Show simple item record

The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages

dc.contributor.authorKoeduka, Takaoen_US
dc.contributor.authorLouie, Gordon V.en_US
dc.contributor.authorOrlova, Irinaen_US
dc.contributor.authorKish, Christine M.en_US
dc.contributor.authorIbdah, Mwafaqen_US
dc.contributor.authorWilkerson, Curtis G.en_US
dc.contributor.authorBowman, Marianne E.en_US
dc.contributor.authorBaiga, Thomas J.en_US
dc.contributor.authorNoel, Joseph P.en_US
dc.contributor.authorDudareva, Nataliaen_US
dc.contributor.authorPichersky, Eranen_US
dc.date.accessioned2010-06-01T21:22:47Z
dc.date.available2010-06-01T21:22:47Z
dc.date.issued2008-05en_US
dc.identifier.citationKoeduka, Takao; Louie, Gordon V.; Orlova, Irina; Kish, Christine M.; Ibdah, Mwafaq; Wilkerson, Curtis G.; Bowman, Marianne E.; Baiga, Thomas J.; Noel, Joseph P.; Dudareva, Natalia; Pichersky, Eran (2008). "The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages." The Plant Journal 54(3): 362-374. <http://hdl.handle.net/2027.42/74442>en_US
dc.identifier.issn0960-7412en_US
dc.identifier.issn1365-313Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74442
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18208524&dopt=citationen_US
dc.format.extent1721187 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 Blackwell Publishing Ltd and the Society for Experimental Biologyen_US
dc.subject.otherSecondary Metabolismen_US
dc.subject.otherBiochemistryen_US
dc.subject.otherProtein Structureen_US
dc.subject.otherPlant Volatileen_US
dc.subject.otherScenten_US
dc.titleThe multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineagesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Street, Ann Arbor, MI 48109-1048, USA,en_US
dc.contributor.affiliationumDepartment of Energy Plant Research Laboratory and Michigan Proteome Consortium, Michigan State University, East Lansing, MI 48824, USAen_US
dc.contributor.affiliationotherHoward Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,en_US
dc.contributor.affiliationotherDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA, anden_US
dc.identifier.pmid18208524en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74442/1/j.1365-313X.2008.03412.x.pdf
dc.identifier.doi10.1111/j.1365-313X.2008.03412.xen_US
dc.identifier.sourceThe Plant Journalen_US
dc.identifier.citedreferenceAkashi, T., Koshimizu, S., Aoki, T. and Ayabe, S. ( 2006 ) Identification of cDNAs encoding pterocarpan reductase involved in isoflavan phytoalexin biosynthesis in Lotus japonicus by EST mining. FEBS Lett. 580, 5666 – 5670.en_US
dc.identifier.citedreferenceBoatright, J., Negre, F., Chen, X. et al. ( 2004 ) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol. 135, 1993 – 2011.en_US
dc.identifier.citedreferenceChen, H., Wilkerson, C.G., Kuchar, J.A., Phinney, B.S. and Howe, G.A. ( 2005 ) Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc. Natl Acad. Sci. USA, 102, 19237 – 19242.en_US
dc.identifier.citedreferenceChenchik, A., Zhu, Y., Diatchenko, L., Li, A., Hill, J. and Siebert, P. ( 1996 ) Generation and use of high-quality cDNA from small amounts of total RNA by SMART PCR. In RT-PCR Methods for Gene Cloning and Analysis ( Siebert, P. and Larrick, J., eds ). Westborough, MA: BioTechniques Books, pp. 305 – 319.en_US
dc.identifier.citedreferenceD’Auria, J.C., Chen, F. and Pichersky, E. ( 2002 ) Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol. 130, 466 – 476.en_US
dc.identifier.citedreferenceDudareva, N., Cseke, L., Blanc, V.M. and Pichersky, E. ( 1996 ) Evolution of floral scent in Clarkia: novel patterns of S -linalool synthase gene expression in the C. breweri flower. Plant Cell, 8, 1137 – 1148.en_US
dc.identifier.citedreferenceEdgar, R.C. ( 2004 ) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792 – 1797.en_US
dc.identifier.citedreferenceFelsenstein, J. ( 1996 ) Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol. 266, 418 – 427.en_US
dc.identifier.citedreferenceGang, D.R., Wang, J., Dudareva, N., Nam, K.H., Simon, J.E., Lewinson, E. and Pichersky, E. ( 1999 ) Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol–lariciresinol and isoflavone reductases. J. Biol. Chem. 274, 7516 – 7527.en_US
dc.identifier.citedreferenceGang, D.R., Wang, J., Dudareva, N. et al. ( 2001 ) An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol. 125, 539 – 555.en_US
dc.identifier.citedreferenceGrossman, J. ( 1993 ) Botanical pesticides in Africa. Int. Pest. Manag. Pract. 15, 1 – 9.en_US
dc.identifier.citedreferenceHasegawa, M., Kishino, H. and Saitou, N. ( 1991 ) On the maximum likelihood method in molecular phylogenetics. J. Mol. Evol. 32, 443 – 445.en_US
dc.identifier.citedreferenceHo, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. and Pease, L.R. ( 1989 ) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 77, 51 – 59.en_US
dc.identifier.citedreferenceJones, T., Taylor, W.R. and Thornton, J.M. ( 1992 ) The rapid generation of mutation data matrices from protein sequences. CABIOS, 8, 275 – 282.en_US
dc.identifier.citedreferenceKoeduka, T., Fridman, E., Gang, D.R. et al. ( 2006 ) Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of coniferyl alcohol esters. Proc. Natl Acad. Sci. USA, 103, 10128 – 10133.en_US
dc.identifier.citedreferenceLouie, G.V., Baiga, T.J., Bowman, M.E., Koeduka, T., Taylor, J.H., Spassova, S.M., Pichersky, E. and Noel, J.P. ( 2007 ) Structure and reaction mechanism of basil eugenol synthase. PLoS ONE, 2, e993.en_US
dc.identifier.citedreferenceMatz, M., Lukyanov, S., Bogdanova, E., Britanova, O., Lukyanov, S., Diatchenko, L. and Chenchik, A. ( 1999 ) Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res. 27, 1558 – 1560.en_US
dc.identifier.citedreferenceMin, T., Kasahara, H., Bedgar, D.L. et al. ( 2003 ) Crystal structures of pinoresinol–lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. J. Biol. Chem. 278, 50714 – 50723.en_US
dc.identifier.citedreferenceNishimoto, M., Fushinobu, S., Miyanaga, A., Kitaoka, M. and Hayashi, K. ( 2007 ) Molecular anatomy of the alkaliphilic xylanase from Bacillus halodurans C-125. J. Biochem. 5, 709 – 717.en_US
dc.identifier.citedreferenceObeng-Ofori, D. and Reichmuth, C. ( 1997 ) Bioactivity of eugenol, a major component of essential oil of Ocimum suave (Wild.) against four species of stored-product Coleoptera. Int. J. Pest. Manage. 43, 89 – 94.en_US
dc.identifier.citedreferencePerkins, D.N., Pappin, D.J., Creasy, D.M. and Cottrell, J.S. ( 1999 ) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20, 3551 – 3567.en_US
dc.identifier.citedreferencePichersky, E., Raguso, R.A., Lewinsohn, E. and Croteau, R. ( 1994 ) Floral scent production in Clarkia (Onagraceae) I. Localization and developmental modulation of monoterpene emission and linalool synthase activity. Plant Physiol. 106, 1533 – 1540.en_US
dc.identifier.citedreferencePichersky, E., Noel, J.P. and Dudareva, N. ( 2006 ) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science, 311, 808 – 811.en_US
dc.identifier.citedreferencePrasad, N.S., Raghavendra, R., Lokesh, B.R. and Naidu, K.A. ( 2004 ) Spice phenolics inhibit human PMNL 5-lipoxygenase. Prostaglandins Leukot. Essent. Fatty Acids, 70, 521 – 528.en_US
dc.identifier.citedreferenceRaguso, R.A. and Pichersky, E. ( 1995 ) Floral volatiles from Clarkia breweri and C. concinna (Onagraceae): recent evolution of floral scent and moth pollination. Plant Syst. Evol. 194, 55 – 67.en_US
dc.identifier.citedreferenceTanner, G.J., Francki, K.T., Abrahams, S., Watson, J.M., Larkin, P.J. and Ashton, A.R. ( 2003 ) Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J. Biol. Chem. 278, 31647 – 31656.en_US
dc.identifier.citedreferenceVarbanova, M., Yamaguchi, S., Yang, Y. et al. ( 2007 ) Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell, 19, 32 – 45.en_US
dc.identifier.citedreferenceVassÃo, D.G., Kim, S.J., Milhollan, J.K., Eichinger, D., Davin, L.B. and Lewis, N.G. ( 2007 ) A pinoresinol–lariciresinol reductase homologue from the creosote bush ( Larrea tridentata ) catalyzes the efficient in vitro conversion of p-coumaryl/coniferyl alcohol esters into the allylphenols chavicol/eugenol, but not the propenylphenols p-anol/isoeugenol. Arch. Biochem. Biophys. 465, 209 – 218.en_US
dc.identifier.citedreferenceVerdonk, J.C., Ric de Vos, C.H., Verhoeven, H.A., Haring, M.A., van Tunen, A.J. and Schuurink, R.C. ( 2003 ) Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry, 62, 997 – 1008.en_US
dc.identifier.citedreferenceWang, J., Dudareva, N., Bhakta, S., Raguso, R.A. and Pichersky, E. ( 1997 ) Floral scent production in Clarkia breweri (Onagraceae). II. Localization and developmental modulation of the enzyme S-adenosyl-l-methionine:(iso)eugenol O -methyltransferase and phenylpropanoid emission. Plant Physiol. 114, 213 – 221.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.