Show simple item record

Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison

dc.contributor.authorHarmon, Mark E.en_US
dc.contributor.authorSilver, Whendee L.en_US
dc.contributor.authorFasth, Beckyen_US
dc.contributor.authorChen, Huaen_US
dc.contributor.authorBurke, Ingrid C.en_US
dc.contributor.authorParton, William J.en_US
dc.contributor.authorHart, Stephen C.en_US
dc.contributor.authorCurrie, William S.en_US
dc.date.accessioned2010-06-01T21:26:13Z
dc.date.available2010-06-01T21:26:13Z
dc.date.issued2009-05en_US
dc.identifier.citationHARMON, MARK E.; SILVER, WHENDEE L.; FASTH, BECKY; CHEN, HUA; BURKE, INGRID C.; PARTON, WILLIAM J.; HART, STEPHEN C.; CURRIE, WILLIAM S. (2009). "Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison." Global Change Biology 15(5): 1320-1338. <http://hdl.handle.net/2027.42/74496>en_US
dc.identifier.issn1354-1013en_US
dc.identifier.issn1365-2486en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74496
dc.description.abstractDecomposition is a critical process in global carbon cycling. During decomposition, leaf and fine root litter may undergo a later, relatively slow phase; past long-term experiments indicate this phase occurs, but whether it is a general phenomenon has not been examined. Data from Long-term Intersite Decomposition Experiment Team, representing 27 sites and nine litter types (for a total of 234 cases) was used to test the frequency of this later, slow phase of decomposition. Litter mass remaining after up to 10 years of decomposition was fit to models that included (dual exponential and asymptotic) or excluded (single exponential) a slow phase. The resultant regression equations were evaluated for goodness of fit as well as biological realism. Regression analysis indicated that while the dual exponential and asymptotic models statistically and biologically fit more of the litter type–site combinations than the single exponential model, the latter was biologically reasonable for 27–65% of the cases depending on the test used. This implies that a slow phase is common, but not universal. Moreover, estimates of the decomposition rate of the slowly decomposing component averaged 0.139–0.221 year −1 (depending on method), higher than generally observed for mineral soil organic matter, but one-third of the faster phase of litter decomposition. Thus, this material may be slower than the earlier phases of litter decomposition, but not as slow as mineral soil organic matter. Comparison of the long-term integrated decomposition rate (which included all phases of decomposition) to that for the first year of decomposition indicated the former was on average 75% that of the latter, consistent with the presence of a slow phase of decomposition. These results indicate that the global store of litter estimated using short-term decomposition rates would be underestimated by at least one-third.en_US
dc.format.extent472773 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 Blackwell Publishingen_US
dc.subject.otherDecayen_US
dc.subject.otherDecompositionen_US
dc.subject.otherFine Rootsen_US
dc.subject.otherLeavesen_US
dc.subject.otherLitteren_US
dc.subject.otherLong-term Studyen_US
dc.subject.otherRate Constanten_US
dc.subject.otherStable Fractionen_US
dc.titleLong-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparisonen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum∥ School of Natural Resources & Environment, Dana Bldg., 430 E. University, University of Michigan, Ann Arbor, MI 48109-1115, USAen_US
dc.contributor.affiliationotherDepartment of Forest Science, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, USA ,en_US
dc.contributor.affiliationother† Department of Environmental Science, Policy, and Management, Ecosystem Sciences Division, University of California, Berkeley, CA 94720, USA ,en_US
dc.contributor.affiliationother† Department of Forest, Rangeland, and Watershed Stewardship, Colorado State University, Fort Collins, CO 80523, USA ,en_US
dc.contributor.affiliationother§ Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, USA ,en_US
dc.contributor.affiliationother¶ School of Forestry and Merriam-Powell Center for Environmental Research, Northern Arizona University, PO Box 15018, Flagstaff, AZ 86011-5018, USA ,en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74496/1/j.1365-2486.2008.01837.x.pdf
dc.identifier.doi10.1111/j.1365-2486.2008.01837.xen_US
dc.identifier.sourceGlobal Change Biologyen_US
dc.identifier.citedreferenceAber JD, Melillo JM, McClaugherty CA ( 1990 ) Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Canadian Journal of Botany, 68, 2201 – 2208.en_US
dc.identifier.citedreferenceAdair EC, Parton WJ, DelGrosso SJ, Silver WL, Hall SA, Harmon ME, Hart SC ( 2008 ) A simple three pool model accurately describes patterns of long term, global decomposition in the Long Term Intersite Decomposition Experiment Team (LIDET) data set. Global Change Biology, 14, 2636 – 2660.en_US
dc.identifier.citedreferenceÅgren GI, Bosatta N ( 1987 ) Theoretical analysis of the long-term dynamics of carbon and nitrogen in soils. Ecology, 68, 181 – 1189.en_US
dc.identifier.citedreferenceBerg B ( 2000a ) Initial rates and limit values for decomposition of Scots pine and Norway spruce needle litter: a synthesis for N-fertilized forest stands. Canadian Journal of Forest Research, 30, 122 – 135.en_US
dc.identifier.citedreferenceBerg B ( 2000b ) Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management, 133, 13 – 22.en_US
dc.identifier.citedreferenceBerg B, Ekbohm G, McClaugherty CA ( 1984 ) Lignin and hollocellulose relations during long-term decomposition of some forest litters: long-term decomposition in a Scots pine forest IV. Canadian Journal of Botany, 62, 2540 – 2550.en_US
dc.identifier.citedreferenceBerg B, McClaugherty CA ( 2003 ) Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer-Verlag, New York.en_US
dc.identifier.citedreferenceBerg B, McClaugherty CA, Virzo De Santo A, Johnson D ( 2001 ) Humus buildup in boreal forests effects of litterfall and its N concentration. Canadian Journal of Forest Research, 31, 988 – 998.en_US
dc.identifier.citedreferenceBlair JM, Parmelee RW, Beare MH ( 1990 ) Decay rates, nitrogen fluxes, and decomposer communities of single- and mixed-species foliar litter. Ecology, 71, 1976 – 1985.en_US
dc.identifier.citedreferenceBridson JN ( 1985 ) Lipid fraction in forest litter: early stages of decomposition. Soil Biology and Biochemistry, 17, 285 – 290.en_US
dc.identifier.citedreferenceBunnell FL, Tait DEN ( 1977 ) Microbial respiration and substrate loss. II. A model of the influences of chemical composition. Soil Biology and Biochemistry, 9, 41 – 47.en_US
dc.identifier.citedreferenceBunnell FL, Tait DEN, Flanagan PW, Van Cleve K ( 1977 ) Microbial respiration and substrate loss. I. A general model of the influences of abiotic factors. Soil Biology and Biochemistry, 9, 33 – 40.en_US
dc.identifier.citedreferenceChen H, Harmon ME, Sexton J, Fasth B ( 2002 ) Fine root decomposition and N dynamics in coniferous forests of the Pacific Northwest of USA. Canadian Journal of Forest Research, 32, 320 – 331.en_US
dc.identifier.citedreferenceCoÛteaux MM, Bottner P, Berg B ( 1995 ) Litter decomposition, climate and litter quality. Trends in Ecology and Evolution, 10, 63 – 66.en_US
dc.identifier.citedreferenceCoÛteaux MM, McTiernan KB, Berg B, Szuberla D, Dardenne P, Bottner P ( 1998 ) Chemical composition and carbon mineralization potential of Scots pine needles at different stages of decomposition. Soil Biology and Biochemistry, 30, 583 – 595.en_US
dc.identifier.citedreferenceCurrie WS, Aber JD ( 1997 ) Modeling leaching as a decomposition process in humid montane forests. Ecology, 78, 1844 – 1860.en_US
dc.identifier.citedreferenceDubois MK, Gilles KA, Hamilton JR, Rebers PA, Smith F ( 1956 ) Colorimetric method for determination of sugars and related substances. Annals of Chemistry, 28, 350 – 356.en_US
dc.identifier.citedreferenceEdmonds RL ( 1984 ) Long-term decomposition and nutrient dynamics in Pacific silver fir needles in western Washington. Canadian Journal of Forest Research, 14, 395 – 400.en_US
dc.identifier.citedreferenceEffland MJ ( 1977 ) Modified procedure to determine acid-insoluble lignin in wood and pulp. Tappi, 60, 143 – 144.en_US
dc.identifier.citedreferenceFogel R, Cromack K Jr ( 1977 ) Effect of habitat and substrate quality on Douglas-fir litter decomposition in western Oregon. Canadian Journal of Botany, 55, 1632 – 1640.en_US
dc.identifier.citedreferenceGaudinski JB, Trumbore SE, Davidson EA, Zheng S ( 2000 ) Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry, 51, 33 – 69.en_US
dc.identifier.citedreferenceGholz HL, Wedin D, Smitherman S, Harmon ME, Parton WJ ( 2000 ) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 6, 751 – 765.en_US
dc.identifier.citedreferenceHagerman AE ( 1988 ) Extraction of tannin from fresh and preserved leaves. Journal of Chemical Ecology, 14, 453 – 462.en_US
dc.identifier.citedreferenceHarmon ME, Baker GA, Greene SE, Spycher G ( 1990 ) Early decomposition of leaf litter in a Picea–Tsuga forest, Olympic National Park, Washington, USA. Forest Ecology and Management, 31, 55 – 66.en_US
dc.identifier.citedreferenceHarmon ME, Nadelhoffer KJ, Blair JM ( 1999 ) Measuring decomposition, nutrient turnover, and stores in plant litter. In: Standard Soil Methods for Long Term Ecological Research ( eds Robertson GP, Bledsoe CS, Coleman DC, Sollins P ), pp. 202 – 240. Oxford University Press, New York.en_US
dc.identifier.citedreferenceHaslam E ( 1989 ) Plant Polyphenols: Vegetable Tannins Revisited. Cambridge University Press, Cambridge, MA.en_US
dc.identifier.citedreferenceHoward PJA, Howard DM ( 1974 ) Microbial decomposition of tree and shrub litter. I. Weight loss and chemical composition of decomposing litter. Okios, 25, 314 – 352.en_US
dc.identifier.citedreferenceJansson PE, Berg B ( 1985 ) Temporal variation of litter decomposition in relation to simulated soil climate: long-term decomposition in a Scots pine forest. Canadian Journal of Botany, 63, 1008 – 1016.en_US
dc.identifier.citedreferenceJobbagy EB, Jackson RB ( 2000 ) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423 – 436.en_US
dc.identifier.citedreferenceKirschbaum MUF ( 2000 ) Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry, 48, 21 – 51.en_US
dc.identifier.citedreferenceKÖgel-Knabner I ( 2002 ) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 34, 139 – 162.en_US
dc.identifier.citedreferenceKurcheva GF ( 1960 ) The role of invertebrates in the decomposition of oak litter. Pedology (Leningrad), 4, 16 – 23.en_US
dc.identifier.citedreferenceLousier JD, Parkinson D ( 1978 ) Chemical element dynamics in decomposing leaf litter. Canadian Journal of Botany, 56, 2795 – 2812.en_US
dc.identifier.citedreferenceLousier JD, Parkinson D ( 1979 ) Organic matter and chemical element dynamics in a aspen woodland soil. Canadian Journal of Forest Research, 9, 449 – 463.en_US
dc.identifier.citedreferenceMagill AH, Aber JD ( 1998 ) Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant and Soil, 203, 301 – 311.en_US
dc.identifier.citedreferenceMatthews E ( 1997 ) Global litter production, pools, and turnover times: estimates from measurement data and regression models. Journal of Geophysical Research, 102D, 18,771 – 18,800.en_US
dc.identifier.citedreferenceMcClaugherty CA, Pastor J, Aber JD, Melillo JM ( 1985 ) Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology, 66, 266 – 275.en_US
dc.identifier.citedreferenceMeentemeyer V ( 1978 ) Macroclimate and lignin control of litter decomposition rates. Ecology, 59, 465 – 472.en_US
dc.identifier.citedreferenceMelillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Naddelhoffer K ( 1989 ) Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. In: Ecology of Arable Land ( eds Clarholm M, Bergstrom L ), pp. 53 – 62. Kluwer Academic Publishers, Dordrecht.en_US
dc.identifier.citedreferenceMelillo JM, Aber JD, Murtore JF ( 1982 ) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621 – 626.en_US
dc.identifier.citedreferenceMelillo JM, Naiman RJ, Aber JD, Linkins AE ( 1984 ) Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams. Bulletin of Marine Science, 35, 341 – 356.en_US
dc.identifier.citedreferenceMinderman G ( 1968 ) Addition, decomposition, and accumulation of organic matter in forests. Journal of Ecology, 56, 355 – 362.en_US
dc.identifier.citedreferenceMoore TR, Trofymow JA, Siltanen M, Prescott C CIDET Working Group ( 2005 ) Patterns of decomposition and carbon, nitrogen,and phosphorus dynamics of litter in upland forest and peatland sites in central Canada. Canadian Journal of Forest Research, 35, 133 – 142.en_US
dc.identifier.citedreferenceMoorhead DL, Currie WS, Rastetter EB, Parton WJ, Harmon ME ( 1999 ) Climate and litter quality controls on decomposition: an analysis of modeling approaches. Global Climate Change, 13, 575 – 589.en_US
dc.identifier.citedreferenceObst JR, Kirk KT ( 1988 ) Isolation of Lignin. Advances in Enzymology, 161, 3 – 12.en_US
dc.identifier.citedreferenceOlson JS ( 1963 ) Energy stores and the balance of producers and decomposers in ecological systems. Ecology, 44, 322 – 331.en_US
dc.identifier.citedreferenceParton WJ, Ojima DS, Cole CV, Schimel DS ( 1994 ) A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture, and management. Soil Science Society of America Special Publication, 39, 147 – 167.en_US
dc.identifier.citedreferenceParton WJ, Schimel DS, Cole CV, Ojima DS ( 1987 ) Analysis of factors controlling soil organic matter levels in Great Plains Grasslands. Soil Science Society of America Journal, 51, 1173 – 1179.en_US
dc.identifier.citedreferenceParton WJ, Silver WL, Burke IC et al. ( 2007 ) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361 – 364.en_US
dc.identifier.citedreferencePastor J, Post WM ( 1986 ) Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry, 2, 3 – 27.en_US
dc.identifier.citedreferencePost WM, Emanuel W, Zinke PJ, Stangenberger AG ( 1982 ) Soil carbon pools and world life zones. Nature, 298, 156 – 159.en_US
dc.identifier.citedreferenceRyan MG, Melillo JM, Ricca A ( 1990 ) A comparison of methods for determining proximate carbon fractions of forest litter. Canadian Journal of Forest Research, 20, 166 – 171.en_US
dc.identifier.citedreferenceSilver WL, Miya RK ( 2001 ) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia, 129, 407 – 419.en_US
dc.identifier.citedreferenceSingh JS, Gupta SR ( 1977 ) Plant decomposition and soil respiration in terrestrial ecosystems. Botanical Review, 43, 449 – 528.en_US
dc.identifier.citedreferenceSwift MJ, Heal OW, Anderson JM ( 1979 ) Decomposition in Terrestrial Ecosystems. University of California Press, Berkeley.en_US
dc.identifier.citedreferenceTappi ( 1976 ) Alcohol–benzene and dichloromethane solubles in wood and pulp. Tappi Official Standard T204.en_US
dc.identifier.citedreferenceTappi ( 1981 ) Water solubility of wood and pulp. Tappi Official Standard T207.en_US
dc.identifier.citedreferenceTrofymow JA, Moore TR, Titus B et al. ( 2002 ) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Canadian Journal of Forest Research, 32, 789 – 804.en_US
dc.identifier.citedreferenceTrumbore S ( 2000 ) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications, 10, 399 – 411.en_US
dc.identifier.citedreferenceVogt KA, Grier CC, Vogt DJ ( 1986 ) Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Advances in Ecological Research, 15, 303 – 377.en_US
dc.identifier.citedreferenceWardle DA, Zachrisson O, HÖrnberg G, Gallet C ( 1997 ) The influence of island area on ecosystem properties. Science, 277, 1296 – 1299.en_US
dc.identifier.citedreferenceWieder RK, Lang GE ( 1982 ) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology, 63, 1636 – 1642.en_US
dc.identifier.citedreferenceWitkamp M, Crossley DA Jr ( 1966 ) The role of arthropods and microflora in breakdown of white oak litter. Pedobiologia, 6, 292 – 303.en_US
dc.identifier.citedreferenceWitkamp M, Olson JS ( 1963 ) Breakdown of confined and nonconfined oak litter. Oikos, 14, 138 – 147.en_US
dc.identifier.citedreferenceYahdjian LO, Sala E, Austin A ( 2006 ) Differential controls of water input on litter decomposition and nitrogen dynamics in the Patagonian Steppe. Ecosystems, 9, 128 – 141.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.