Show simple item record

Developmental biology and genetics of dental malformations

dc.contributor.authorHu, Jan C-C.en_US
dc.contributor.authorSimmer, James Pen_US
dc.date.accessioned2010-06-01T21:24:32Z
dc.date.available2010-06-01T21:24:32Z
dc.date.issued2007-05en_US
dc.identifier.citationHu, JC-C; Simmer, JP (2007). "Developmental biology and genetics of dental malformations." Orthodontics & Craniofacial Research 10(2): 45-52. <http://hdl.handle.net/2027.42/74469>en_US
dc.identifier.issn1601-6335en_US
dc.identifier.issn1601-6343en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74469
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17552940&dopt=citationen_US
dc.format.extent259181 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2007 The Authors. Journal compilation 2007 Blackwell Munksgaarden_US
dc.subject.otherTaurodontismen_US
dc.subject.otherAmelogenesis Imperfectaen_US
dc.subject.otherDentinogenesis Imperfectaen_US
dc.subject.otherHypophosphatasiaen_US
dc.subject.otherTooth Agenesisen_US
dc.titleDevelopmental biology and genetics of dental malformationsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid17552940en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74469/1/j.1601-6343.2007.00384.x.pdf
dc.identifier.doi10.1111/j.1601-6343.2007.00384.xen_US
dc.identifier.sourceOrthodontics & Craniofacial Researchen_US
dc.identifier.citedreferenceLumsden AG. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 1988; 103 ( Suppl. ): 155 – 69.en_US
dc.identifier.citedreferenceChai Y, Jiang X, Ito Y, Bringas Jr P, Han J, Rowitch D, et al., Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 2000; 127: 1671 – 9.en_US
dc.identifier.citedreferenceThesleff I, Sharpe P. Signalling networks regulating dental development. Mech Dev 1997; 67: 111 – 23.en_US
dc.identifier.citedreferenceCobourne MT, Sharpe PT. Tooth and jaw: molecular mechanisms of patterning in the first branchial arch. Arch Oral Biol 2003; 48: 1 – 14.en_US
dc.identifier.citedreferenceTucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 2004; 5: 499 – 508.en_US
dc.identifier.citedreferenceSatokata I, Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nature Genet 1994; 6: 348 – 56.en_US
dc.identifier.citedreferencePeters H, Neubuser A, Kratochwil K, Balling R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev 1998; 12: 2735 – 47.en_US
dc.identifier.citedreferenceVastardis H, Karimbux N, Guthua SW, Seidman JG, Seidman CE. A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat Genet 1996; 13: 417 – 21.en_US
dc.identifier.citedreferenceStockton DW, Das P, Goldenberg M, D'Souna RN, Patel PI. Mutation of PAX9 is associated with oligodontia. Nature Genet 2000; 24: 18 – 9.en_US
dc.identifier.citedreferenceKim JW, Simmer JP, Lin BP, Hu JC. Novel MSX1 frameshift causes autosomal-dominant oligodontia. J Dent Res 2006; 85: 267 – 71.en_US
dc.identifier.citedreferenceLammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, et al., Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 2004; 74: 1043 – 50.en_US
dc.identifier.citedreferenceKere J, Srivastava AK, Montonen O, Zonana J, Thomas N, Ferguson B, et al., X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nature Genet 1996; 13: 409 – 16.en_US
dc.identifier.citedreferenceBayes M, Hartung AJ, Ezer S, Pispa J, Thesleff I. Srivastava AK, et al., The anhidrotic ectodermal dysplasia gene (EDA) undergoes alternative splicing and encodes ectodysplasin-A with deletion mutations in collagenous repeats. Hum Mol Gen 1998; 7: 1661 – 9.en_US
dc.identifier.citedreferenceSemina EV, Datson NA, Leysens NJ, Zabel BU, Carey JC, Bell GI, et al., Exclusion of epidermal growth factor and high-resolution physical mapping across the Rieger syndrome locus. Am J Hum Genet 1996; 59: 1288 – 96.en_US
dc.identifier.citedreferenceThesleff I, Jernvall J. The enamel knot: a putative signaling center regulating tooth development. Cold Spring Harb Symp Quant Biol 1997; 62: 257 – 67.en_US
dc.identifier.citedreferenceThesleff I, Keranen S, Jernvall J. Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 2001; 15: 14 – 8.en_US
dc.identifier.citedreferenceMatalova E, Antonarakis GS, Sharpe PT, Tucker AS. Cell lineage of primary and secondary enamel knots. Dev Dyn 2005; 233: 754 – 9.en_US
dc.identifier.citedreferenceLinde A, Lussi A, Crenshaw MA. Mineral induction by immobilized polyanionic proteins. Calcif Tissue Int 1989; 44: 286 – 95.en_US
dc.identifier.citedreferenceVeis A, Perry A. The phosphoprotein of the dentin matrix. Biochemistry 1967; 6: 2409 – 16.en_US
dc.identifier.citedreferenceLeaver AG, Triffitt JT, Holbrook IB. Newer knowledge of non-collagenous protein in dentin and cortical bone matrix. Clin Orthop Relat Res 1975; 10: 269 – 92.en_US
dc.identifier.citedreferenceDimuzio MT, Veis A. Phosphophoryns-major noncollagenous proteins of rat incisor dentin. Calcif Tissue Res 1978; 25: 169 – 78.en_US
dc.identifier.citedreferenceLinde A, Bhown M, Butler WT. Noncollagenous proteins of dentin. A re-examination of proteins from rat incisor dentin utilizing techniques to avoid artifacts. J Biol Chem 1980; 255: 5931 – 42.en_US
dc.identifier.citedreferenceShields ED, Bixler D, el-Kafrawy AM. A proposed classification for heritable human dentine defects with a description of a new entity. Arch Oral Biol 1973; 18: 543 – 53.en_US
dc.identifier.citedreferenceO'Connell AC, Marini JC. Evaluation of oral problems in an osteogenesis imperfecta population. Oral Surg Oral Med Oral Path Oral Radiol Endod 1999; 87: 189 – 96.en_US
dc.identifier.citedreferenceZhang X, Zhao J, Li C, Gao S, Qiu C, Lu P, et al., DSPP mutation in dentinogenesis imperfecta Shields type II. Nat Genet 2001; 27: 151 – 2.en_US
dc.identifier.citedreferenceXiao S, Yu C, Chou X, Yuan W, Wang Y, Flu L, et al., Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat Genet 2001; 27: 201 – 4.en_US
dc.identifier.citedreferenceRajpar MH, Koch MJ, Davies RM, Mellody KT, Kielty CM, Dixon MJ. Mutation of the signal peptide region of the bicistronic gene DSPP affects translocation to the endoplasmic reticulum and results in defective dentine biomineralization. Hum Mol Genet 2002; 11: 2559 – 65.en_US
dc.identifier.citedreferenceMalmgren B, Lindskog S, Elgadi A, Norgren S. Clinical, histopathologic, and genetic investigation in two large families with dentinogenesis imperfecta type II. Hum Genet 2004; 114: 491 – 8.en_US
dc.identifier.citedreferenceKim JW, Nam SH, Jang KT, Lee SH, Kim CC, Hahn SH, et al., A novel splice acceptor mutation in the DSPP gene causing dentinogenesis imperfecta type II. Hum Genet 2004; 115: 248 – 54.en_US
dc.identifier.citedreferenceKim JW, Hu JC, Lee JI, Moon SK, Kim YJ, Jang KT, et al., Mutational hot spot in the DSPP gene causing dentinogenesis imperfecta type II. Hum Genet 2005; 116: 186 – 91.en_US
dc.identifier.citedreferenceDong J, Gu T, Jeffords L, MacDougall M. Dentin phosphoprotein compound mutation in dentin sialophosphoprotein causes dentinogenesis imperfecta type III. Am J Med Genet 2005; 132: 305 – 9.en_US
dc.identifier.citedreferenceSreenath T, Thyagarajan T, Hall B, Longenecker G, D'Souza R, Hong S, et al., Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. J Biol Chem 2003; 278: 24874 – 80.en_US
dc.identifier.citedreferenceKim JW, Simmer JP, Lin BP, Seymen F, Bartlett JD, Hu JC. Mutational analysis of candidate genes in 24 amelogenesis imperfecta families. Eur J Oral Sci 2006; 114 ( Suppl. 1 ): 3 – 12.en_US
dc.identifier.citedreferencePrice JA, Bowden DW, Wright JT, Pettenaii MI, Hart TC. Identification of a mutation in DLX3 associated with tricho-dento-osseous (TDO) syndrome. Hum Mol Genet 1998; 7: 563 – 9.en_US
dc.identifier.citedreferenceDong J, Amor D Aldred MJ, Gu T, Escamilla M, MacDougall M. DLX3 mutation associated with autosomal dominant amelogenesis imperfecta with taurodontism. Am J Med Genet A 2005; 133: 138 – 41.en_US
dc.identifier.citedreferenceBackman B. Amelogenesis imperfecta – clinical manifestations in 51 families in a northern Swedish county. Scand J Dent Res 1988; 96: 505 – 16.en_US
dc.identifier.citedreferenceFincham AG, Moradian-Oldak J, Simmer JP. The structural biology of the developing dental enamel matrix. J Struct Biol 1999; 126: 270 – 99.en_US
dc.identifier.citedreferenceKim J-W, Simmer JP, Hu YY, Lin BP-L, Boyd C, Wright JT, et al., Amelogenin p.M1T and p.W4S mutations underlying hypoplastic X-linked amelogenesis imperfecta. J Dent Res 2004; 83: 378 – 83.en_US
dc.identifier.citedreferenceWright JT, Hart PS, Aldred MJ, Seow K, Crawford PJ, Hong SP, et al., Relationship of phenotype and genotype in X-linked amelogenesis imperfecta. Connect Tissue Res 2003; 44 ( Suppl. 1 ): 72 – 8.en_US
dc.identifier.citedreferenceHu JC, Yamakoshi Y. Enamelin and autosomal-dominant amelogenesis imperfecta. Crit Rev Oral Biol Med 2003; 14: 387 – 98.en_US
dc.identifier.citedreferenceKim JW, Seymen F, Lin BP, Kiziltan B, Gencay K, Simmer JP, et al., ENAM mutations in autosomal-dominant amelogenesis imperfecta. J Dent Res 2005; 84: 278 – 82.en_US
dc.identifier.citedreferenceOzdemir D, Hart PS, Firatli E, Aren G, Ryu OH, Hart TC. Phenotype of ENAM mutations is Dosage-dependent. J Dent Res 2005; 84: 1036 – 41.en_US
dc.identifier.citedreferenceHart TC, Hart PS, Gorry MC, Michalec MD, Ryu OH, Uygur C, et al., Novel ENAM mutation responsible for autosomal recessive amelogenesis imperfecta and localised enamel defects. J Med Genet 2003; 40: 900 – 6.en_US
dc.identifier.citedreferenceBartlett JD, Simmer JP, Xue J, Margolis HC, Moreno EC. Molecular cloning and mRNA tissue distribution of a novel matrix metalloproteinase isolated from porcine enamel organ. Gene 1996; 183: 123 – 8.en_US
dc.identifier.citedreferenceBartlett JC, Enamelysin, In A Barrett, Rawlings N, and Woessner J, editors. Handbook of Proteolytic Enzymes, Amsterdam: Academic Press; 2004, 561 – 3.en_US
dc.identifier.citedreferenceSimmer JP, Fukae M, Tanabe T, Yamakoshi Y, Uchida T, Xue J, et al., Purification, characterization, and cloning of enamel matrix serine proteinase 1. J Dent Res 1998; 77: 377 – 86.en_US
dc.identifier.citedreferenceSimmer JP, Prostase. In: Barrett A, Rawlings N and Woessner J, editors. Handbook of Proteolytic Enzymes. Amsterdam: Academic Press; 2004, 1612 – 3.en_US
dc.identifier.citedreferenceKim JW, Simmer JP, Hart TC, Hart PS, Ramaswami MD, Bartlett JD, et al., MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta. J Med Genet 2005; 42: 271 – 5.en_US
dc.identifier.citedreferenceOzdemir D, Hart PS, Ryu OH, Choi SJ, Ozdemir-Karatas M, Firatli E, et al., MMP20 active-site mutation in hypomaturation amelogenesis imperfecta. J Dent Res 2005; 84: 1031 – 5.en_US
dc.identifier.citedreferenceHart PS, Hart TC, Michalec MD, Ryu OH, Simmons D, Hong S, et al., Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. J Med Genet 2004; 41: 545 – 9.en_US
dc.identifier.citedreferenceWhyte MP. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev 1994; 15: 439 – 61.en_US
dc.identifier.citedreferenceHu JC, Plaetke R, Mornet E, Zhang C, Sun X, Thomas HF, et al., Characterization of a family with dominant hypophosphatasia. Eur J Oral Sci 2000; 108: 189 – 94.en_US
dc.identifier.citedreferencevan den Bos T, Handoko G, Nichof A, Ryan LM, Coburn SP, Whyte MP, et al., Cementum and dentin in hypophosphatasia. J Dent Res 2005; 84: 1021 – 5.en_US
dc.identifier.citedreferenceLagerstrÖm M, Dahl N, Nakahori Y, Nakagome Y, Backman B, Landegren U, et al., A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1). Genomics 1991; 10: 971 – 5.en_US
dc.identifier.citedreferenceAldred MJ, Crawford PJ, Roberts E, Thomas NS. Identification of a nonsense mutation in the amelogenin gene (AMELX) in a family with X-linked amelogenesis imperfecta (AIH1). Hum Genet 1992; 90: 413 – 6.en_US
dc.identifier.citedreferenceLench NJ, Brook AH, Winter GB. SSCP detection of a nonsense mutation in exon 5 of the amelogenin gene (AMGX) causing X-linked amelogenesis imperfecta (AIH1). Hum Mol Genet 1994; 3: 827 – 8.en_US
dc.identifier.citedreferenceLagerstrom-Fermer M, Nilsson M, Backman B, Salido E, Shapiro L, Pettersson U, et al., Amelogenin signal peptide mutation: correlation between mutations in the amelogenin gene (AMGX) and manifestations of X-linked amelogenesis imperfecta. Genomics 1995; 26: 159 – 62.en_US
dc.identifier.citedreferenceLench NJ, Winter GB. Characterisation of molecular defects in X-linked amelogenesis imperfecta (AIH1). Hum Mutat 1995; 5: 251 – 9.en_US
dc.identifier.citedreferenceCollier PM, Sauk JJ, Rosenbloom SJ, Yuan ZA, Gibson CW. An amelogenin gene defect associated with human X-linked amelogenesis imperfecta. Arch Oral Biol 1997; 42: 235 – 42.en_US
dc.identifier.citedreferenceHart S, Hart T, Gibson C, Wright JT. Mutational analysis of X-linked amelogenesis imperfecta in multiple families. Arch Oral Biol 2000; 45: 79 – 86.en_US
dc.identifier.citedreferenceRavassipour DB, Hart PS, Hart TC, Ritter AV, Yamauchi M, Gibson C, et al., Unique enamel phenotype associated with amelogenin gene (AMELX) codon 41 point mutation. J Dent Res 2000; 79: 1476 – 81.en_US
dc.identifier.citedreferenceKindelan SA, Brook AH, Gangemi L, Lench N, Wong FS, Fearne J, et al., Detection of a novel mutation in X-linked amelogenesis imperfecta. J Dent Res 2000; 79: 1978 – 82.en_US
dc.identifier.citedreferenceHart PS, Aldred MJ, Crawford PJ, Wright NJ, Hart TC, Wright JT. Amelogenesis imperfecta phenotype-genotype correlations with two amelogenin gene mutations. Arch Oral Biol 2002; 47: 261 – 5.en_US
dc.identifier.citedreferenceSekiguchi H, Alaluusua S, Minaguchi K, Yukushiji M. A new mutation in the amelogenin gene causes X-linked amelogenesis imperfecta. J Dent Res 2001; 80: 617.en_US
dc.identifier.citedreferenceSekiguchi H, Kiyoshi M, Yakushiji M. DNA diagnosis of X-linked amelogenesis imperfecta using PCR detection method of the human amelogenin gene. Dent Japan 2001; 37: 109 – 12.en_US
dc.identifier.citedreferenceGreene SR, Yuan ZA, Wright JT, Amjad H, Abrams WR, Buchanan JA, et al., A new frameshift mutation encoding a truncated amelogenin leads to X-linked amelogenesis imperfecta. Arch Oral Biol 2002; 47: 211 – 7.en_US
dc.identifier.citedreferenceRajpar MH, Harley K. Laing C, Davies RM, Dixon MJ. Mutation of the gene encoding the enamel-specific protein, enamelin, causes autosomal-dominant amelogenesis imperfecta. Hum Mol Genet 2001; 10: 1673 – 7.en_US
dc.identifier.citedreferenceUrzua OB, Ortega PA, Rodriguez ML, Morales BI. Genetic, clinical and molecular analysis of a family affected by amelogenesis imperfecta. Rev Med Chil 2005; 133: 1331 – 40.en_US
dc.identifier.citedreferenceMardh CK, Backman B, Holrngren G, Hu JC, Simmer JP, Forsman-Semb K. A nonsense mutation in the enamelin gene causes local hypoplastic autosomal dominant amelogenesis imperfecta (AIH2). Hum Mol Genet 2002; 11: 1069 – 74.en_US
dc.identifier.citedreferenceKida M, Ariga T, Shirakawa T, Oguchi H, Sakiyarna Y. Autosomal-dominant hypoplastic form of amelogenesis imperfecta caused by an enamelin gene mutation at the exon-intron boundary. J Dent Res 2002; 81: 738 – 42.en_US
dc.identifier.citedreferenceHart PS, Michalec MD, Seow WK, Hart TC, Wright JT. Identification of the enamelin (g.8344delG) mutation in a new kindred and presentation of a standardized ENAM nomenclature. Arch Oral Biol 2003; 48: 589 – 96.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.