N-linked sialyated sugar receptors support haematopoietic cell-osteoblast adhesions
dc.contributor.author | Crean, S. M. | en_US |
dc.contributor.author | Meneski, J. P. | en_US |
dc.contributor.author | Hullinger, Thomas G. | en_US |
dc.contributor.author | Reilly, Marcelle J. | en_US |
dc.contributor.author | DeBoever, E. H. | en_US |
dc.contributor.author | Taichman, Russell S. | en_US |
dc.date.accessioned | 2010-06-01T21:23:06Z | |
dc.date.available | 2010-06-01T21:23:06Z | |
dc.date.issued | 2004-02 | en_US |
dc.identifier.citation | Crean, S. M.; Meneski, J. P.; Hullinger, T. G.; Reilly, M. J.; DeBoever, E. H.; Taichman, R. S. (2004). "N-linked sialyated sugar receptors support haematopoietic cell-osteoblast adhesions." British Journal of Haematology 124(4): 534-546. <http://hdl.handle.net/2027.42/74447> | en_US |
dc.identifier.issn | 0007-1048 | en_US |
dc.identifier.issn | 1365-2141 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/74447 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=14984505&dopt=citation | en_US |
dc.format.extent | 545536 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Science Ltd | en_US |
dc.rights | 2004 Blackwell Publishing Ltd | en_US |
dc.subject.other | Osteoblasts | en_US |
dc.subject.other | Stem Cell | en_US |
dc.subject.other | Bone Marrow | en_US |
dc.subject.other | Microenvironment | en_US |
dc.subject.other | Adhesion | en_US |
dc.title | N-linked sialyated sugar receptors support haematopoietic cell-osteoblast adhesions | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Oncology and Hematology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Periodontics, Prevention, Geriatrics, University of Michigan School of Dentistry, Ann Arbor, MI | en_US |
dc.contributor.affiliationother | St Joseph Mercy Hospital | en_US |
dc.contributor.affiliationother | Inflammation Molecular Sciences and Technologies, Pfizer Global Research and Development/Ann Arbor Laboratories, Ann Arbor, MI | en_US |
dc.contributor.affiliationother | UCB Research, Inc., Cambridge, MA | en_US |
dc.contributor.affiliationother | GlaxoSmithKline, Collegeville, PA, USA | en_US |
dc.identifier.pmid | 14984505 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/74447/1/j.1365-2141.2003.04786.x.pdf | |
dc.identifier.doi | 10.1046/j.1365-2141.2003.04786.x | en_US |
dc.identifier.source | British Journal of Haematology | en_US |
dc.identifier.citedreference | Arkwright, P.D., Rademacher, T.W., Boutignon, F., Dwek, R.A. & Redman, C.W. ( 1994 ) Suppression of allogeneic reactivity in vitro by the syncytiotrophoblast membrane glycocalyx of the human term placenta is carbohydrate dependent. Glycobiology, 4, 39 – 47. | en_US |
dc.identifier.citedreference | Asosingh, K., Renmans, W., Van der, G.K., Foulon, W., Schots, R., Van, R.I. & De Waele, M. ( 1998 ) Circulating CD34+ cells in cord blood and mobilized blood have a different profile of adhesion molecules than bone marrow CD34+ cells. European Journal of Haematology, 60, 153 – 160. | en_US |
dc.identifier.citedreference | Bartolazzi, A., Nocks, A., Aruffo, A., Spring, F. & Stamenkovic, I. ( 1996 ) Glycosylation of CD44 is implicated in CD44-mediated cell adhesion to hyaluronan. Journal of Cell Biology, 132, 1199 – 1208. | en_US |
dc.identifier.citedreference | Brandish, P.E., Kimura, K.I., Inukai, M., Southgate, R., Lonsdale, J.T. & Bugg, T.D. ( 1996 ) Modes of action of tunicamycin, liposidomycin B, and mureidomycin A: inhibition of phospho-N-acetylmuramyl-pentapeptide translocase from Escherichia coli. Antimicrobial Agents and Chemotherapy, 40, 1640 – 1644. | en_US |
dc.identifier.citedreference | Clark, B.R., Gallagher, J.T. & Dexter, T.M. ( 1992 ) Cell adhesion in the stromal regulation of haemopoiesis. Balliere's Clinical Hematology, 5, 619 – 652. | en_US |
dc.identifier.citedreference | Cui, Y.-F., Lord, B., Woolford, L. & Testa, N. ( 1996 ) The relative spatial distribution of in vitro-CFCs in the bone marrow, responding to specific growth factors. Cell Proliferation, 29, 243 – 257. | en_US |
dc.identifier.citedreference | Deldar, A., Lewis, H. & Weiss, L. ( 1985 ) Bone lining cells and hematopoiesis: an electron microscopic study of canine bone marrow. Anatomic Record, 213, 187 – 201. | en_US |
dc.identifier.citedreference | Deryugina, E.I., Ratnikov, B.I., Bourdon, M.A. & Muller-Sieburg, C.E. ( 1994 ) Clonal analysis of primary marrow stroma: functional homogeneity in support of lymphoid and myeloid cell lines and identification of positive and negative regulators. Experimental Hematology, 22, 910 – 918. | en_US |
dc.identifier.citedreference | Dimitroff, C.J., Lee, J.Y., Fuhlbrigge, R.C. & Sackstein, R. ( 2000 ) A distinct glycoform of CD44 is an L-selectin ligand on human hematopoietic cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 13841 – 13846. | en_US |
dc.identifier.citedreference | Dorheim, M.A., Sullivan, M., Dandapani, V., Wu, X., Hudson, J., Segarini, P.R., Rosen, D.M., Aulthouse, A.L. & Gimble, J.M. ( 1993 ) Osteoblastic gene expression during adiposegenesis in hematopoietic supporting murine bone marrow stromal cells. Journal Cell Physiology, 154, 317 – 328. | en_US |
dc.identifier.citedreference | Eaves, C.J., Sutherland, H.J., Cashman, J.D., Otsuka, T., Lansdorp, P.M., Humphries, P.K., Eaves, A.C. & Hogge, D.E. ( 1991 ) Regulation of human hematopoietic cells in long-term marrow culture. Seminars in Hematology, 28, 126 – 131. | en_US |
dc.identifier.citedreference | El-Badri, N.S., Wang, B.Y., Cherry & Good, R.A. ( 1998 ) Osteoblasts promote engraftment of allogeneic hematopoietic stem cells. Experimental Hematology, 26, 110 – 116. | en_US |
dc.identifier.citedreference | Gabius, S., Wawotzny, R., Martin, U., Wilholm, S. & Gabius, H.J. ( 1994 ) Carbohydrate-dependent binding of human myeloid leukemia cell lines to neoglycoenzymes, matrix-immobilized neoglycoproteins, and bone marrow stromal cell layers. Annals of Hematology, 68, 125 – 132. | en_US |
dc.identifier.citedreference | Gerstenfeld, L.C., Chipman, S.D., Glowacki, J. & Lian, J.B. ( 1987 ) Expression of differentiated function by mineralizing cultures of chicken osteoblasts. Developmental Biology, 122, 49 – 60. | en_US |
dc.identifier.citedreference | Gong, J. ( 1978 ) Endosteal marrow: a rich source of hematopoietic stem cells. Science, 199, 1443 – 1445. | en_US |
dc.identifier.citedreference | Gospodarowicz, D. & Ill, C. ( 1980 ) Extracellular matrix and control of proliferation of vascular endothelial cells. Journal Clinical Investigation, 65, 1351 – 1364. | en_US |
dc.identifier.citedreference | Guba, S.C., Sartor, C.I., Gottschalk, L.R., Ye-Hu, J., Mulligan, T. & Emerson, S.C. ( 1992 ) Bone marrow stromal fibroblasts secrete interleukin-6 and granulocyte-macrophage colony-stimulating factor in the absence of inflammatory stimulation: demonstration by serum-free bioassay, enzyme-linked immunoabsorbant assay and reverse transcriptase polymerase chain reaction. Blood, 80, 1190 – 1198. | en_US |
dc.identifier.citedreference | Gupta, P., Blazar, B.R., Gupta, K. & Verfaillie, C.M. ( 1998 ) Human CD34(+) bone marrow cells regulate stromal production of interleukin-6 and granulocyte colony-stimulating factor and increase the colony-stimulating activity of stroma. Blood, 91, 3724 – 3733. | en_US |
dc.identifier.citedreference | Hardy, C.L. ( 1995 ) The homing of hematopoietic stem cells to the bone marrow. American Journal of the Medical Sciences, 309, 260 – 266. | en_US |
dc.identifier.citedreference | Hardy, C.L. & Megason, G.C. ( 1996 ) Specificity of hematopoietic stem cell homing. Hematological Oncology, 14, 17 – 27. | en_US |
dc.identifier.citedreference | Hass, R., Kohler, L., Rehfeldt, W., Lessmann, V., Muller, W., Resch, K. & Goppelt-Struebe, M. ( 1990 ) Alterations in glycosylation and lectin pattern during phorbol ester-induced differentiation of U937 cells. Cancer Research, 50, 323 – 327. | en_US |
dc.identifier.citedreference | Hermans, M.N., Hartsuiker, H. & Opstelten, D. ( 1989 ) An in situ study of B-lymphocytopoiesis in rat bone marrow. Topographical arrangement of terminal deoxynucleotidyl transferase-positive cells and pre-B cells. Journal of Immunology, 142, 67 – 73. | en_US |
dc.identifier.citedreference | Humphries, M.J., Matsumoto, K., White, S.L. & Olden, K. ( 1986 ) Inhibition of experimental metastasis by castanospermine in mice: blockage of two distinct stages of tumor colonization by oligosaccharide processing inhibitors. Cancer Research, 46, 5215 – 5222. | en_US |
dc.identifier.citedreference | Islam, A., Glomski, C. & Henderson, E.S. ( 1990 ) Bone lining (endosteal) cells and hematopoiesis: a light microscopic study of normal and pathologic human bone marrow in plastic-embedded sections. Anatomical Record, 227, 300 – 306. | en_US |
dc.identifier.citedreference | Katoh, S., Zheng, Z., Oritani, K., Shimozato, T. & Kincade, P.W. ( 1995 ) Glycosylation of CD44 negatively regulates its recognition of hyaluronan. Journal of Experimental Medicine, 182, 419 – 429. | en_US |
dc.identifier.citedreference | Katoh, S., Miyagi, T., Taniguchi, H., Matsubara, Y., Kadota, J., Tominaga, A., Kincade, P.W., Matsukura, S. & Kohno, S. ( 1999 ) Cutting edge: an inducible sialidase regulates the hyaluronic acid binding ability of CD44-bearing human monocytes. Journal of Immunology, 162, 5058 – 5061. | en_US |
dc.identifier.citedreference | Kittler, E.L.W., McGrath, H., Temeles, D., Crittenden, R.B., Kister, V.K. & Quesenberry, P.J. ( 1992 ) Biologic significance of constitutive and subliminal growth factor production by bone marrow stroma. Blood, 79, 3168 – 3178. | en_US |
dc.identifier.citedreference | Koller, M.R., Oxender, M., Jensen, T.C., Goltry, K.L. & Smith, A.K. ( 1999 ) Direct contact between CD34(+)lin(−) cells and stroma induces a soluble activity that specifically increases primitive hematopoietic cell production. Experimental Hematology, 27, 734 – 741. | en_US |
dc.identifier.citedreference | Krebsbach, P.H., Kuznetsov, S.A., Satomura, K., Emmons, E.V., Rowe, D.W. & Robey, P.G. Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation, 63, 1059 – 1069. | en_US |
dc.identifier.citedreference | Lemischka, I.R. ( 1997 ) Microenvironmental regulation of hematopoietic stem cells ( review, 28 refs ). Stem Cells, 15 ( Suppl. 1 ), 63 – 68. | en_US |
dc.identifier.citedreference | Lord, B.I. ( 1990 ) The architecture of bone marrow cell populations. International Journal of Cell Cloning, 8, 317 – 331. | en_US |
dc.identifier.citedreference | Lord, B.I., Testa, N.G. & Hendry, J.H. ( 1975 ) The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood, 46, 65 – 72. | en_US |
dc.identifier.citedreference | Lund-Johansen, F. & Terstappen, W.M.M. ( 1993 ) Differential surface expression of cell adhesion molecules during granulocyte maturation. Journal of Leukocyte Biology, 54, 47 – 55. | en_US |
dc.identifier.citedreference | Mantel, C.R., Balduini, A. & Broxmeyer, H.E. ( 1999 ) A human factor-dependent cell line simulates cobblestone formation under human bone marrow stromal cells in vitro. Annals of the New York Academy of Sciences, 872, 399 – 401. | en_US |
dc.identifier.citedreference | Moore, K.A., Pytowski, B., Witte, L., Hicklin, D. & Lemischka, I.R. ( 1997 ) Hematopoietic activity of a stromal cell transmembrane protein containing epidermal growth factor-like repeat motifs. Proceedings of the National Academy of Sciences of the United States of America, 94, 4011 – 4016. | en_US |
dc.identifier.citedreference | Muller-Sieburg, C.E. & Deryugina, E. ( 1995 ) The stromal cells’ guide to the stem cell universe (review, 67 refs ). Stem Cells, 13, 477 – 486. | en_US |
dc.identifier.citedreference | Nelissen, J.M., Torensma, R., Pluyter, M., Adema, G.J., Raymakers, R.A., van Kooyk, Y. & Figdor, C.G. ( 2000 ) Molecular analysis of the hematopoiesis supporting osteoblastic cell line U2-OS. Experimental Hematology, 28, 422 – 432. | en_US |
dc.identifier.citedreference | Nilsson, S.K., Dooner, M.S., Tiarks, C.Y., Weier, H.U. & Quesenberry, P.J. ( 1997 ) Potential and distribution of transplanted hematopoietic stem cells in a nonablated mouse model. Blood, 89, 4013 – 4020. | en_US |
dc.identifier.citedreference | Oxley, S.M. & Sackstein, R. ( 1994 ) Detection of an L-selectin ligand on a hematopoietic progenitor cell line. Blood, 84, 3299 – 3306. | en_US |
dc.identifier.citedreference | Pahlsson, P., Strindhall, J., Srinivas, U. & Lundblad, A. ( 1995 ) Role of N-linked glycosylation in expression of E-selectin on human endothelial cells. European Journal of Immunology, 25, 2452 – 2459. | en_US |
dc.identifier.citedreference | Phillips, R.L., Ernst, R.E., Brunk, B., Ivanova, N., Mahan, M.A., Deanehan, J.K., Moore, K.A, Overton, G.C. & Lemischka, I.R. ( 2000 ) The genetic program of hematopoietic stem cells. Science, 288, 1635 – 1640. | en_US |
dc.identifier.citedreference | Quesenberry, P.J. & Becker, P.S. ( 1998 ) Stem cell homing: rolling, crawling, and nesting ( comment. Review, 54 refs ). Proceedings of the National Academy of Sciences of the United States of America, 95, 15155 – 15157. | en_US |
dc.identifier.citedreference | Robey, P.G. & Termine, J.D. ( 1985 ) Human bone cells in vitro. Calcified Tissue International, 37, 453 – 460. | en_US |
dc.identifier.citedreference | Robey, P.G., Young, M.F., Flanders, K.C., Roche, N.S., Kondaiah, P., Reddi, A.H., Termine, J.D., Sporn, M.D. & Roberts, A.B. ( 1987 ) Osteoblasts synthesize and respond to transforming growth factor-type β (TGF- β ) in vitro. Journal Cellular Biology, 105, 457 – 463. | en_US |
dc.identifier.citedreference | Sackstein, R. ( 1997 ) Expression of an L-selectin ligand on hematopoietic progenitor cells. Acta Haematologica, 97, 22 – 28. | en_US |
dc.identifier.citedreference | Salmi, M. & Jalkanen, S. ( 1995 ) Different forms of human vascular adhesion protein-1 (VAP-1) in blood vessels in vivo and in cultured endothelial cells: implications for lymphocyte-endothelial cell adhesion models. European Journal of Immunology, 25, 2803 – 2812. | en_US |
dc.identifier.citedreference | Satoh, M., Mioh, H., Konishi, N., Takahashi, I. & Tamaoki, T. ( 1997 ) Characterization of the molecules involved in the hematopoietic microenvironment provided by mouse stromal cell line MC3T3-G2/PA6 using a unique reporter system that analyzes the direct cell-to-cell interaction. Acta Haematologica, 98, 95 – 103. | en_US |
dc.identifier.citedreference | Simons, P.J., Zannettino, A., Gronthos, S. & Leavesley, D. ( 1994 ) Potential adhesion mechanisms for localization of hematopoietic progenitors to bone marrow stroma. Leukemia and Lymphoma, 12, 353 – 363. | en_US |
dc.identifier.citedreference | Sullenbarger, B.A., Petitt, M.S., Chong, P., Long, M.W. & Wicha, M.S. ( 1995 ) Murine granulocytic cell adhesion to bone marrow hemonectin is mediated by mannose and galactose. Blood, 86, 135 – 140. | en_US |
dc.identifier.citedreference | Sutherland, H.J., Lansdorp, P.M., Henkelman, D.H., Eaves, A.V. & Eaves, C.F. ( 1990 ) Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proceedings of the National Academy of Sciences of the United States of America, 87, 3584 – 3588. | en_US |
dc.identifier.citedreference | Taichman, R.S. & Emerson, S.G. ( 1994 ) Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. Journal of Experimental Medicine, 179, 1677 – 1682. | en_US |
dc.identifier.citedreference | Taichman, R.S. & Emerson, S.G. ( 1996 ) Human osteosarcoma cell lines MG-63 and SaOS-2 produce G-CSF and GM-CSF: identification and partial characterization of cell-associated isoforms. Experimental Hematology, 24, 509 – 517. | en_US |
dc.identifier.citedreference | Taichman, R.S. & Emerson, S.G. ( 1998 ) The role of osteoblasts in the hematopoietic microenvironment. Stem Cells, 16, 7 – 15. | en_US |
dc.identifier.citedreference | Taichman, R.S. & Hauschka, P.V. ( 1992 ) Effects of interleukin-1 β and tumor necrosis factor- α on osteoblastic expression of osteocalcin and mineralized extracellular matrix in vitro. Inflammation, 16, 587 – 601. | en_US |
dc.identifier.citedreference | Taichman, R.S., Reilly, M.J. & Emerson, S.G. ( 1996 ) Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood, 87, 518 – 524. | en_US |
dc.identifier.citedreference | Taichman, R.S., Reilly, M.J., Verma, R.S. & Emerson, S.G. ( 1997a ) Augmented production of interleukin-6 by normal human osteoblasts in response to CD34+ hematopoietic bone marrow cells in vitro. Blood, 89, 1165 – 1172. | en_US |
dc.identifier.citedreference | Taichman, R.S., Reilly, M.J. & Emerson, S.G. ( 1997b ) Human osteosarcomas inhibit hematopoietic colony formation: Partial reversal by antibody to transforming growth factor- β 1. Bone, 21, 353 – 361. | en_US |
dc.identifier.citedreference | Taichman, R.S., Reilly, M.J. & Matthews, L.S. ( 2000a ) Human osteoblast-like cells and osteosarcoma cell lines synthesize MIP-1 α in response to IL-1 β and TNF- α stimulation in vitro. British Journal of Haematology, 108, 275 – 283. | en_US |
dc.identifier.citedreference | Taichman, R.S., Reilly, M.J. & Emerson, S.G. ( 2000b ) The hematopoietic microenvironment: osteoblasts and the hematopoietic microenvironment. Hematology, 4, 421 – 426. | en_US |
dc.identifier.citedreference | Taichman, R.S., Reilly, M.J., Verma, R.S., Ehrenman, K. & Emerson, S.G. ( 2001 ) Hepatocyte growth factor is secreted by osteoblasts and cooperatively permits the survival of haematopoietic progenitors. British Journal of Haematology, 112, 438 – 448. | en_US |
dc.identifier.citedreference | Turner, M.L., Masek, L.C., Hardy, C.L., Parker, A.C. & Sweetenham, J.W. ( 1998 ) Comparative adhesion of human haemopoietic cell lines to extracellular matrix components, bone marrow stromal and endothelial cultures. British Journal of Haematology, 100, 112 – 122. | en_US |
dc.identifier.citedreference | Verfaillie, C.M. ( 1992 ) Direct contact between human primitive hematopoietic progenitors and bone marrow stroma is not required for long-term in vitro hematopoiesis. Blood, 79, 2821 – 2826. | en_US |
dc.identifier.citedreference | Vormoor, J., Lapidot, T., Pflumio, F., Risdon, G., Patterson, B., Broxmeyer, H.E. & Dick, J.E. ( 1994 ) SCID mice as an in vivo model of human cord blood hematopoiesis ( see comments ). Blood Cells, 20, 316 – 320. | en_US |
dc.identifier.citedreference | Wilson, E.L., Rifkin, D.B., Kelly, F., Hannocks, M.J. & Gabrilove, J.L. ( 1991 ) Basic fibroblast growth factor stimulates myelopoiesis in long-term human bone marrow cultures. Blood, 77, 954 – 960. | en_US |
dc.identifier.citedreference | Wineman, J., Moore, K., Lemischka, I. & Muller-Sieburg, C. ( 1996 ) Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood, 87, 4082 – 4090. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.