Show simple item record

Structural and mechanistic insights into Mps1 kinase activation

dc.contributor.authorWang, Weien_US
dc.contributor.authorYang, Yutingen_US
dc.contributor.authorGao, Yuefengen_US
dc.contributor.authorXu, Quanbinen_US
dc.contributor.authorWang, Fengen_US
dc.contributor.authorZhu, Songchengen_US
dc.contributor.authorOld, Williamen_US
dc.contributor.authorResing, Katherynen_US
dc.contributor.authorAhn, Natalieen_US
dc.contributor.authorLei, Mingen_US
dc.contributor.authorLiu, Xuedongen_US
dc.date.accessioned2010-06-01T21:22:43Z
dc.date.available2010-06-01T21:22:43Z
dc.date.issued2009-08en_US
dc.identifier.citationWang, Wei; Yang, Yuting; Gao, Yuefeng; Xu, Quanbin; Wang, Feng; Zhu, Songcheng; Old, William; Resing, Katheryn; Ahn, Natalie; Lei, Ming; Liu, Xuedong (2009). "Structural and mechanistic insights into Mps1 kinase activation." Journal of Cellular and Molecular Medicine 13(8b): 1679-1694. <http://hdl.handle.net/2027.42/74441>en_US
dc.identifier.issn1582-1838en_US
dc.identifier.issn1582-4934en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74441
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19120698&dopt=citationen_US
dc.description.abstractMps1 is one of the several essential kinases whose activation is required for robust mitotic spindle checkpoint signalling. The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in response to spindle damage. To understand the molecular mechanism underlying Mps1 regulation, we determined the crystal structure of the kinase domain of Mps1. The 2.7-Å-resolution crystal structure shows that the Mps1 kinase domain adopts a unique inactive conformation. Intramolecular interactions between the key Glu residue in the ΑC helix of the N-terminal lobe and the backbone amides in the catalytic loop lock the kinase in the inactive conformation. Autophosphorylation appears to be a priming event for kinase activation. We identified Mps1 autophosphorylation sites in the activation and the P+1 loops. Whereas activation loop autophosphorylation enhances kinase activity, autophosphorylation at the P+1 loop (T686) is associated with the active kinase. Mutation of T686 autophosphorylation site impairs both autophosphorylation and transphosphorylation. Furthermore, we demonstrated that phosphorylation of T676 may be a priming event for phosphorylation at T686. Finally, we identified two critical lysine residues in the loop between helices ΑEF and ΑF that are essential for substrate recruitment and maintaining high levels of kinase activity. Our studies reveal critical biochemical mechanisms for Mps1 kinase regulation.en_US
dc.format.extent1594127 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltden_US
dc.subject.otherMps1 Structureen_US
dc.subject.otherKinase Activationen_US
dc.subject.otherPhosphorylationen_US
dc.titleStructural and mechanistic insights into Mps1 kinase activationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biological Chemistry, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USAen_US
dc.contributor.affiliationotherHoward Hughes Medical Institute, University of Colorado, Boulder, CO, USAen_US
dc.identifier.pmid19120698en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74441/1/j.1582-4934.2008.00605.x.pdf
dc.identifier.doi10.1111/j.1582-4934.2008.00605.xen_US
dc.identifier.sourceJournal of Cellular and Molecular Medicineen_US
dc.identifier.citedreferenceAmon A. The spindle checkpoint. Curr Opin Genet Dev. 1999; 9: 69 – 75.en_US
dc.identifier.citedreferenceDraviam VM, Xie S, Sorger PK. Chromosome segregation and genomic stability. Curr Opin Genet Dev. 2004; 14: 120 – 5.en_US
dc.identifier.citedreferenceWeaver BA, Cleveland DW. Decoding the links between mitosis, cancer, and chemotherapy: the mitotic checkpoint, adaptation, and cell death. Cancer Cell. 2005; 8: 7 – 12.en_US
dc.identifier.citedreferenceLi R, Murray AW. Feedback control of mitosis in budding yeast. Cell. 1991; 66: 519 – 31.en_US
dc.identifier.citedreferenceHoyt MA, Totis L, Roberts BT. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell. 1991; 66: 507 – 17.en_US
dc.identifier.citedreferenceWeiss E, Winey M. The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol. 1996; 132: 111 – 23.en_US
dc.identifier.citedreferenceWassmann K, Benezra R. Mitotic checkpoints: from yeast to cancer. Curr Opin Genet Dev. 2001; 11: 83 – 90.en_US
dc.identifier.citedreferenceKops GJ, Weaver BA, Cleveland DW. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer. 2005; 5: 773 – 85.en_US
dc.identifier.citedreferenceTang Z, Shu H, Oncel D, et al. Phosphorylation of Cdc20 by Bub1 provides a catalytic mechanism for APC/C inhibition by the spindle checkpoint. Mol Cell. 2004; 16: 387 – 97.en_US
dc.identifier.citedreferenceFang G, Yu H, Kirschner MW. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 1998; 12: 1871 – 83.en_US
dc.identifier.citedreferenceSudakin V, Chan GK, Yen TJ. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol. 2001; 154: 925 – 36.en_US
dc.identifier.citedreferenceYu H. Regulation of APC-Cdc20 by the spindle checkpoint. Curr Opin Cell Biol. 2002; 14: 706 – 14.en_US
dc.identifier.citedreferenceMao Y, Abrieu A, Cleveland DW. Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell. 2003; 114: 87 – 98.en_US
dc.identifier.citedreferenceAbrieu A, Magnaghi-Jaulin L, Kahana JA, et al. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell. 2001; 106: 83 – 93.en_US
dc.identifier.citedreferenceChung E, Chen RH. Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint. Nat Cell Biol. 2003; 5: 748 – 53.en_US
dc.identifier.citedreferenceMills GB, Schmandt R, McGill M, et al. Expression of TTK, a novel human protein kinase, is associated with cell proliferation. J Biol Chem. 1992; 267: 16000 – 6.en_US
dc.identifier.citedreferenceLindberg RA, Fischer WH, Hunter T. Characterization of a human protein threonine kinase isolated by screening an expression library with antibodies to phosphotyrosine. Oncogene. 1993; 8: 351 – 9.en_US
dc.identifier.citedreferenceDouville EM, Afar DE, Howell BW, et al. Multiple cDNAs encoding the esk kinase predict transmembrane and intracellular enzyme isoforms. Mol Cell Biol. 1992; 12: 2681 – 9.en_US
dc.identifier.citedreferenceLauze E, Stoelcker B, Luca FC, et al. Yeast spindle pole body duplication gene MPS1 encodes an essential dual specificity protein kinase. EMBO J. 1995; 14: 1655 – 63.en_US
dc.identifier.citedreferenceWiney M, Huneycutt BJ. Centrosomes and checkpoints: the MPS1 family of kinases. Oncogene. 2002; 21: 6161 – 9.en_US
dc.identifier.citedreferenceFisk HA, Winey M. The mouse Mps1p-like kinase regulates centrosome duplication. Cell. 2001; 106: 95 – 104.en_US
dc.identifier.citedreferenceStucke VM, Sillje HH, Arnaud L, Nigg EA. Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J. 2002; 21: 1723 – 32.en_US
dc.identifier.citedreferenceLiu ST, Chan GK, Hittle JC, et al. Human MPS1 kinase is required for mitotic arrest induced by the loss of CENP-E from kinetochores. Mol Biol Cell. 2003; 14: 1638 – 51.en_US
dc.identifier.citedreferencePoss KD, Nechiporuk A, Stringer KF, et al. Germ cell aneuploidy in zebrafish with mutations in the mitotic checkpoint gene mps1. Genes Dev. 2004; 18: 1527 – 32.en_US
dc.identifier.citedreferenceFisk HA, Mattison CP, Winey M. A field guide to the Mps1 family of protein kinases. Cell Cycle. 2004; 3: 439 – 42.en_US
dc.identifier.citedreferenceKang J, Chen Y, Zhao Y, Yu H. Autophosphorylation-dependent activation of human Mps1 is required for the spindle checkpoint. Proc Natl Acad Sci USA. 2007; 104: 20232 – 7.en_US
dc.identifier.citedreferenceZhou T, Raman M, Gao Y, et al. Crystal structure of the TAO2 kinase domain: activation and specificity of a Ste20p MAP3K. Structure. 2004; 12: 1891 – 900.en_US
dc.identifier.citedreferenceNolen B, Taylor S, Ghosh G. Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell. 2004; 15: 661 – 75.en_US
dc.identifier.citedreferenceLei M, Lu W, Meng W, et al. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell. 2000; 102: 387 – 97.en_US
dc.identifier.citedreferenceZhu S, Wang W, Clarke DC, Liu X. Activation of Mps1 promotes transforming growth factor-beta-independent Smad signaling. J Biol Chem. 2007; 282: 18327 – 38.en_US
dc.identifier.citedreferenceHuse M, Kuriyan J. The conformational plasticity of protein kinases. Cell. 2002; 109: 275 – 82.en_US
dc.identifier.citedreferenceHarrison SC. Variation on an Src-like theme. Cell. 2003; 112: 737 – 40.en_US
dc.identifier.citedreferenceKnighton DR, Zheng JH, Ten Eyck LF, et al. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science. 1991; 253: 407 – 14.en_US
dc.identifier.citedreferenceRobinson MJ, Harkins PC, Zhang J, et al. Mutation of position 52 in ERK2 creates a nonproductive binding mode for adenosine 5’-triphosphate. Biochemistry. 1996; 35: 5641 – 6.en_US
dc.identifier.citedreferenceLei M, Robinson MA, Harrison SC. The active conformation of the PAK1 kinase domain. Structure. 2005; 13: 769 – 78.en_US
dc.identifier.citedreferenceChu ML, Chavas LM, Douglas KT, et al. Crystal structure of the catalytic domain of the mitotic checkpoint kinase Mps1 in complex with SP600125. J Biol Chem. 2008; 283: 21495 – 500.en_US
dc.identifier.citedreferenceMattison CP, Old WM, Steiner E, et al. Mps1 activation loop autophosphorylation enhances kinase activity. J Biol Chem. 2007; 282: 30553 – 61.en_US
dc.identifier.citedreferenceMossessova E, Lima CD. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell. 2000; 5: 865 – 76.en_US
dc.identifier.citedreferenceWilliamson BL, Marchese J, Morrice NA. Automated identification and quantification of protein phosphorylation sites by LC/MS on a hybrid triple quadrupole linear ion trap mass spectrometer. Mol Cell Proteomics. 2006; 5: 337 – 46.en_US
dc.identifier.citedreferenceOtwinowski Z, Minor W. Processing of x-ray diffraction data collected in oscillation mode. Academic Press; 1997. pp. 307 – 26.en_US
dc.identifier.citedreferenceLa Fortelle E, Bricogne G. Maximum likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multivavelength anomalous diffraction methods. Orlando: Academic Press; 1997. pp. 472 – 94.en_US
dc.identifier.citedreferenceJones TA, Zou JY, Cowan SW, et al. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta crystallographica. 1991; 47: 110 – 9.en_US
dc.identifier.citedreferenceBrunger AT, Adams PD, Clore GM, et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998; 54: 905 – 21.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.