Show simple item record

N-linked sialyated sugar receptors support haematopoietic cell-osteoblast adhesions

dc.contributor.authorCrean, S. M.en_US
dc.contributor.authorMeneski, J. P.en_US
dc.contributor.authorHullinger, Thomas G.en_US
dc.contributor.authorReilly, Marcelle J.en_US
dc.contributor.authorDeBoever, E. H.en_US
dc.contributor.authorTaichman, Russell S.en_US
dc.date.accessioned2010-06-01T21:23:06Z
dc.date.available2010-06-01T21:23:06Z
dc.date.issued2004-02en_US
dc.identifier.citationCrean, S. M.; Meneski, J. P.; Hullinger, T. G.; Reilly, M. J.; DeBoever, E. H.; Taichman, R. S. (2004). "N-linked sialyated sugar receptors support haematopoietic cell-osteoblast adhesions." British Journal of Haematology 124(4): 534-546. <http://hdl.handle.net/2027.42/74447>en_US
dc.identifier.issn0007-1048en_US
dc.identifier.issn1365-2141en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74447
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=14984505&dopt=citationen_US
dc.format.extent545536 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2004 Blackwell Publishing Ltden_US
dc.subject.otherOsteoblastsen_US
dc.subject.otherStem Cellen_US
dc.subject.otherBone Marrowen_US
dc.subject.otherMicroenvironmenten_US
dc.subject.otherAdhesionen_US
dc.titleN-linked sialyated sugar receptors support haematopoietic cell-osteoblast adhesionsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelOncology and Hematologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Periodontics, Prevention, Geriatrics, University of Michigan School of Dentistry, Ann Arbor, MIen_US
dc.contributor.affiliationotherSt Joseph Mercy Hospitalen_US
dc.contributor.affiliationotherInflammation Molecular Sciences and Technologies, Pfizer Global Research and Development/Ann Arbor Laboratories, Ann Arbor, MIen_US
dc.contributor.affiliationotherUCB Research, Inc., Cambridge, MAen_US
dc.contributor.affiliationotherGlaxoSmithKline, Collegeville, PA, USAen_US
dc.identifier.pmid14984505en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74447/1/j.1365-2141.2003.04786.x.pdf
dc.identifier.doi10.1046/j.1365-2141.2003.04786.xen_US
dc.identifier.sourceBritish Journal of Haematologyen_US
dc.identifier.citedreferenceArkwright, P.D., Rademacher, T.W., Boutignon, F., Dwek, R.A. & Redman, C.W. ( 1994 ) Suppression of allogeneic reactivity in vitro by the syncytiotrophoblast membrane glycocalyx of the human term placenta is carbohydrate dependent. Glycobiology, 4, 39 – 47.en_US
dc.identifier.citedreferenceAsosingh, K., Renmans, W., Van der, G.K., Foulon, W., Schots, R., Van, R.I. & De Waele, M. ( 1998 ) Circulating CD34+ cells in cord blood and mobilized blood have a different profile of adhesion molecules than bone marrow CD34+ cells. European Journal of Haematology, 60, 153 – 160.en_US
dc.identifier.citedreferenceBartolazzi, A., Nocks, A., Aruffo, A., Spring, F. & Stamenkovic, I. ( 1996 ) Glycosylation of CD44 is implicated in CD44-mediated cell adhesion to hyaluronan. Journal of Cell Biology, 132, 1199 – 1208.en_US
dc.identifier.citedreferenceBrandish, P.E., Kimura, K.I., Inukai, M., Southgate, R., Lonsdale, J.T. & Bugg, T.D. ( 1996 ) Modes of action of tunicamycin, liposidomycin B, and mureidomycin A: inhibition of phospho-N-acetylmuramyl-pentapeptide translocase from Escherichia coli. Antimicrobial Agents and Chemotherapy, 40, 1640 – 1644.en_US
dc.identifier.citedreferenceClark, B.R., Gallagher, J.T. & Dexter, T.M. ( 1992 ) Cell adhesion in the stromal regulation of haemopoiesis. Balliere's Clinical Hematology, 5, 619 – 652.en_US
dc.identifier.citedreferenceCui, Y.-F., Lord, B., Woolford, L. & Testa, N. ( 1996 ) The relative spatial distribution of in vitro-CFCs in the bone marrow, responding to specific growth factors. Cell Proliferation, 29, 243 – 257.en_US
dc.identifier.citedreferenceDeldar, A., Lewis, H. & Weiss, L. ( 1985 ) Bone lining cells and hematopoiesis: an electron microscopic study of canine bone marrow. Anatomic Record, 213, 187 – 201.en_US
dc.identifier.citedreferenceDeryugina, E.I., Ratnikov, B.I., Bourdon, M.A. & Muller-Sieburg, C.E. ( 1994 ) Clonal analysis of primary marrow stroma: functional homogeneity in support of lymphoid and myeloid cell lines and identification of positive and negative regulators. Experimental Hematology, 22, 910 – 918.en_US
dc.identifier.citedreferenceDimitroff, C.J., Lee, J.Y., Fuhlbrigge, R.C. & Sackstein, R. ( 2000 ) A distinct glycoform of CD44 is an L-selectin ligand on human hematopoietic cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 13841 – 13846.en_US
dc.identifier.citedreferenceDorheim, M.A., Sullivan, M., Dandapani, V., Wu, X., Hudson, J., Segarini, P.R., Rosen, D.M., Aulthouse, A.L. & Gimble, J.M. ( 1993 ) Osteoblastic gene expression during adiposegenesis in hematopoietic supporting murine bone marrow stromal cells. Journal Cell Physiology, 154, 317 – 328.en_US
dc.identifier.citedreferenceEaves, C.J., Sutherland, H.J., Cashman, J.D., Otsuka, T., Lansdorp, P.M., Humphries, P.K., Eaves, A.C. & Hogge, D.E. ( 1991 ) Regulation of human hematopoietic cells in long-term marrow culture. Seminars in Hematology, 28, 126 – 131.en_US
dc.identifier.citedreferenceEl-Badri, N.S., Wang, B.Y., Cherry & Good, R.A. ( 1998 ) Osteoblasts promote engraftment of allogeneic hematopoietic stem cells. Experimental Hematology, 26, 110 – 116.en_US
dc.identifier.citedreferenceGabius, S., Wawotzny, R., Martin, U., Wilholm, S. & Gabius, H.J. ( 1994 ) Carbohydrate-dependent binding of human myeloid leukemia cell lines to neoglycoenzymes, matrix-immobilized neoglycoproteins, and bone marrow stromal cell layers. Annals of Hematology, 68, 125 – 132.en_US
dc.identifier.citedreferenceGerstenfeld, L.C., Chipman, S.D., Glowacki, J. & Lian, J.B. ( 1987 ) Expression of differentiated function by mineralizing cultures of chicken osteoblasts. Developmental Biology, 122, 49 – 60.en_US
dc.identifier.citedreferenceGong, J. ( 1978 ) Endosteal marrow: a rich source of hematopoietic stem cells. Science, 199, 1443 – 1445.en_US
dc.identifier.citedreferenceGospodarowicz, D. & Ill, C. ( 1980 ) Extracellular matrix and control of proliferation of vascular endothelial cells. Journal Clinical Investigation, 65, 1351 – 1364.en_US
dc.identifier.citedreferenceGuba, S.C., Sartor, C.I., Gottschalk, L.R., Ye-Hu, J., Mulligan, T. & Emerson, S.C. ( 1992 ) Bone marrow stromal fibroblasts secrete interleukin-6 and granulocyte-macrophage colony-stimulating factor in the absence of inflammatory stimulation: demonstration by serum-free bioassay, enzyme-linked immunoabsorbant assay and reverse transcriptase polymerase chain reaction. Blood, 80, 1190 – 1198.en_US
dc.identifier.citedreferenceGupta, P., Blazar, B.R., Gupta, K. & Verfaillie, C.M. ( 1998 ) Human CD34(+) bone marrow cells regulate stromal production of interleukin-6 and granulocyte colony-stimulating factor and increase the colony-stimulating activity of stroma. Blood, 91, 3724 – 3733.en_US
dc.identifier.citedreferenceHardy, C.L. ( 1995 ) The homing of hematopoietic stem cells to the bone marrow. American Journal of the Medical Sciences, 309, 260 – 266.en_US
dc.identifier.citedreferenceHardy, C.L. & Megason, G.C. ( 1996 ) Specificity of hematopoietic stem cell homing. Hematological Oncology, 14, 17 – 27.en_US
dc.identifier.citedreferenceHass, R., Kohler, L., Rehfeldt, W., Lessmann, V., Muller, W., Resch, K. & Goppelt-Struebe, M. ( 1990 ) Alterations in glycosylation and lectin pattern during phorbol ester-induced differentiation of U937 cells. Cancer Research, 50, 323 – 327.en_US
dc.identifier.citedreferenceHermans, M.N., Hartsuiker, H. & Opstelten, D. ( 1989 ) An in situ study of B-lymphocytopoiesis in rat bone marrow. Topographical arrangement of terminal deoxynucleotidyl transferase-positive cells and pre-B cells. Journal of Immunology, 142, 67 – 73.en_US
dc.identifier.citedreferenceHumphries, M.J., Matsumoto, K., White, S.L. & Olden, K. ( 1986 ) Inhibition of experimental metastasis by castanospermine in mice: blockage of two distinct stages of tumor colonization by oligosaccharide processing inhibitors. Cancer Research, 46, 5215 – 5222.en_US
dc.identifier.citedreferenceIslam, A., Glomski, C. & Henderson, E.S. ( 1990 ) Bone lining (endosteal) cells and hematopoiesis: a light microscopic study of normal and pathologic human bone marrow in plastic-embedded sections. Anatomical Record, 227, 300 – 306.en_US
dc.identifier.citedreferenceKatoh, S., Zheng, Z., Oritani, K., Shimozato, T. & Kincade, P.W. ( 1995 ) Glycosylation of CD44 negatively regulates its recognition of hyaluronan. Journal of Experimental Medicine, 182, 419 – 429.en_US
dc.identifier.citedreferenceKatoh, S., Miyagi, T., Taniguchi, H., Matsubara, Y., Kadota, J., Tominaga, A., Kincade, P.W., Matsukura, S. & Kohno, S. ( 1999 ) Cutting edge: an inducible sialidase regulates the hyaluronic acid binding ability of CD44-bearing human monocytes. Journal of Immunology, 162, 5058 – 5061.en_US
dc.identifier.citedreferenceKittler, E.L.W., McGrath, H., Temeles, D., Crittenden, R.B., Kister, V.K. & Quesenberry, P.J. ( 1992 ) Biologic significance of constitutive and subliminal growth factor production by bone marrow stroma. Blood, 79, 3168 – 3178.en_US
dc.identifier.citedreferenceKoller, M.R., Oxender, M., Jensen, T.C., Goltry, K.L. & Smith, A.K. ( 1999 ) Direct contact between CD34(+)lin(−) cells and stroma induces a soluble activity that specifically increases primitive hematopoietic cell production. Experimental Hematology, 27, 734 – 741.en_US
dc.identifier.citedreferenceKrebsbach, P.H., Kuznetsov, S.A., Satomura, K., Emmons, E.V., Rowe, D.W. & Robey, P.G. Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation, 63, 1059 – 1069.en_US
dc.identifier.citedreferenceLemischka, I.R. ( 1997 ) Microenvironmental regulation of hematopoietic stem cells ( review, 28 refs ). Stem Cells, 15 ( Suppl. 1 ), 63 – 68.en_US
dc.identifier.citedreferenceLord, B.I. ( 1990 ) The architecture of bone marrow cell populations. International Journal of Cell Cloning, 8, 317 – 331.en_US
dc.identifier.citedreferenceLord, B.I., Testa, N.G. & Hendry, J.H. ( 1975 ) The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood, 46, 65 – 72.en_US
dc.identifier.citedreferenceLund-Johansen, F. & Terstappen, W.M.M. ( 1993 ) Differential surface expression of cell adhesion molecules during granulocyte maturation. Journal of Leukocyte Biology, 54, 47 – 55.en_US
dc.identifier.citedreferenceMantel, C.R., Balduini, A. & Broxmeyer, H.E. ( 1999 ) A human factor-dependent cell line simulates cobblestone formation under human bone marrow stromal cells in vitro. Annals of the New York Academy of Sciences, 872, 399 – 401.en_US
dc.identifier.citedreferenceMoore, K.A., Pytowski, B., Witte, L., Hicklin, D. & Lemischka, I.R. ( 1997 ) Hematopoietic activity of a stromal cell transmembrane protein containing epidermal growth factor-like repeat motifs. Proceedings of the National Academy of Sciences of the United States of America, 94, 4011 – 4016.en_US
dc.identifier.citedreferenceMuller-Sieburg, C.E. & Deryugina, E. ( 1995 ) The stromal cells’ guide to the stem cell universe (review, 67 refs ). Stem Cells, 13, 477 – 486.en_US
dc.identifier.citedreferenceNelissen, J.M., Torensma, R., Pluyter, M., Adema, G.J., Raymakers, R.A., van Kooyk, Y. & Figdor, C.G. ( 2000 ) Molecular analysis of the hematopoiesis supporting osteoblastic cell line U2-OS. Experimental Hematology, 28, 422 – 432.en_US
dc.identifier.citedreferenceNilsson, S.K., Dooner, M.S., Tiarks, C.Y., Weier, H.U. & Quesenberry, P.J. ( 1997 ) Potential and distribution of transplanted hematopoietic stem cells in a nonablated mouse model. Blood, 89, 4013 – 4020.en_US
dc.identifier.citedreferenceOxley, S.M. & Sackstein, R. ( 1994 ) Detection of an L-selectin ligand on a hematopoietic progenitor cell line. Blood, 84, 3299 – 3306.en_US
dc.identifier.citedreferencePahlsson, P., Strindhall, J., Srinivas, U. & Lundblad, A. ( 1995 ) Role of N-linked glycosylation in expression of E-selectin on human endothelial cells. European Journal of Immunology, 25, 2452 – 2459.en_US
dc.identifier.citedreferencePhillips, R.L., Ernst, R.E., Brunk, B., Ivanova, N., Mahan, M.A., Deanehan, J.K., Moore, K.A, Overton, G.C. & Lemischka, I.R. ( 2000 ) The genetic program of hematopoietic stem cells. Science, 288, 1635 – 1640.en_US
dc.identifier.citedreferenceQuesenberry, P.J. & Becker, P.S. ( 1998 ) Stem cell homing: rolling, crawling, and nesting ( comment. Review, 54 refs ). Proceedings of the National Academy of Sciences of the United States of America, 95, 15155 – 15157.en_US
dc.identifier.citedreferenceRobey, P.G. & Termine, J.D. ( 1985 ) Human bone cells in vitro. Calcified Tissue International, 37, 453 – 460.en_US
dc.identifier.citedreferenceRobey, P.G., Young, M.F., Flanders, K.C., Roche, N.S., Kondaiah, P., Reddi, A.H., Termine, J.D., Sporn, M.D. & Roberts, A.B. ( 1987 ) Osteoblasts synthesize and respond to transforming growth factor-type β (TGF- β ) in vitro. Journal Cellular Biology, 105, 457 – 463.en_US
dc.identifier.citedreferenceSackstein, R. ( 1997 ) Expression of an L-selectin ligand on hematopoietic progenitor cells. Acta Haematologica, 97, 22 – 28.en_US
dc.identifier.citedreferenceSalmi, M. & Jalkanen, S. ( 1995 ) Different forms of human vascular adhesion protein-1 (VAP-1) in blood vessels in vivo and in cultured endothelial cells: implications for lymphocyte-endothelial cell adhesion models. European Journal of Immunology, 25, 2803 – 2812.en_US
dc.identifier.citedreferenceSatoh, M., Mioh, H., Konishi, N., Takahashi, I. & Tamaoki, T. ( 1997 ) Characterization of the molecules involved in the hematopoietic microenvironment provided by mouse stromal cell line MC3T3-G2/PA6 using a unique reporter system that analyzes the direct cell-to-cell interaction. Acta Haematologica, 98, 95 – 103.en_US
dc.identifier.citedreferenceSimons, P.J., Zannettino, A., Gronthos, S. & Leavesley, D. ( 1994 ) Potential adhesion mechanisms for localization of hematopoietic progenitors to bone marrow stroma. Leukemia and Lymphoma, 12, 353 – 363.en_US
dc.identifier.citedreferenceSullenbarger, B.A., Petitt, M.S., Chong, P., Long, M.W. & Wicha, M.S. ( 1995 ) Murine granulocytic cell adhesion to bone marrow hemonectin is mediated by mannose and galactose. Blood, 86, 135 – 140.en_US
dc.identifier.citedreferenceSutherland, H.J., Lansdorp, P.M., Henkelman, D.H., Eaves, A.V. & Eaves, C.F. ( 1990 ) Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proceedings of the National Academy of Sciences of the United States of America, 87, 3584 – 3588.en_US
dc.identifier.citedreferenceTaichman, R.S. & Emerson, S.G. ( 1994 ) Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. Journal of Experimental Medicine, 179, 1677 – 1682.en_US
dc.identifier.citedreferenceTaichman, R.S. & Emerson, S.G. ( 1996 ) Human osteosarcoma cell lines MG-63 and SaOS-2 produce G-CSF and GM-CSF: identification and partial characterization of cell-associated isoforms. Experimental Hematology, 24, 509 – 517.en_US
dc.identifier.citedreferenceTaichman, R.S. & Emerson, S.G. ( 1998 ) The role of osteoblasts in the hematopoietic microenvironment. Stem Cells, 16, 7 – 15.en_US
dc.identifier.citedreferenceTaichman, R.S. & Hauschka, P.V. ( 1992 ) Effects of interleukin-1 β and tumor necrosis factor- α on osteoblastic expression of osteocalcin and mineralized extracellular matrix in vitro. Inflammation, 16, 587 – 601.en_US
dc.identifier.citedreferenceTaichman, R.S., Reilly, M.J. & Emerson, S.G. ( 1996 ) Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood, 87, 518 – 524.en_US
dc.identifier.citedreferenceTaichman, R.S., Reilly, M.J., Verma, R.S. & Emerson, S.G. ( 1997a ) Augmented production of interleukin-6 by normal human osteoblasts in response to CD34+ hematopoietic bone marrow cells in vitro. Blood, 89, 1165 – 1172.en_US
dc.identifier.citedreferenceTaichman, R.S., Reilly, M.J. & Emerson, S.G. ( 1997b ) Human osteosarcomas inhibit hematopoietic colony formation: Partial reversal by antibody to transforming growth factor- β 1. Bone, 21, 353 – 361.en_US
dc.identifier.citedreferenceTaichman, R.S., Reilly, M.J. & Matthews, L.S. ( 2000a ) Human osteoblast-like cells and osteosarcoma cell lines synthesize MIP-1 α in response to IL-1 β and TNF- α stimulation in vitro. British Journal of Haematology, 108, 275 – 283.en_US
dc.identifier.citedreferenceTaichman, R.S., Reilly, M.J. & Emerson, S.G. ( 2000b ) The hematopoietic microenvironment: osteoblasts and the hematopoietic microenvironment. Hematology, 4, 421 – 426.en_US
dc.identifier.citedreferenceTaichman, R.S., Reilly, M.J., Verma, R.S., Ehrenman, K. & Emerson, S.G. ( 2001 ) Hepatocyte growth factor is secreted by osteoblasts and cooperatively permits the survival of haematopoietic progenitors. British Journal of Haematology, 112, 438 – 448.en_US
dc.identifier.citedreferenceTurner, M.L., Masek, L.C., Hardy, C.L., Parker, A.C. & Sweetenham, J.W. ( 1998 ) Comparative adhesion of human haemopoietic cell lines to extracellular matrix components, bone marrow stromal and endothelial cultures. British Journal of Haematology, 100, 112 – 122.en_US
dc.identifier.citedreferenceVerfaillie, C.M. ( 1992 ) Direct contact between human primitive hematopoietic progenitors and bone marrow stroma is not required for long-term in vitro hematopoiesis. Blood, 79, 2821 – 2826.en_US
dc.identifier.citedreferenceVormoor, J., Lapidot, T., Pflumio, F., Risdon, G., Patterson, B., Broxmeyer, H.E. & Dick, J.E. ( 1994 ) SCID mice as an in vivo model of human cord blood hematopoiesis ( see comments ). Blood Cells, 20, 316 – 320.en_US
dc.identifier.citedreferenceWilson, E.L., Rifkin, D.B., Kelly, F., Hannocks, M.J. & Gabrilove, J.L. ( 1991 ) Basic fibroblast growth factor stimulates myelopoiesis in long-term human bone marrow cultures. Blood, 77, 954 – 960.en_US
dc.identifier.citedreferenceWineman, J., Moore, K., Lemischka, I. & Muller-Sieburg, C. ( 1996 ) Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood, 87, 4082 – 4090.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.