Show simple item record

Interleukin-1 inhibits firing of serotonergic neurons in the dorsal raphe nucleus and enhances GABAergic inhibitory post-synaptic potentials

dc.contributor.authorBrambilla, Darioen_US
dc.contributor.authorFranciosi, S.en_US
dc.contributor.authorOpp, Mark R.en_US
dc.contributor.authorImeri, Lucaen_US
dc.date.accessioned2010-06-01T21:23:47Z
dc.date.available2010-06-01T21:23:47Z
dc.date.issued2007-10en_US
dc.identifier.citationBrambilla, D.; Franciosi, S.; Opp, M. R.; Imeri, L. (2007). "Interleukin-1 inhibits firing of serotonergic neurons in the dorsal raphe nucleus and enhances GABAergic inhibitory post-synaptic potentials." European Journal of Neuroscience 26(7): 1862-1869. <http://hdl.handle.net/2027.42/74458>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74458
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17868373&dopt=citationen_US
dc.description.abstractIn vitro electrophysiological data suggest that interleukin-1 may promote non-rapid eye movement sleep by inhibiting spontaneous firing of wake-active serotonergic neurons in the dorsal raphe nucleus (DRN). Interleukin-1 enhances GABA inhibitory effects. DRN neurons are under an inhibitory GABAergic control. This study aimed to test the hypothesis that interleukin-1 inhibits DRN serotonergic neurons by potentiating GABAergic inhibitory effects. In vitro intracellular recordings were performed to assess the responses of physiologically and pharmacologically identified DRN serotonergic neurons to rat recombinant interleukin-1β. Coronal slices containing DRN were obtained from male Sprague–Dawley rats. The impact of interleukin-1 on firing rate and on evoked post-synaptic potentials was determined. Evoked post-synaptic potentials were induced by stimulation with a bipolar electrode placed on the surface of the slice ventrolateral to DRN. Addition of interleukin-1 (25 ng/mL) to the bath perfusate significantly decreased firing rates of DRN serotonergic neurons from 1.3 ± 0.2 Hz (before administration) to 0.7 ± 0.2 Hz. Electrical stimulation induced depolarizing evoked post-synaptic potentials in DRN serotonergic neurons. The application of glutamatergic and GABAergic antagonists unmasked two different post-synaptic potential components: a GABAergic evoked inhibitory post-synaptic potentials and a glutamatergic evoked excitatory post-synaptic potentials, respectively. Interleukin-1 increased GABAergic evoked inhibitory post-synaptic potentials amplitudes by 30.3 ± 3.8% ( n  = 6) without affecting glutamatergic evoked excitatory post-synaptic potentials. These results support the hypothesis that interleukin-1 inhibitory effects on DRN serotonergic neurons are mediated by an interleukin-1-induced potentiation of evoked GABAergic inhibitory responses.en_US
dc.format.extent541641 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsThe Authors (2007). Journal Compilation Federation of European Neuroscience Societies and Blackwell Publishing Ltden_US
dc.subject.otherCytokineen_US
dc.subject.otherGlutamateen_US
dc.subject.otherRaten_US
dc.subject.otherSerotoninen_US
dc.subject.otherSleepen_US
dc.titleInterleukin-1 inhibits firing of serotonergic neurons in the dorsal raphe nucleus and enhances GABAergic inhibitory post-synaptic potentialsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherInstitute of Human Physiology II, anden_US
dc.contributor.affiliationother‘Giuseppe Moruzzi' Center for Experimental Sleep Research, University of Milan Medical School, Via Mangiagalli, 32, 20133 Milano, Italyen_US
dc.identifier.pmid17868373en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74458/1/j.1460-9568.2007.05796.x.pdf
dc.identifier.doi10.1111/j.1460-9568.2007.05796.xen_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceAlam, M.N., McGinty, D., Bashir, T., Kumar, S., Imeri, L., Opp, M.R. & Szymusiak, R. ( 2004 ) Interleukin-1beta modulates state-dependent discharge activity of preoptic area and basal forebrain neurons: role in sleep regulation. Eur. J. Neurosci., 20, 207 – 216.en_US
dc.identifier.citedreferenceBaker, F.C., Shah, S., Stewart, D., Angara, C., Gong, H., Szymusiak, R., Opp, M.R. & McGinty, D. ( 2005 ) Interleukin 1beta enhances non-rapid eye movement sleep and increases c-Fos protein expression in the median preoptic nucleus of the hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol., 288, R998 – R1005.en_US
dc.identifier.citedreferenceBaraban, J.M., Wang, R.Y. & Aghajanian, G. ( 1978 ) Reserpine suppression of dorsal raphe neuronal firing: mediation by adrenergic system. Eur. J. Pharmacol., 52, 27 – 36.en_US
dc.identifier.citedreferenceBecquet, D., Faudon, M. & Hery, F. ( 1990 ) The role of serotonin release and autoreceptors in the dorsalis raphe nucleus in the control of serotonin release in the cat caudate nucleus. Neuroscience, 39, 639 – 647.en_US
dc.identifier.citedreferenceBecquet, D., Hery, M., Francois-Bellan, A.M., Giraud, P., Deprez, P., Faudon, M., Fache, M.P. & Hery, F. ( 1993 ) Glutamate, GABA, glycine and taurine modulate serotonin synthesis and release in rostral and caudal rhombencephalic raphe cells in primary cultures. Neurochem. Int., 23, 269 – 283.en_US
dc.identifier.citedreferenceCespuglio, R., Faradji, H., Gomez, M.E. & Jouvet, M. ( 1981 ) Single unit recordings in the nuclei raphe dorsalis and magnus during the sleep-waking cycle of semi-chronic prepared cats. Neurosci. Lett., 24, 133 – 138.en_US
dc.identifier.citedreferenceCespuglio, R., Gomez, M.E., Walker, E. & Jouvet, M. ( 1979 ) Effect of cooling and electrical stimulation of nuclei of raphe system on states of alertness in cat. Electroencephalogr. Clin. Neurophysiol., 47, 289 – 308.en_US
dc.identifier.citedreferenceCespuglio, R., Sarda, N., Gharib, A., Chastrette, N., Houdouin, F., Rampin, C. & Jouvet, M. ( 1990 ) Voltammetric detection of the release of 5-hydroxyindole compounds throughout the sleep-waking cycle of the rat. Exp. Brain. Res., 80, 121 – 128.en_US
dc.identifier.citedreferenceChang, F.C. & Opp, M.R. ( 2001 ) Corticotropin-releasing hormone (CRH) as a regulator of waking. Neurosci. Biobehav. Rev., 25, 445 – 453.en_US
dc.identifier.citedreferenceCunningham, E.T. Jr & De Souza, E.B. ( 1993 ) Interleukin 1 receptors in the brain and endocrine tissues. Immunol. Today, 14, 171 – 176.en_US
dc.identifier.citedreferenceDe, A., Churchill, L., Obal, F. Jr, Simasko, S.M. & Krueger, J.M. ( 2002 ) GHRH and IL1beta increase cytoplasmic Ca(2+) levels in cultured hypothalamic GABAergic neurons. Brain Res., 949, 209 – 212.en_US
dc.identifier.citedreferenceDugovic, C. ( 1992 ) Functional activity of 5-HT2 receptors in the modulation of the sleep/wakefulness states. J. Sleep Res., 1, 163 – 168.en_US
dc.identifier.citedreferenceFeleder, C., Arias, P., Refojo, D., Nacht, S. & Moguilevsky, J. ( 2000 ) Interleukin-1 inhibits NMDA-stimulated GnRH secretion: associated effects on the release of hypothalamic inhibitory amino acid neurotransmitters. Neuroimmunomodulation, 7, 46 – 50.en_US
dc.identifier.citedreferenceGallager, D.W. & Aghajanian, G.K. ( 1976 ) Effect of antipsychotic drugs on the firing of dorsal raphe cells. I. Role of adrenergic system. Eur. J. Pharmacol., 39, 341 – 355.en_US
dc.identifier.citedreferenceGemma, C., Imeri, L., De Simoni, M.G. & Mancia, M. ( 1997 ) Interleukin-1 induces changes in sleep, brain temperature, and serotonergic metabolism. Am. J. Physiol., 272, R601 – R606.en_US
dc.identifier.citedreferenceGervasoni, D., Darracq, L., Fort, P., Souliere, F., Chouvet, G. & Luppi, P.H. ( 1998 ) Electrophysiological evidence that noradrenergic neurons of the rat locus coeruleus are tonically inhibited by GABA during sleep. Eur. J. Neurosci., 10, 964 – 970.en_US
dc.identifier.citedreferenceGervasoni, D., Peyron, C., Rampon, C., Barbagli, B., Chouvet, G., Urbain, N., Fort, P. & Luppi, P.H. ( 2000 ) Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J. Neurosci., 20, 4217 – 4225.en_US
dc.identifier.citedreferenceGudewill, S., Pollmacher, T., Vedder, H., Schreiber, W., Fassbender, K. & Holsboer, F. ( 1992 ) Nocturnal plasma levels of cytokines in healthy men. Eur. Arch. Psychiatry Clin. Neurosci., 242, 53 – 56.en_US
dc.identifier.citedreferenceImeri, L., Bianchi, S. & Opp, M.R. ( 2006 ) Inhibition of caspase-1 in rat brain reduces spontaneous non-rapid eye movement (NREM) sleep and NREM sleep enhancement induced by lipopolysaccharide. Am. J. Physiol. Regul. Integr. Comp. Physiol., 291, R197 – R204.en_US
dc.identifier.citedreferenceImeri, L., De Simoni, M.G., Giglio, R., Clavenna, A. & Mancia, M. ( 1994 ) Changes in the serotonergic system during the sleep-wake cycle: simultaneous polygraphic and voltammetric recordings in hypothalamus using a telemetry system. Neuroscience, 58, 353 – 358.en_US
dc.identifier.citedreferenceImeri, L., Gemma, C., De Simoni, M.G., Opp, M.R. & Mancia, M. ( 1999 ) Hypothalamic serotonergic activity correlates better with brain temperature than with sleep-wake cycle and muscle tone in rats. Neuroscience, 89, 1241 – 1246.en_US
dc.identifier.citedreferenceJacobs, B.L. & Azmitia, E.C. ( 1992 ) Structure and function of the brain serotonin system. Physiol. Rev., 72, 165 – 229.en_US
dc.identifier.citedreferenceJouvet, M. ( 1999 ) Sleep and serotonin: an unfinished story. Neuropsychopharmacology, 21, 24S – 27S.en_US
dc.identifier.citedreferenceKirby, L.G., Pernar, L., Valentino, R.J. & Beck, S.G. ( 2003 ) Distinguishing characteristics of serotonin and non-serotonin-containing cells in the dorsal raphe nucleus: electrophysiological and immunohistochemical studies. Neuroscience, 116, 669 – 683.en_US
dc.identifier.citedreferenceKrueger, J.M., Walter, J., Dinarello, C.A., Wolff, S.M. & Chedid, L. ( 1984 ) Sleep-promoting effects of endogenous pyrogen (interleukin-1). Am. J. Physiol., 246, R994 – R999.en_US
dc.identifier.citedreferenceLevine, E.S. & Jacobs, B.L. ( 1992 ) Neurochemical afferents controlling the activity of serotonergic neurons in the dorsal raphe nucleus: microiontophoretic studies in the awake cat. J. Neurosci., 12, 4037 – 4044.en_US
dc.identifier.citedreferenceLi, Y.Q., Li, H., Kaneko, T. & Mizuno, N. ( 2001 ) Morphological features and electrophysiological properties of serotonergic and non-serotonergic projection neurons in the dorsal raphe nucleus. An intracellular recording and labeling study in rat brain slices. Brain Res., 900, 110 – 118.en_US
dc.identifier.citedreferenceLiu, R.J., van den Pol, A.N. & Aghajanian, G.K. ( 2002 ) Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J. Neurosci., 22, 9453 – 9464.en_US
dc.identifier.citedreferenceLue, F.A., Bail, M., Jephthah-Ochola, J., Carayanniotis, K., Gorczynski, R. & Moldofsky, H. ( 1988 ) Sleep and cerebrospinal fluid interleukin-1-like activity in the cat. Int. J. Neurosci., 42, 179 – 183.en_US
dc.identifier.citedreferenceLuk, W.P., Zhang, Y., White, T.D., Lue, F.A., Wu, C., Jiang, C.G., Zhang, L. & Moldofsky, H. ( 1999 ) Adenosine: a mediator of interleukin-1beta-induced hippocampal synaptic inhibition. J. Neurosci., 19, 4238 – 4244.en_US
dc.identifier.citedreferenceLydic, R., McCarley, R.W. & Hobson, J.A. ( 1987 ) Serotonin neurons and sleep. I. Long term recordings of dorsal raphe discharge frequency and PGO waves. Arch. Ital. Biol., 125, 317 – 343.en_US
dc.identifier.citedreferenceMackiewicz, M., Sollars, P.J., Ogilvie, M.D. & Pack, A.I. ( 1996 ) Modulation of IL-1 beta gene expression in the rat CNS during sleep deprivation. Neuroreport, 7, 529 – 533.en_US
dc.identifier.citedreferenceMaloney, K.J., Mainville, L. & Jones, B.E. ( 1999 ) Differential c-Fos expression in cholinergic, monoaminergic, and GABAergic cell groups of the pontomesencephalic tegmentum after paradoxical sleep deprivation and recovery. J. Neurosci., 19, 3057 – 3072.en_US
dc.identifier.citedreferenceManfridi, A., Brambilla, D., Bianchi, S., Mariotti, M., Opp, M.R. & Imeri, L. ( 2003 ) Interleukin-1 beta enhances non-rapid eye movement sleep when microinjected into the dorsal raphe nucleus and inhibits serotonergic neurons in vitro. Eur. J. Neurosci., 18, 1041 – 1049.en_US
dc.identifier.citedreferenceMarinelli, S., Schnell, S.A., Hack, S.P., Christie, M.J., Wessendorf, M.W. & Vaughan, C.W. ( 2004 ) Serotonergic and nonserotonergic dorsal raphe neurons are pharmacologically and electrophysiologically heterogeneous. J. Neurophysiol., 92, 3532 – 3537.en_US
dc.identifier.citedreferenceMcGinty, D.J. & Harper, R.M. ( 1976 ) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res., 101, 569 – 575.en_US
dc.identifier.citedreferenceMiller, L.G., Galpern, W.R., Dunlap, K., Dinarello, C.A. & Turner, T.J. ( 1991 ) Interleukin-1 augments gamma-aminobutyric acidA receptor function in brain. Mol. Pharmacol., 39, 105 – 108.en_US
dc.identifier.citedreferenceMoldofsky, H., Lue, F.A., Eisen, J., Keystone, E. & Gorczynski, R.M. ( 1986 ) The relationship of interleukin-1 and immune functions to sleep in humans. Psychosom. Med., 48, 309 – 318.en_US
dc.identifier.citedreferenceObal, F. Jr & Krueger, J.M. ( 2003 ) Biochemical regulation of non-rapid-eye-movement sleep. Front. Biosci., 8, d520 – d550.en_US
dc.identifier.citedreferenceOpp, M.R. ( 2005 ) Cytokines and sleep. Sleep Med. Rev., 9, 355 – 364.en_US
dc.identifier.citedreferenceOpp, M.R. & Krueger, J.M. ( 1991 ) Interleukin 1-receptor antagonist blocks interleukin 1-induced sleep and fever. Am. J. Physiol., 260, R453 – R457.en_US
dc.identifier.citedreferenceOpp, M.R. & Krueger, J.M. ( 1994a ) Anti-interleukin-1 beta reduces sleep and sleep rebound after sleep deprivation in rats. Am. J. Physiol., 266, R688 – R695.en_US
dc.identifier.citedreferenceOpp, M.R. & Krueger, J.M. ( 1994b ) Interleukin-1 is involved in responses to sleep deprivation in the rabbit. Brain Res., 639, 57 – 65.en_US
dc.identifier.citedreferenceOpp, M.R., Obal, F. Jr & Krueger, J.M. ( 1991 ) Interleukin 1 alters rat sleep: temporal and dose-related effects. Am. J. Physiol., 260, R52 – R58.en_US
dc.identifier.citedreferenceOpp, M.R., Smith, E.M. & Hughes, T.K. Jr ( 1995 ) Interleukin-10 (cytokine synthesis inhibitory factor) acts in the central nervous system of rats to reduce sleep. J. Neuroimmunol., 60, 165 – 168.en_US
dc.identifier.citedreferencePace-Schott, E.F. & Hobson, J.A. ( 2002 ) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat. Rev. Neurosci., 3, 591 – 605.en_US
dc.identifier.citedreferencePan, Z.Z., Colmers, W.F. & Williams, J.T. ( 1989 ) 5-HT-mediated synaptic potentials in the dorsal raphe nucleus: interactions with excitatory amino acid and GABA neurotransmission. J. Neurophysiol., 62, 481 – 486.en_US
dc.identifier.citedreferencePan, Z.Z., Grudt, T.J. & Williams, J.T. ( 1994 ) Alpha 1-adrenoceptors in rat dorsal raphe neurons: regulation of two potassium conductances. J. Physiol., 478, 437 – 447.en_US
dc.identifier.citedreferencePeyron, C., Luppi, P.H., Kitahama, K., Fort, P., Hermann, D.M. & Jouvet, M. ( 1995 ) Origin of the dopaminergic innervation of the rat dorsal raphe nucleus. Neuroreport, 6, 2527 – 2531.en_US
dc.identifier.citedreferencePinnock, R.D. ( 1992 ) Activation of kappa-opioid receptors depresses electrically evoked excitatory postsynaptic potentials on 5-HT-sensitive neurones in the rat dorsal raphe nucleus in vitro. Brain Res., 583, 237 – 246.en_US
dc.identifier.citedreferencePortas, C.M. & McCarley, R.W. ( 1994 ) Behavioral state-related changes of extracellular serotonin concentration in the dorsal raphe nucleus: a microdialysis study in the freely moving cat. Brain Res., 648, 306 – 312.en_US
dc.identifier.citedreferenceSaper, C.B., Chou, T.C. & Scammell, T.E. ( 2001 ) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci., 24, 726 – 731.en_US
dc.identifier.citedreferenceSchobitz, B., De Kloet, E.R. & Holsboer, F. ( 1994 ) Gene expression and function of interleukin 1, interleukin 6 and tumor necrosis factor in the brain. Prog. Neurobiol., 44, 397 – 432.en_US
dc.identifier.citedreferenceSerantes, R., Arnalich, F., Figueroa, M., Salinas, M., Andres-Mateos, E., Codoceo, R., Renart, J., Matute, C., Cavada, C., Cuadrado, A. & Montiel, C. ( 2006 ) Interleukin-1beta enhances GABAA receptor cell-surface expression by a phosphatidylinositol 3-kinase/Akt pathway: relevance to sepsis-associated encephalopathy. J. Biol. Chem., 281, 14632 – 14643.en_US
dc.identifier.citedreferenceSprouse, J.S. & Aghajanian, G.K. ( 1987 ) Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse, 1, 3 – 9.en_US
dc.identifier.citedreferenceStezhka, V.V. & Lovick, T.A. ( 1997 ) Projections from dorsal raphe nucleus to the periaqueductal grey matter: studies in slices of rat midbrain maintained in vitro. Neurosci. Lett., 230, 57 – 60.en_US
dc.identifier.citedreferenceTabarean, I.V., Korn, H. & Bartfai, T. ( 2006 ) Interleukin-1beta induces hyperpolarization and modulates synaptic inhibition in preoptic and anterior hypothalamic neurons. Neuroscience, 141, 1685 – 1695.en_US
dc.identifier.citedreferenceTaishi, P., Bredow, S., Guha-Thakurta, N., Obal, F. Jr & Krueger, J.M. ( 1997 ) Diurnal variations of interleukin-1 beta mRNA and beta-actin mRNA in rat brain. J. Neuroimmunol., 75, 69 – 74.en_US
dc.identifier.citedreferenceTerao, A., Matsumura, H. & Saito, M. ( 1998 ) Interleukin-1 induces slow-wave sleep at the prostaglandin D2-sensitive sleep-promoting zone in the rat brain. J. Neurosci., 18, 6599 – 6607.en_US
dc.identifier.citedreferenceTrulson, M.E. & Jacobs, B.L. ( 1979 ) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res., 163, 135 – 150.en_US
dc.identifier.citedreferenceTurnbull, A.V. & Rivier, C. ( 1995 ) Regulation of the HPA axis by cytokines. Brain Behav. Immun., 9, 253 – 275.en_US
dc.identifier.citedreferenceVandermaelen, C.P. & Aghajanian, G.K. ( 1983 ) Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res., 289, 109 – 119.en_US
dc.identifier.citedreferenceVitkovic, L., Bockaert, J. & Jacque, C. ( 2000 ) ‘Inflammatory’ cytokines: neuromodulators in normal brain? J. Neurochem., 74, 457 – 471.en_US
dc.identifier.citedreferenceWilkinson, L.O., Auerbach, S.B. & Jacobs, B.L. ( 1991 ) Extracellular serotonin levels change with behavioral state but not with pyrogen-induced hyperthermia. J. Neurosci., 11, 2732 – 2741.en_US
dc.identifier.citedreferenceWilliams, J.T., Colmers, W.F. & Pan, Z.Z. ( 1988 ) Voltage- and ligand-activated inwardly rectifying currents in dorsal raphe neurons in vitro. J. Neurosci., 8, 3499 – 3506.en_US
dc.identifier.citedreferenceYasuda, K., Churchill, L., Yasuda, T., Blindheim, K., Falter, M. & Krueger, J.M. ( 2007 ) Unilateral cortical application of interleukin-1beta (IL1beta) induces asymmetry in fos, IL1beta and nerve growth factor immunoreactivity: implications for sleep regulation. Brain Res., 1131, 44 – 59.en_US
dc.identifier.citedreferenceYasuda, T., Yoshida, H., Garcia-Garcia, F., Kay, D. & Krueger, J.M. ( 2005 ) Interleukin-1beta has a role in cerebral cortical state-dependent electroencephalographic slow-wave activity. Sleep, 28, 177 – 184.en_US
dc.identifier.citedreferenceYoshimura, M. & Higashi, H. ( 1985 ) 5-Hydroxytryptamine mediates inhibitory postsynaptic potentials in rat dorsal raphe neurons. Neurosci. Lett., 53, 69 – 74.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.