Show simple item record

A single intersubunit salt bridge affects oligomerization and catalytic activity in a bacterial quinone reductase

dc.contributor.authorBinter, Alexandraen_US
dc.contributor.authorStaunig, Nicoleen_US
dc.contributor.authorJelesarov, Ilianen_US
dc.contributor.authorLohner, Karlen_US
dc.contributor.authorPalfey, Bruce A.en_US
dc.contributor.authorDeller, Sigriden_US
dc.contributor.authorGruber, Karl F.en_US
dc.contributor.authorMacheroux, Peteren_US
dc.date.accessioned2010-06-01T21:27:16Z
dc.date.available2010-06-01T21:27:16Z
dc.date.issued2009-09en_US
dc.identifier.citationBinter, Alexandra; Staunig, Nicole; Jelesarov, Ilian; Lohner, Karl; Palfey, Bruce A.; Deller, Sigrid; Gruber, Karl; Macheroux, Peter (2009). "A single intersubunit salt bridge affects oligomerization and catalytic activity in a bacterial quinone reductase." FEBS Journal 276(18): 5263-5274. <http://hdl.handle.net/2027.42/74513>en_US
dc.identifier.issn1742-464Xen_US
dc.identifier.issn1742-4658en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74513
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19682074&dopt=citationen_US
dc.format.extent831286 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 Federation of European Biochemical Societiesen_US
dc.subject.otherNADPH:FMN Oxidoreductaseen_US
dc.subject.otherOligomerizationen_US
dc.subject.otherQuinone Reductaseen_US
dc.subject.otherSalt Bridgeen_US
dc.subject.otherThermostabilityen_US
dc.titleA single intersubunit salt bridge affects oligomerization and catalytic activity in a bacterial quinone reductaseen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum5  Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationother1  Institute of Biochemistry, Graz University of Technology, Austriaen_US
dc.contributor.affiliationother2  Institute of Molecular Biosciences, University of Graz, Austriaen_US
dc.contributor.affiliationother3  Institute of Biochemistry, University of ZÜrich, Switzerlanden_US
dc.contributor.affiliationother4  Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Graz, Austriaen_US
dc.identifier.pmid19682074en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74513/1/j.1742-4658.2009.07222.x.pdf
dc.identifier.doi10.1111/j.1742-4658.2009.07222.xen_US
dc.identifier.sourceFEBS Journalen_US
dc.identifier.citedreferenceBin Y, Jiti Z, Jing W, Cuihong D, Hongman H, Zhiyong S & Yongming B ( 2004 ) Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737. FEMS Microbiol Letters 236, 129 – 136.en_US
dc.identifier.citedreferenceBlÜmel S, Knackmuss H-J & Stolz A ( 2002 ) Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Appl Environ Microbiol 68, 3948 – 3955.en_US
dc.identifier.citedreferenceBlÜmel S & Stolz A ( 2003 ) Cloning and characterization of the gene coding for the aerobic azoreductase from Pigmentiphaga kullae K24. Appl Microbiol Biotechnol 62, 186 – 190.en_US
dc.identifier.citedreferenceChen H, Hopper SL & Cerniglia CE ( 2005 ) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151, 1433 – 1441.en_US
dc.identifier.citedreferenceChen H, Wang R-F & Cerniglia CE ( 2004 ) Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Protein Expr Purif 34, 302 – 310.en_US
dc.identifier.citedreferenceNakanishi M, Yatome C, Ishida N & Kitade Y ( 2001 ) Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J Biol Chem 276, 46394 – 46399.en_US
dc.identifier.citedreferenceSuzuki Y, Yoda T, Ruhul A & Sugiura W ( 2001 ) Molecular cloning and characterisation of the gene coding for azoreductase from Bacillus sp. OY1-2 isolated from soil. J Biol Chem 276, 9059 – 9065.en_US
dc.identifier.citedreferenceDeller S, Sollner S, Trenker-El-Toukhy R, Jelesarov I, Gubitz GM & Macheroux P ( 2006 ) Characterization of a thermostable NADPH:FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis. Biochemistry 45, 7083 – 7091.en_US
dc.identifier.citedreferenceDeller S, Macheroux P & Sollner S ( 2008 ) Flavin-dependent quinone reductases. Cell Mol Life Sci 65, 141 – 160.en_US
dc.identifier.citedreferenceLi R, Bianchet MA, Talalay P & Amzel LM ( 1995 ) The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proc Natl Acad Sci USA 92, 8846 – 8850.en_US
dc.identifier.citedreferenceLiger D, Graille M, Zhou C-Z, Leulliot N, Quevillon-Cheruel S, Blondeau K, Janin J & van Tilbeurgh H ( 2004 ) Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities. J Biol Chem 279, 34890 – 34897.en_US
dc.identifier.citedreferenceSollner S, Nebauer R, Ehammer H, Prem A, Deller S, Palfey BA, Daum G & Macheroux P ( 2007 ) Lot6p from Saccharomyces cerevisiae is a FMN-dependent reductase with a potential role in quinone detoxification. FEBS J 274, 1328 – 1339.en_US
dc.identifier.citedreferenceDams T, Auerbach G, Bader G, Jacob U, Ploom T, Huber R & Jaenicke R ( 2000 ) The crystal structure of dihydrofolate reductase from Thermotoga maritima: molecular features of thermostability. J Mol Biol 297, 659 – 672.en_US
dc.identifier.citedreferenceMurzin AG, Brenner SE, Hubbard T & Chothia C ( 1995 ) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247, 536 – 540.en_US
dc.identifier.citedreferenceKrissinel E & Henrick K ( 2004 ) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr 60, 2256 – 2268.en_US
dc.identifier.citedreferenceAgarwal R, Bonanno JB, Burley SK & Swaminathan S ( 2006 ) Structure determination of an FMN reductase from Pseudomonas aeruginosa PA01 using sulfur anomalous signal. Acta Crystallogr 62, 383 – 391.en_US
dc.identifier.citedreferenceYe J, Yang HC, Rosen BP & Bhattacharjee H ( 2007 ) Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti. FEBS Lett 581, 3996 – 4000.en_US
dc.identifier.citedreferenceNissen MS, Youn B, Knowles BD, Ballinger JW, Jun SY, Belchik SM, Xun L & Kang C ( 2008 ) Crystal structures of NADH:FMN oxidoreductase (EmoB) at different stages of catalysis. J Biol Chem 283, 28710 – 28720.en_US
dc.identifier.citedreferenceVorontsov II, Minasov G, Brunzelle JS, Shuvalova L, Kiryukhina O, Collart FR & Anderson WF ( 2007 ) Crystal structure of an apo form of Shigella flexneri ArsH protein with an NADPH-dependent FMN reductase activity. Protein Sci 16, 2483 – 2490.en_US
dc.identifier.citedreferenceKrissinel E & Henrick K ( 2007 ) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774 – 797.en_US
dc.identifier.citedreferenceThoma R, Hennig M, Sterner R & Kirschner K ( 2000 ) Structure and function of mutationally generated monomers of dimeric phosphoribosylanthranilate isomerase from Thermotoga maritima. Structure 8, 265 – 276.en_US
dc.identifier.citedreferenceWalden H, Bell GS, Russell RJM, Siebers B, Hensel R & Taylor GL ( 2001 ) Tiny TIM: a small, tetrameric, hyperthermostable triosephosphate isomerase. J Mol Biol 306, 745 – 757.en_US
dc.identifier.citedreferenceOttolina G, Riva S, Carrea G, Danieli B & Buckmann AF ( 1989 ) Enzymatic synthesis of [4R-2H]NAD(P)H and [4S-2H]NAD(P)H and determination of the stereospecificity of 7 alpha- and 12 alpha hydroxysteroid dehydrogenase. Biochim Biophys Acta 998, 173 – 178.en_US
dc.identifier.citedreferenceOtwinowski Z & Minor W ( 1997 ) Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307 – 326.en_US
dc.identifier.citedreferenceCCP4 ( 1994 ) The CCP4 suite – programs for protein crystallography. Acta Crystallogr 50, 760 – 763.en_US
dc.identifier.citedreferenceMcCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC & Read RJ ( 2007 ) Phaser crystallographic software. J Appl Crystallogr 40, 658 – 674.en_US
dc.identifier.citedreferenceAdams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK & Terwilliger TC ( 2002 ) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr 58, 1948 – 1954.en_US
dc.identifier.citedreferenceEmsley P & Cowtan K ( 2004 ) Coot: Model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126 – 2132.en_US
dc.identifier.citedreferenceRead RJ ( 1986 ) Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr 42, 140 – 149.en_US
dc.identifier.citedreferenceKleywegt GJ & Brunger AT ( 1996 ) Checking your imagination – applications of the free R-value. Structure 4, 897 – 904.en_US
dc.identifier.citedreferenceLovell SC, Davis IW, Arendall WB III, de Bakker PI, Word JM, Prisant MG, Richardson JS & Richardson DC ( 2003 ) Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 50, 437 – 450.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.