated traits. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 351, 1377 – 1385.en_US
dc.identifier.citedreferenceGoldberg DE, Werner PA ( 1983 ) Equivalence of competitors in plant-communities – a null hypothesis and a field experimental approach. American Journal of Botany, 70, 1098 – 1104.en_US
dc.identifier.citedreferenceGray ST, Betancourt JL, Jackson ST, Eddy RG ( 2006 ) Role of multidecadal climate variability in a range extension of pinyon pine. Ecology, 87, 1124 – 1130.en_US
dc.identifier.citedreferenceGrime JP ( 1998 ) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 902 – 910.en_US
dc.identifier.citedreferenceGrime JP ( 2006 ) Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. Journal of Vegetation Science, 17, 255 – 260.en_US
dc.identifier.citedreferenceGrime JP, Brown VK, Thompson K et al. ( 2000 ) The response of two contrasting limestone grasslands to simulated climate change. Science, 289, 762 – 765.en_US
dc.identifier.citedreferenceGrime JP, Hodgson JG, Hunt R ( 1988 ) Comparative Plant Ecology: A Functional Approach to Common British Species. Unwin Hyman, London.en_US
dc.identifier.citedreferenceGrime JP, Thompson K, Hunt R et al. ( 1997 ) Integrated screening validates primary axes of specialisation in plants. Oikos, 79, 259 – 281.en_US
dc.identifier.citedreferenceGrimshaw HM, Allen SE ( 1987 ) Aspects of the mineral-nutrition of some native British plants – inter-site variation. Vegetatio, 70, 157 – 169.en_US
dc.identifier.citedreferenceGroffman P, Baron J, Blett T et al. ( 2006 ) Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems, 9, 1 – 13.en_US
dc.identifier.citedreferenceGrotkopp E, Rejmanek M, Rost TL ( 2002 ) Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine ( Pinus ) species. American Naturalist, 159, 396 – 419.en_US
dc.identifier.citedreferenceHamilton MA, Murray BR, Cadotte MW, Hose GC, Baker AC, Harris CJ, Licari D ( 2005 ) Life-history correlates of plant invasiveness at regional and continental scales. Ecology Letters, 8, 1066 – 1074.en_US
dc.identifier.citedreferenceHenry HAL, Cleland EE, Field CB, Vitousek PM ( 2005 ) Interactive effects of elevated CO 2, N deposition and climate change on plant litter quality in a California annual grassland. Oecologia, 142, 465 – 473.en_US
dc.identifier.citedreferenceHiggins SI, Lavorel S, Revilla E ( 2003 ) Estimating plant migration rates under habitat loss and fragmentation. Oikos, 101, 354 – 366.en_US
dc.identifier.citedreferenceHobbie SE ( 1992 ) Effects of plant-species on nutrient cycling. Trends in Ecology & Evolution, 7, 336 – 339.en_US
dc.identifier.citedreferenceHobbie SE, Chapin FS ( 1998 ) Response of tundra plant biomass, aboveground production, nitrogen, and CO 2 flux to experimental warming. Ecology, 79, 1526 – 1544.en_US
dc.identifier.citedreferenceHobbs RJ, Mooney HA ( 1985 ) Community and population-dynamics of serpentine grassland annuals in relation to gopher disturbance. Oecologia, 67, 342 – 351.en_US
dc.identifier.citedreferenceHobbs RJ, Mooney HA ( 1991 ) Effects of rainfall variability and gopher disturbance on serpentine annual grassland dynamics. Ecology, 72, 59 – 68.en_US
dc.identifier.citedreferenceHooper DU, Chapin FS, Ewel JJ et al. ( 2005 ) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge and needs for future research. Ecological Monographs, 75, 3 – 35.en_US
dc.identifier.citedreferenceHooper DU, Johnson L ( 1999 ) Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry, 46, 247 – 293.en_US
dc.identifier.citedreferenceHooper DU, Solan M, Symstad AJ et al. ( 2002 ) Species diversity, functional diversity, and ecosystem functioning. In: Biodiversity and Ecosystem Functioning: Synthesis and Perspectives ( eds Loreau M, Naeem S, Inchausti P ), pp. 195 – 208. Oxford University Press, Oxford.en_US
dc.identifier.citedreferenceHubbell SP ( 2001 ) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, USA.en_US
dc.identifier.citedreferenceIverson LR, Prasad AM ( 2001 ) Potential changes in tree species richness and forest community types following climate change. Ecosystems, 4, 186 – 199.en_US
dc.identifier.citedreferenceJackson ST, Overpeck JT ( 2000 ) Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology, 26, 194 – 220.en_US
dc.identifier.citedreferenceJenkins DG, Buikema AL ( 1998 ) Do similar communities develop in similar sites? A test with zooplankton structure and function. Ecological Monographs, 68, 421 – 443.en_US
dc.identifier.citedreferenceJoel G, Chapin FS, Chiariello NR, Thayer SS, Field CB ( 2001 ) Species-specific responses of plant communities to altered carbon and nutrient availability. Global Change Biology, 7, 435 – 450.en_US
dc.identifier.citedreferenceJohnstone JF, Chapin FS ( 2003 ) Non-equilibrium succession dynamics indicate continued northern migration of lodgepole pine. Global Change Biology, 9, 1401 – 1409.en_US
dc.identifier.citedreferenceJonsson M, Dangles O, Malmqvist B, Guerold F ( 2002 ) Simulating species loss following perturbation: assessing the effects on process rates. Proceedings of the Royal Society of London Series B-Biological Sciences, 269, 1047 – 1052.en_US
dc.identifier.citedreferenceKlanderud K ( 2005 ) Climate change effects on species interactions in an alpine plant community. Journal of Ecology, 93, 127 – 137.en_US
dc.identifier.citedreferenceKnapp AK, Smith MD ( 2001 ) Variation among biomes in temporal dynamics of aboveground primary production. Science, 291, 481 – 484.en_US
dc.identifier.citedreferenceKneitel JM, Miller TE ( 2003 ) Dispersal rates affect species composition in metacommunities of Sarracenia purpurea inquilines. American Naturalist, 162, 165 – 171.en_US
dc.identifier.citedreferenceKorner C ( 2000 ) Biosphere responses to CO 2 enrichment. Ecological Applications, 10, 1590 – 1619.en_US
dc.identifier.citedreferenceKremen C ( 2005 ) Managing ecosystem services: what do we need to know about their ecology? Ecology Letters, 8, 468 – 479.en_US
dc.identifier.citedreferenceLambrinos JG ( 2002 ) The variable invasive success of Cortaderia species in a complex landscape. Ecology, 83, 518 – 529.en_US
dc.identifier.citedreferenceLandsberg J, Lavorel S, Stol J ( 1999 ) Grazing response groups among understorey plants in arid rangelands. Journal of Vegetation Science, 10, 683 – 696.en_US
dc.identifier.citedreferenceLarsen TH, Williams NM, Kremen C ( 2005 ) Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecology Letters, 8, 538 – 547.en_US
dc.identifier.citedreferenceLauenroth WK, Sala OE ( 1992 ) Long-term forage production of North-American shortgrass steppe. Ecological Applications, 2, 397 – 403.en_US
dc.identifier.citedreferenceLavorel S, Garnier E ( 2002 ) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16, 545 – 556.en_US
dc.identifier.citedreferenceLavorel S, McIntyre S, Landsberg J et al. ( 1997 ) Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology & Evolution, 12, 474 – 478.en_US
dc.identifier.citedreferenceLeadley PW, Niklaus PA, Stocker R, Korner C ( 1999 ) A field study of the effects of elevated CO 2 on plant biomass and community structure in a calcareous grassland. Oecologia, 118, 39 – 49.en_US
dc.identifier.citedreferenceLee TD, Reich PB, Tjoelker MG ( 2003 ) Legume presence increases photosynthesis and N concentrations of co-occurring non-fixers but does not modulate their responsiveness to carbon dioxide enrichment. Oecologia, 137, 22 – 31.en_US
dc.identifier.citedreferenceLevine JM, Vila M, D'Antonio CM, Dukes JS, Grigulis K, Lavorel S ( 2003 ) Mechanisms underlying the impacts of exotic plant invasions. Proceedings of the Royal Society of London Series B-Biological Sciences, 270, 775 – 781.en_US
dc.identifier.citedreferenceLill JT, Marquis RJ ( 2003 ) Ecosystem engineering by caterpillars increases insect herbivore diversity on white oak. Ecology, 84, 682 – 690.en_US
dc.identifier.citedreferenceLyford ME, Jackson ST, Betancourt JL, Gray ST ( 2003 ) Influence of landscape structure and climate variability on a late Holocene plant migration. Ecological Monographs, 73, 567 – 583.en_US
dc.identifier.citedreferenceLyons KG, Brigham CA, Traut BH, Schwartz MW ( 2005 ) Rare species and ecosystem functioning. Conservation Biology, 19, 1019 – 1024.en_US
dc.identifier.citedreferenceManning P, Newington JE, Robson HR et al. ( 2006 ) Decoupling the direct and indirect effects of nitrogen deposition on ecosystem function. Ecology Letters, 9, 1015 – 1024.en_US
dc.identifier.citedreferenceMayer AL, Rietkerk M ( 2004 ) The dynamic regime concept for ecosystem management and restoration. Bioscience, 54, 1013 – 1020.en_US
dc.identifier.citedreferenceMcGill BJ, Enquist BJ, Weiher E, Westoby M ( 2006 ) Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178 – 185.en_US
dc.identifier.citedreferenceMcIntyre S, Lavorel S, Tremont RM ( 1995 ) Plant life-history attributes – their relationship to disturbance responses in herbaceous vegetation. Journal of Ecology, 83, 31 – 44.en_US
dc.identifier.citedreferenceMillennium Ecosystem Assessment ( 2003 ) Ecosystem Studies: Ecosystem Science and Management. Island Press, Washington, DC.en_US
dc.identifier.citedreferenceMondor EB, Tremblay MN, Awmack CS, Lindroth RL ( 2005 ) Altered genotypic and phenotypic frequencies of aphid populations under enriched CO 2 and O 3 atmospheres. Global Change Biology, 11, 1990 – 1996.en_US
dc.identifier.citedreferenceMorris WF, Hufbauer RA, Agrawal AA et al. ( 2007 ) Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. Ecology, 88, 1021 – 1029.en_US
dc.identifier.citedreferenceMouillot D, Stubbs W, Faure M et al. ( 2005 ) Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia, 145, 345 – 353.en_US
dc.identifier.citedreferenceNaeem S, Wright JP ( 2003 ) Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecology Letters, 6, 567 – 579.en_US
dc.identifier.citedreferenceNeilson RP, Pitelka LF, Solomon AM et al. ( 2005 ) Forecasting regional to global plant migration in response to climate change. Bioscience, 55, 749 – 759.en_US
dc.identifier.citedreferenceNoble IR, Gitay H ( 1996 ) A functional classification for predicting the dynamics of landscapes. Journal of Vegetation Science, 7, 329 – 336.en_US
dc.identifier.citedreferenceNystrom M ( 2006 ) Redundancy and response diversity of functional groups: implications for the resilience of coral reefs. Ambio, 35, 30 – 35.en_US
dc.identifier.citedreferenceOesterheld M ( 1992 ) Effect of defoliation intensity on aboveground and belowground relative growth-rates. Oecologia, 92, 313 – 316.en_US
dc.identifier.citedreferenceOlden JD, Poff NL, Bestgen KR ( 2006 ) Life-history strategies predict fish invasions and extirpations in the Colorado River Basin. Ecological Monographs, 76, 25 – 40.en_US
dc.identifier.citedreferenceOsmond B, Ananyev G, Berry J et al. ( 2004 ) Changing the way we think about global change research: scaling up in experimental ecosystem science. Global Change Biology, 10, 393 – 407.en_US
dc.identifier.citedreferencePennings SC, Siska EL, Bertness MD ( 2001 ) Latitudinal differences in plant palatability in Atlantic coast salt marshes. Ecology, 82, 1344 – 1359.en_US
dc.identifier.citedreferencePetchey OL, Gaston KJ ( 2002 ) Extinction and the loss of functional diversity. Proceedings of the Royal Society of London Series B-Biological Sciences, 269, 1721 – 1727.en_US
dc.identifier.citedreferencePetchey OL, Gaston KJ ( 2006 ) Functional diversity: back to basics and looking forward. Ecology Letters, 9, 741 – 758.en_US
dc.identifier.citedreferencePoff NL ( 1997 ) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society, 16, 391 – 409.en_US
dc.identifier.citedreferencePoorter H, Navas ML ( 2003 ) Plant growth and competition at elevated CO 2: on winners, losers and functional groups. New Phytologist, 157, 175 – 198.en_US
dc.identifier.citedreferencePower ME, Tilman D, Estes JA et al. ( 1996 ) Challenges in the quest for keystones. Bioscience, 46, 609 – 620.en_US
dc.identifier.citedreferencePugnaire FI, Luque MT ( 2001 ) Changes in plant interactions along a gradient of environmental stress. Oikos, 93, 42 – 49.en_US
dc.identifier.citedreferencePurvis A, Gittleman JL, Cowlishaw G, Mace GM ( 2000 ) Predicting extinction risk in declining species. Proceedings of the Royal Society of London Series B-Biological Sciences, 267, 1947 – 1952.en_US
dc.identifier.citedreferenceQuested H, Eriksson O ( 2006 ) Litter species composition influences the performance of seedlings of grassland herbs. Functional Ecology, 20, 522 – 532.en_US
dc.identifier.citedreferenceQuÉtier F, Thebault A, Lavorel S ( 2007 ) Plant traits in a state and transition framework as markers of ecosystem response to land-use change. Ecological Monographs, 77, 33 – 52.en_US
dc.identifier.citedreferenceRehfeldt GE, Ying CC, Spittlehouse DL, Hamilton DA ( 1999 ) Genetic responses to climate in Pinus contorta: niche breadth, climate change, and reforestation. Ecological Monographs, 69, 375 – 407.en_US
dc.identifier.citedreferenceReich PB, Tilman D, Craine J et al. ( 2001 ) Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO 2 and N availability regimes? A field test with 16 grassland species. New Phytologist, 150, 435 – 448.en_US
dc.identifier.citedreferenceReich PB, Walters MB, Ellsworth DS ( 1997 ) From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730 – 13734.en_US
dc.identifier.citedreferenceReich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB ( 2003 ) The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143 – S164.en_US
dc.identifier.citedreferenceSchiesari L, Peacor S, Werner EE ( 2006 ) The growth–mortality tradeoff: evidence from anuran larvae and consequences for species distributions. Oecologia, 149, 194 – 202.en_US
dc.identifier.citedreferenceSchmitz OJ ( 2004 ) Perturbation and abrupt shift in trophic control of biodiversity and productivity. Ecology Letters, 7, 403 – 409.en_US
dc.identifier.citedreferenceSchmitz OJ, Post E, Burns CE, Johnston KM ( 2003 ) Ecosystem responses to global climate change: moving beyond color mapping. Bioscience, 53, 1199 – 1205.en_US
dc.identifier.citedreferenceSchulze ED, Kelliher FM, Korner C, Lloyd J, Leuning R ( 1994 ) Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition – a global ecology scaling exercise. Annual Review of Ecology and Systematics, 25, 629 – 666.en_US
dc.identifier.citedreferenceShaver GR, Canadell J, Chapin FS et al. ( 2000 ) Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience, 50, 871 – 882.en_US
dc.identifier.citedreferenceSmith MD, Wilcox JC, Kelly T, Knapp AK ( 2004 ) Dominance not richness determines invasibility of tallgrass prairie. Oikos, 106, 253 – 262.en_US
dc.identifier.citedreferenceSolan M, Cardinale BJ, Downing AL, Engelhardt KAM, Ruesink JL, Srivastava DS ( 2004 ) Extinction and ecosystem function in the marine benthos. Science, 306, 1177 – 1180.en_US
dc.identifier.citedreferenceSteffen W, Sanderson A, Tyson PD et al. (eds) ( 2004 ) Global Change and the Earth System: A Planet Under Pressure. Springer-Verlag, Berlin.en_US
dc.identifier.citedreferenceSugihara G, Bersier LF, Southwood TRE, Pimm SL, May RM ( 2003 ) Predicted correspondence between species abundances and dendrograms of niche similarities. Proceedings of the National Academy of Sciences of the United States of America, 100, 5246 – 5251.en_US
dc.identifier.citedreferenceSwetnam TW, Betancourt JL ( 1998 ) Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. Journal of Climate, 11, 3128 – 3147.en_US
dc.identifier.citedreferenceSymstad AJ, Chapin FS, Wall DH et al. ( 2003 ) Long-term and large-scale perspectives on the relationship between biodiversity and ecosystem functioning. Bioscience, 53, 89 – 98.en_US
dc.identifier.citedreferenceThomas CD, Cameron A, Green RE et al. ( 2004 ) Extinction risk from climate change. Nature, 427, 145 – 148.en_US
dc.identifier.citedreferenceThompson JN, Reichman OJ, Morin PJ et al. ( 2001 ) Frontiers of ecology. Bioscience, 51, 15 – 24.en_US
dc.identifier.citedreferenceTilman D ( 1982 ) Resource Competition and Community Structure. Princeton University Press, Princeton, USA.en_US
dc.identifier.citedreferencevan der Putten WH, de Ruiter PC, Bezemer TM, Harvey JA, Wassen M, Wolters V ( 2004 ) Trophic interactions in a changing world. Basic and Applied Ecology, 5, 487 – 494.en_US
dc.identifier.citedreferencevan Nes EH, Scheffer M ( 2004 ) Large species shifts triggered by small forces. American Naturalist, 164, 255 – 266.en_US
dc.identifier.citedreferenceVitousek PM, Hattenschwiler S, Olander L, Allison S ( 2002 ) Nitrogen and nature. Ambio, 31, 97 – 101.en_US
dc.identifier.citedreferenceWaide RB, Willig MR, Steiner CF et al. ( 1999 ) The relationship between productivity and species richness. Annual Review of Ecology and Systematics, 30, 257 – 300.en_US
dc.identifier.citedreferenceWalker B, Kinzig A, Langridge J ( 1999 ) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems, 2, 95 – 113.en_US
dc.identifier.citedreferenceWardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH ( 2004 ) Ecological linkages between aboveground and belowground biota. Science, 304, 1629 – 1633.en_US
dc.identifier.citedreferenceWardle DA, Nilsson MC, Zackrisson O, Gallet C ( 2003a ) Determinants of litter mixing effects in a Swedish boreal forest. Soil Biology & Biochemistry, 35, 827 – 835.en_US
dc.identifier.citedreferenceWardle DA, Peltzer DA ( 2003 ) Interspecific interactions and biomass allocation among grassland plant species. Oikos, 100, 497 – 506.en_US
dc.identifier.citedreferenceWardle DA, Yeates GW, Williamson W, Bonner KI ( 2003b ) The response of a three trophic level soil food web to the identity and diversity of plant species and functional groups. Oikos, 102, 45 – 56.en_US
dc.identifier.citedreferenceWeiher E, Clarke GDP, Keddy PA ( 1998 ) Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos, 81, 309 – 322.en_US
dc.identifier.citedreferenceWeiher E, van der Werf A, Thompson K et al. ( 1999 ) Challenging Theophrastus: a common core list of plant traits for functional ecology. Journal of Vegetation Science, 10, 609 – 620.en_US
dc.identifier.citedreferenceWhitham TG, Young WP, Martinsen GD et al. ( 2003 ) Community and ecosystem genetics: a consequence of the extended phenotype. Ecology, 84, 559 – 573.en_US
dc.identifier.citedreferenceWilliams JW, Jackson ST, Kutzbach JE ( 2007 ) Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences, 104, 5738 – 5742.en_US
dc.identifier.citedreferenceWilliams NSG, Morgan JW, McDonnell MJ, McCarthy MA ( 2005 ) Plant traits and local extinctions in natural grasslands along an urban-rural gradient. Journal of Ecology, 93, 1203 – 1213.en_US
dc.identifier.citedreferenceWilson SD, Tilman D ( 1993 ) Plant competition and resource availability in response to disturbance and fertilization. Ecology, 74, 599 – 611.en_US
dc.identifier.citedreferenceWilson SD, Tilman D ( 2002 ) Quadratic variation in old-field species richness along gradients of disturbance and nitrogen. Ecology, 83, 492 – 504.en_US
dc.identifier.citedreferenceWolters V, Silver WL, Bignell DE et al. ( 2000 ) Effects of global changes on above- and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning. Bioscience, 50, 1089 – 1098.en_US
dc.identifier.citedreferenceWoodward FI ( 1992 ) Predicting plant-responses to global environmental-change. New Phytologist, 122, 239 – 251.en_US
dc.identifier.citedreferenceWoodward FI, Diament AD ( 1991 ) Functional approaches to predicting the ecological effects of global change. Functional Ecology, 5, 202 – 212.en_US
dc.identifier.citedreferenceWoodward FI, Thompson GB, McKee IF ( 1991 ) The effects of elevated concentrations of carbon-dioxide on individual plants, populations, communities and ecosystems. Annals of Botany, 67, 23 – 38.en_US
dc.identifier.citedreferenceWootton JT ( 2002 ) Mechanisms of successional dynamics: consumers and the rise and fall of species dominance. Ecological Research, 17, 249 – 260.en_US
dc.identifier.citedreferenceWright IJ, Reich PB, Westoby M et al. ( 2004 ) The worldwide leaf economics spectrum. Nature, 428, 821 – 827.en_US
dc.identifier.citedreferenceWright JP, Jones CG ( 2004 ) Predicting effects of ecosystem engineers on patch-scale species richness from primary productivity. Ecology, 85, 2071 – 2081.en_US
dc.identifier.citedreferenceWright JP, Naeem S, Hector A et al. ( 2006 ) Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecology Letters, 9, 111 – 120.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.