Show simple item record

Familial multiple coagulation factor deficiencies: new biologic insight from rare genetic bleeding disorders

dc.contributor.authorZhang, B.en_US
dc.contributor.authorGinsburg, David W.en_US
dc.date.accessioned2010-06-01T21:28:18Z
dc.date.available2010-06-01T21:28:18Z
dc.date.issued2004-09en_US
dc.identifier.citationZhang, B.; Ginsburg, D. (2004). "Familial multiple coagulation factor deficiencies: new biologic insight from rare genetic bleeding disorders." Journal of Thrombosis and Haemostasis 2(9): 1564-1572. <http://hdl.handle.net/2027.42/74529>en_US
dc.identifier.issn1538-7933en_US
dc.identifier.issn1538-7836en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74529
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15333032&dopt=citationen_US
dc.description.abstract Combined deficiency of factor (F)V and FVIII (F5F8D) and combined deficiency of vitamin K-dependent clotting factors (VKCFD) comprise the vast majority of reported cases of familial multiple coagulation factor deficiencies. Recently, significant progress has been made in understanding the molecular mechanisms underlying these disorders. F5F8D is caused by mutations in two different genes ( LMAN1 and MCFD2 ) that encode components of a stable protein complex. This complex is localized to the secretory pathway of the cell and likely functions in transporting newly synthesized FV and FVIII, and perhaps other proteins, from the ER to the Golgi. VKCFD is either caused by mutations in the γ-carboxylase gene or in a recently identified gene encoding the vitamin K epoxide reductase. These two proteins are essential components of the vitamin K dependent carboxylation reaction. Deficiency in either protein leads to under-carboxylation and reduced activities of all the vitamin K-dependent coagulation factors, as well as several other proteins. The multiple coagulation factor deficiencies provide a notable example of important basic biological insight gained through the study of rare human diseases.en_US
dc.format.extent210722 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Incen_US
dc.rights2004 International Society on Thrombosis and Haemostasisen_US
dc.subject.otherγ-Carboxylationen_US
dc.subject.otherERen_US
dc.subject.otherGolgien_US
dc.subject.otherFactor Ven_US
dc.subject.otherFactor VIIIen_US
dc.subject.otherVitamin Ken_US
dc.titleFamilial multiple coagulation factor deficiencies: new biologic insight from rare genetic bleeding disordersen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid15333032en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74529/1/j.1538-7836.2004.00857.x.pdf
dc.identifier.doi10.1111/j.1538-7836.2004.00857.xen_US
dc.identifier.sourceJournal of Thrombosis and Haemostasisen_US
dc.identifier.citedreferenceChiu HC, Schick PK, Colman R W. Biosynthesis of factor V in isolated guinea pig megakaryocytes. J Clin Invest 1985; 75: 339 – 46.en_US
dc.identifier.citedreferenceBontempo FA, Lewis JH, Gorenc TJ, Spero JA, Ragni MV, Scott JP, Starzl TE. Liver-transplantation in hemophilia-A. Blood 1987; 69: 1721 – 4.en_US
dc.identifier.citedreferenceKelly DA, Summerfield JA, Tuddenham EGD. Localization of Factor-VIIIC antigen in guinea-pig tissues and isolated liver-cell fractions. Br J Haematol 1984; 56: 535 – 43.en_US
dc.identifier.citedreferenceWion KL, Kelly D, Summerfield JA, Tuddenham EGD, Lawn RM. Distribution of factor-VIII messenger-RNA and antigen in human-liver and other tissues. Nature 1985; 317: 726 – 9.en_US
dc.identifier.citedreferenceZelechowska MG, Vanmourik JA, Brodniewiczproba T. Ultrastructural-localization of Factor-VIII procoagulant antigen in human-liver hepatocytes. Nature 1985; 317: 729 – 30.en_US
dc.identifier.citedreferenceDo H, Healey JF, Waller EK, Lollar P. Expression of factor VIII by murine liver sinusoidal endothelial cells. J Biol Chem 1999; 274: 19587 – 92.en_US
dc.identifier.citedreferenceKaufman RJ, Wasley LC, Dorner AJ. Synthesis, processing, and secretion of recombinant human factor VIII expressed in mammalian cells. J Biol Chem 1988; 263: 6352 – 62.en_US
dc.identifier.citedreferenceKaufman RJ. Post-translational modifications required for coagulation factor secretion and function. Thromb Haemost 1998; 79: 1068 – 79.en_US
dc.identifier.citedreferenceOeri J, Matter M, Isenschmid H, Hauser F, Koller F. Angeborener mangel an faktor V (parahaemophilie) verbunden mit echter haemophilie A bein zwei brudern. Med Probl Paediatr 1954; 1: 575 – 88.en_US
dc.identifier.citedreferencePeyvandi F, Tuddenham EG, Akhtari AM, Lak M, Mannucci PM. Bleeding symptoms in 27 Iranian patients with the combined deficiency of factor V and factor VIII. Br J Haematol 1998; 100: 773 – 6.en_US
dc.identifier.citedreferenceGinsburg D. Hemophilia and Other Inherited Disorders of Hemostasis and Thrombosis. In: Emery and Rimoin's Principles and Practice of Medical Genetics, Vol. II. Rimoin DL, Connor, JM, Pyeritz, RE, eds. Churchill Livingstone, New York, 1996: 1651 – 76.en_US
dc.identifier.citedreferenceSeligsohn U, Zivelin A, Zwang E. Combined factor V and factor VIII deficiency among non-Ashkenazi Jews. N Engl J Med 1982; 307: 1191 – 5.en_US
dc.identifier.citedreferenceSegal A, Zivelin A, Rosenberg N, Ginsburg D, Shpilberg O, Seligsohn U. A mutation in LMAN1 (ERGIC-53) causing combined factors V and VIII deficiency is prevalent in Jews originating from the island of Djerba in Tunisia. Blood Coagulation and Fibriolysis, 2004; 15: 99 – 102.en_US
dc.identifier.citedreferenceNichols WC, Seligsohn U, Zivelin A, Terry VH, Arnold ND, Siemieniak DR, Kaufman RJ, Ginsburg D. Linkage of combined factors V and VIII deficiency to chromosome 18q by homozygosity mapping. J Clin Invest 1997; 99: 596 – 601.en_US
dc.identifier.citedreferenceNeerman-Arbez M, Antonarakis SE, Blouin J-L, Akhtari M, Afshar Y, Tuddenham EGD. The locus for combined factor V-factor VIII deficiency (F5F8D) maps to 18q21, between D18S849 and D18S1103. AJHG 1997; 61: 143 – 50.en_US
dc.identifier.citedreferenceNichols WC, Seligsohn U, Zivelin A, Terry VH, Hertel CE, Wheatley MA, Moussalli MJ, Hauri H-P, Ciavarella N, Kaufman RJ, Ginsburg D. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 1998; 93: 61 – 70.en_US
dc.identifier.citedreferenceNeerman-Arbez M, Johnson KM, Morris MA, Mcvey JH, Peyvandi F, Nichols WC, Ginsburg D, Rossier C, Antonarakis SE, Tuddenham EGD. Molecular analysis of the ERGIC-53 gene in 35 families with combined factor V-factor VIII deficiency. Blood 1999; 93: 2253 – 60.en_US
dc.identifier.citedreferenceNichols WC, Terry VH, Wheatley MA, Yang A, Zivelin A, Ciavarella N, Stefanile C, Matsushita T, Saito H, de Bosch NB, Ruiz-Saez A, Torres A, Thompson AR, Feinstein DI, White GC, Negrier C, Vinciguerra C, Aktan M, Kaufman RJ, Ginsburg D, Seligsohn U.. ERGIC-53 gene structure and mutation analysis in 19 combined factors V and VIII deficiency families. Blood 1999; 93: 2261 – 6.en_US
dc.identifier.citedreferenceZhang B, Cunningham MA, Nichols WC, Bernat JA, Seligsohn U, Pipe SW, McVey JH, Schulte-Overberg U, de Bosch NB, Ruiz-Saez A, White GC, Tuddenham EG, Kaufman RJ, Ginsburg D. Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex. Nature Genet 2003; 34: 220 – 5.en_US
dc.identifier.citedreferenceSchekman R, Orci L. Coat proteins and vesicle budding. Science 1996; 271: 1526 – 33.en_US
dc.identifier.citedreferenceSpringer S, Spang A, Schekman R. A primer on vesicle budding. Cell 1999; 97: 145 – 8.en_US
dc.identifier.citedreferenceMiller EA, Beilharz TH, Malkus PN, Lee MCS, Hamamoto S, Orci L, Schekman R. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 2003; 114: 497 – 509.en_US
dc.identifier.citedreferenceMossessova E, Bickford LC, Goldberg J. SNARE selectivity of the COPII coat. Cell 2003; 114: 483 – 95.en_US
dc.identifier.citedreferenceWieland FT, Gleason ML, Serafini TA, Rothman JE. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell 1987; 50: 289 – 300.en_US
dc.identifier.citedreferenceWarren G, Mellman I. Bulk flow redux? Cell 1999; 98: 125 – 7.en_US
dc.identifier.citedreferenceMartinez-Menarguez JA, Geuze HJ, Slot JW, Klumperman J. Vesicular tubular clusters between the ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI- coated vesicles. Cell 1999; 98: 81 – 90.en_US
dc.identifier.citedreferenceKuehn MJ, Herrmann JM, Schekman R. COPII–cargo interactions direct protein sorting into ER-derived transport vesicles. Nature 1998; 391: 187 – 90.en_US
dc.identifier.citedreferenceMuniz M, Morsomme P, Riezman H. Protein sorting upon exit from the endoplasmic reticulum. Cell 2001; 104: 313 – 20.en_US
dc.identifier.citedreferenceNehls S, Snapp EL, Cole NB, Zaal KJ, Kenworthy AK, Roberts TH, Ellenberg J, Presley JF, Siggia E, Lippincott-Schwartz J. Dynamics and retention of misfolded proteins in native ER membranes. Nat Cell Biol 2000; 2: 288 – 95.en_US
dc.identifier.citedreferenceSaraste J, Palade GE, Farquhar MG. Antibodies to rat pancreas Golgi subfractions: identification of a 58-kD cis-Golgi protein. J Cell Biol 1987; 105: 2021 – 9.en_US
dc.identifier.citedreferenceSchweizer A, Fransen JAM, Bachi T, Ginsel L, Hauri HP. Identification, by a monoclonal-antibody, of a 53-Kd protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi-apparatus. J Cell Biol 1988; 107: 1643 – 53.en_US
dc.identifier.citedreferenceFiedler K, Simons K. Characterization of VIP36, an animal lectin homologous to leguminous lectins. J Cell Sci 1996; 109: 271 – 6.en_US
dc.identifier.citedreferenceNeve EPA, Svensson K, Fuxe J, Pettersson RF. VIPL, a VIP36-like membrane protein with a putative function in the export of glycoproteins from the endoplasmic reticulum. Exp Cell Res 2003; 288: 70 – 83.en_US
dc.identifier.citedreferenceNufer O, Mitrovic S, Hauri HP. Profile-based data base scanning for animal l-type lectins and characterization of VIPL, a novel VIP36-like endoplasmic reticulum protein. J Biol Chem 2003; 278: 15886 – 96.en_US
dc.identifier.citedreferenceYerushalmi N, Keppler-Hafkemeyer A, Vasmatzis G, Liu XF, Olsson P, Bera TK, Duray P, Lee B, Pastan I. ERGL, a novel gene related to ERGIC-53 that is highly expressed in normal and neoplastic prostate and several other tissues. Gene 2001; 265: 55 – 60.en_US
dc.identifier.citedreferenceHauri H, Appenzeller C, Kuhn F, Nufer O. Lectins and traffic in the secretory pathway. FEBS Lett 2000; 476: 32 – 7.en_US
dc.identifier.citedreferenceFiedler K, Simons K. A putative novel class of animal lectins in the secretory pathway homologous to leguminous lectins. Cell 1994; 77: 625 – 6.en_US
dc.identifier.citedreferenceArar C, Carpentier V, Le Caer JP, Monsigny M, Legrand A, Roche A. C. ERGIC-53, a membrane protein of the endoplasmic reticulum-Golgi intermediate compartment, is identical to MR60, an intracellular mannose-specific lectin of myelomonocytic cells. J Biol Chem 1995; 270: 3551 – 3.en_US
dc.identifier.citedreferenceItin C, Roche AC, Monsigny M, Hauri HP. ERGIC-53 is a functional mannose-selective and calcium-dependent human homologue of leguminous lectins. Mol Biol Cell 1996; 7: 483 – 93.en_US
dc.identifier.citedreferenceBelden WJ, Barlowe C. Role of Erv29p in collecting soluble secretory proteins into ER-derived transport vesicles. Science 2001; 294: 1528 – 31.en_US
dc.identifier.citedreferenceMuniz M, Nuoffer C, Hauri HP, Riezman H. The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles. J Cell Biol 2000; 148: 925 – 30.en_US
dc.identifier.citedreferenceVelloso LM, Svensson K, Schneider G, Pettersson RF, Lindqvist Y. Crystal structure of the carbohydrate recognition domain of p58/ERGIC- 53, a protein involved in glycoprotein export from the endoplasmic reticulum. J Biol Chem 2002; 277: 15979 – 84.en_US
dc.identifier.citedreferenceKappeler F, Klopfenstein DR, Foguet M, Paccaud JP, Hauri HP. The recycling of ERGIC-53 in the early secretory pathway. ERGIC-53 carries a cytosolic endoplasmic reticulum-exit determinant interacting with COPII. J Biol Chem 1997; 272: 31801 – 8.en_US
dc.identifier.citedreferenceNufer O, Guldbrandsen S, Degen M, Kappeler F, Paccaud JP, Tani K, Hauri HP. Role of cytoplasmic C-terminal amino acids of membrane proteins in ER export. J Cell Sci 2002; 115: 619 – 28.en_US
dc.identifier.citedreferenceKlumperman J, Schweizer A, Clausen H, Tang BL, Hong W, Oorschot V, Hauri HP. The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment. J Cell Sci 1998; 111: 3411 – 25.en_US
dc.identifier.citedreferenceTisdale EJ, Plutner H, Matteson J, Balch WE. p53/58 binds COPI and is required for selective transport through the early secretory pathway. J Cell Biol 1997; 137: 581 – 93.en_US
dc.identifier.citedreferenceNufer O, Kappeler F, Guldbrandsen S, Hauri HP. ER export of ERGIC-53 is controlled by cooperation of targeting determinants in all three of its domains. J Cell Sci 2003; 116: 4429 – 40.en_US
dc.identifier.citedreferenceMunro S., Pelham HR. A C-terminal signal prevents secretion of luminal ER proteins. Cell 1987; 48: 899 – 907.en_US
dc.identifier.citedreferenceLewis MJ, Sweet DJ, Pelham HR. The ERD2 gene determines the specificity of the luminal ER protein retention system. Cell 1990; 61: 1359 – 63.en_US
dc.identifier.citedreferenceSemenza JC, Hardwick KG, Dean N, Pelham HR. ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 1990; 61: 1349 – 57.en_US
dc.identifier.citedreferenceAppenzeller-Herzog C, Roche AC, Nufer O, Hauri HP. pH-induced conversion of the transport lectin ERGIC-53 triggers glycoprotein release. J Biol Chem, 2004; 279: 12943 – 50.en_US
dc.identifier.citedreferenceHauri HP, Kappeler F, Andersson H, Appenzeller C. ERGIC-53 and traffic in the secretory pathway. J Cell Sci, 2000; 113: 587 – 96.en_US
dc.identifier.citedreferenceCunningham MA, Pipe SW, Zhang B, Hauri HP, Ginsburg D, Kaufman RJ. LMAN1 is a molecular chaperone for the secretion of coagulation factor VIII. J Thromb Haemost 2003; 1: 2360 – 7.en_US
dc.identifier.citedreferenceMartin-Bermudo MD, Brown NH. The localized assembly of extracellular matrix integrin ligands requires cell-cell contact. J Cell Sci 2000; 113 Part 21: 3715 – 23.en_US
dc.identifier.citedreferenceProut M, Damania Z, Soong J, Fristrom D, Fristrom JW. Autosomal mutations affecting adhesion between wing surfaces in Drosophila melanogaster. Genetics 1997; 146: 275 – 85.en_US
dc.identifier.citedreferenceVollenweider F, Kappeler F, Itin C, Hauri HP. Mistargeting of the lectin ERGIC-53 to the endoplasmic reticulum of HeLa cells impairs the secretion of a lysosomal enzyme. J Cell Biol 1998; 142: 377 – 89.en_US
dc.identifier.citedreferenceAppenzeller C, Andersson H, Kappeler F, Hauri HP. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat Cell Biol 1999; 1: 330 – 4.en_US
dc.identifier.citedreferenceToda H, Tsuji M, Nakano I, Kobuke K, Hayashi T, Kasahara H, Takahashi J, Mizoguchi A, Houtani T, Sugimoto T, Hashimoto N, Palmer TD, Honjo T, Tashiro K. Stem cell-derived neural stem/progenitor cell supporting factor is an autocrine/paracrine survival factor for adult neural stem/progenitor cells. J Biol Chem 2003; 278: 35491 – 500.en_US
dc.identifier.citedreferenceMoussalli M, Pipe SW, Hauri HP, Nichols WC, Ginsburg D, Kaufman RJ. Mannose-dependent endoplasmic reticulum (ER)-Golgi intermediate compartment-53-mediated ER to Golgi trafficking of coagulation factors V and VIII. J Biol Chem 1999; 274: 32539 – 42.en_US
dc.identifier.citedreferenceMiao HZ, Sirachainan N, Palmer L, Kucab P, Cunningham MA, Kaufman RJ, Pipe SW. Bioengineering of coagulation factor VIII for improved secretion. Blood 2004; 103: 3421 – 9.en_US
dc.identifier.citedreferenceFurie B, Bouchard BA, Furie BC. Vitamin K-dependent biosynthesis of γ-carboxyglutamic acid. Blood 1999; 93: 1798 – 808.en_US
dc.identifier.citedreferencePresnell SR, Stafford DW. The Vitamin K-dependent carboxylase. Thomb Haemost 2002; 87: 937 – 46.en_US
dc.identifier.citedreferenceFurie B, Furie BC. Molecular basis of vitamin K-dependent gamma-Carboxylation. Blood 1990; 75: 1753 – 62.en_US
dc.identifier.citedreferenceHan X, Fiehler R, Broze GJ. Isolation of a protein Z-dependent plasma protease inhibitor. Proc Natl Acad Sci USA 1998; 95: 9250 – 5.en_US
dc.identifier.citedreferenceHauschka PV, Lian JB, Cole DEC, Gundberg CM. Osteocalcin and Matrix Gla Protein – Vitamin K-Dependent Proteins in Bone. Physiol Rev 1989; 69: 990 – 1047.en_US
dc.identifier.citedreferenceStitt TN, Conn G, Gore M, Lai C, Bruno J, Radziejewski C, Mattsson K, Fisher J, Gies DR, Jones PF et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 1995; 80: 661 – 70.en_US
dc.identifier.citedreferenceMustafi D, Nakagawa Y. Characterization of calcium-binding sites in the kidney-stone inhibitor glycoprotein nephrocalcin with vanadyl ions – electron-paramagnetic-resonance and electron-nuclear double-resonance spectroscopy. Proc Natl Acad Sci USA 1994; 91: 11323 – 7.en_US
dc.identifier.citedreferenceKulman JD, Harris JE, Haldeman BA, Davie EW. Primary structure and tissue distribution of two novel proline-rich gamma-carboxyglutamic acid proteins. Proc Natl Acad Sci USA 1997; 94: 9058 – 62.en_US
dc.identifier.citedreferenceKulman JD, Harris JE, Xie L., Davie EW. Identification of two novel transmembrane gamma-carboxyglutamic acid proteins expressed broadly in fetal and adult tissues. Proc Natl Acad Sci USA 2001; 98: 1370 – 5.en_US
dc.identifier.citedreferenceDiuguid DL, Rabiet MJ, Furie BC, Liebman HA, Furie B. Molecular-basis of hemophilia-b – a defective enzyme due to an unprocessed propeptide is caused by a point mutation in the factor-IX precursor. Proc Natl Acad Sci USA 1986; 83: 5803 – 7.en_US
dc.identifier.citedreferenceJorgensen MJ, Cantor AB, Furie BC, Brown CL, Shoemaker CB, Furie B. Recognition site directing vitamin-k-dependent gamma-carboxylation resides on the propeptide of factor-IX. Cell 1987; 48: 185 – 91.en_US
dc.identifier.citedreferenceHuber P, Schmitz T, Griffin J, Jacobs M, Walsh C, Furie B, Furie BC. Identification of Amino-Acids in the Gamma-Carboxylation Recognition Site on the Propeptide of Prothrombin. J Biol Chem 1990; 265: 12467 – 73.en_US
dc.identifier.citedreferenceZimmerma., A, Matschin., JT. Biochemical basis of hereditary resistance to warfarin in rat. Biochem Pharmacol 1974; 23: 1033 – 40.en_US
dc.identifier.citedreferenceWallin R, Martin LF. Vitamin-K-dependent carboxylation and vitamin-k metabolism in liver – effects of warfarin. J Clin Invest 1985; 76: 1879 – 84.en_US
dc.identifier.citedreferenceMcmillan CW, Roberts HR. Congenital combined deficiency of coagulation factors 2 7 9 and X – report of a case. N Engl J Med 1966; 274: 1313 – &.en_US
dc.identifier.citedreferenceChung KS, Bezeaud A, Goldsmith JC, Mcmillan CW, Menache D, Roberts HR. Congenital deficiency of blood-clotting Factor-II, Factor-VII, Factor-IX, and Factor-X. Blood 1979; 53: 776 – 87.en_US
dc.identifier.citedreferenceBoneh A, BarZiv J. Hereditary deficiency of vitamin K-dependent coagulation factors with skeletal abnormalities. Am J Med Genet 1996; 65: 241 – 3.en_US
dc.identifier.citedreferenceBrenner B, Tavori S, Zivelin A, Keller CB, Suttie JW, Tatarsky I, Seligsohn U. Hereditary deficiency of all vitamin K-dependent procoagulants and anticoagulants. Br J Haematol 1990; 75: 537 – 42.en_US
dc.identifier.citedreferenceBrenner B, SÁnchez-Vega B, Wu S-M, Lanir N, Stafford DW, Solera J. A missense mutation in γ-glutamyl carboxylase gene causes combined deficiency of all vitamin K-dependent blood coagulation factors. Blood 1998; 92: 4554 – 9.en_US
dc.identifier.citedreferenceGoldsmith GH. Jr, Pence RE, Ratnoff OD, Adelsteinn DJ, Furie B. Studies on a family with combined functional deficiencies of vitamin K-dependent coagulation factors. J Clin Invest 1982; 69: 1253 – 60.en_US
dc.identifier.citedreferenceMousallem M, Spronk HM, Sacy R, Hakime N, Soute BA. Congenital combined deficiencies of all vitamin K-dependent coagulation factors. Thromb Haemost 2001; 86: 1334 – 6.en_US
dc.identifier.citedreferencePauli RM, Lian JB, Mosher DF, Suttie JW. Association of congenital deficiency of multiple vitamin K-dependent coagulation factors and the phenotype of the warfarin embryopathy: clues to the mechanism of teratogenicity of coumarin derivatives. Am J Hum Genet 1987; 41: 566 – 83.en_US
dc.identifier.citedreferencePechlaner C, Vogel W, Erhart R, Pumpel E, Kunz F. A new case of combined deficiency of vitamin-k dependent coagulation-factors. Thromb Haemost 1992; 68: 617.en_US
dc.identifier.citedreferenceSpronk HM, Farah RA, Buchanan GR, Vermeer C, Soute B. A. Novel mutation in the gamma-glutamyl carboxylase gene resulting in congenital combined deficiency of all vitamin K-dependent blood coagulation factors. Blood 2000; 96: 3650 – 2.en_US
dc.identifier.citedreferenceThomas A, Stirling D. Four factor deficiency. Blood Coagul Fibrinol 2003; 14 ( Suppl. 1 ): S55 – S57.en_US
dc.identifier.citedreferenceVicente V, Maia R, Alberca I, Tamagnini GP, Lopez BA. Congenital deficiency of vitamin K-dependent coagulation factors and protein C. Thromb Haemost, 1984; 51: 343 – 6.en_US
dc.identifier.citedreferenceOldenburg J, von Brederlow B, Fregin A, Rost S, Wolz W, Eberl W, Eber S, Lenz E, Schwaab R, Brackmann HH, Effenberger W, Harbrecht U, Schurgers LJ, Vermeer C, Muller CR. Congenital deficiency of vitamin K dependent coagulation factors in two families presents as a genetic defect of the vitamin K-epoxide-reductase-complex. Thromb Haemost 2000; 84: 937 – 41.en_US
dc.identifier.citedreferenceEkelund H, Lindeberg L, Wranne L. Combined deficiency of coagulation Factor-II, Factor-VII, Factor-IX, and Factor-X – a case of probable congenital origin. Pediatric Hematol Oncol 1986; 3: 187 – 93.en_US
dc.identifier.citedreferenceJohnson CA, Chung KS, McGrath KM, Bean PE, Roberts HR. Characterization of a variant prothrombin in a patient congenitally deficient in Factor-II, Factor-VII, Factor-IX and Factor-X. Br J Haematol 1980; 44: 461 – 9.en_US
dc.identifier.citedreferenceSoute BAM, Ulrich MMW, Watson ADJ, Maddison JE, Ebberink RHM, Vermeer C. Congenital deficiency of all vitamin K-dependent blood coagulation factors due to a defective vitamin K-dependent carboxylase in Devon Rex cats. Thromb Haemost 1992; 68: 521 – 5.en_US
dc.identifier.citedreferenceWu SM, Morris DP, Stafford DW. Identification and purification to near homogeneity of the vitamin K-dependent carboxylase. Proc Natl Acad Sci USA 1991; 88: 2236 – 40.en_US
dc.identifier.citedreferenceWu S-M, Cheung W-F, Frazier D, Stafford DW. Cloning and expression of the cDNA for human gamma-glutamyl carboxylase. Science 1991; 254: 1634 – 6.en_US
dc.identifier.citedreferenceMutucumarana VP, Stafford DW, Stanley TB, Jin DY, Solera J, Brenner B, Azerad R, Wu SM. Expression and characterization of the naturally occurring mutation L394R in human gamma-glutamyl carboxylase. J Biol Chem 2000; 275: 32572 – 7.en_US
dc.identifier.citedreferenceMutucumarana VP, Acher F, Straight DL, Jin DY, Stafford DW. A conserved region of human vitamin K-dependent carboxylase between residues 393 and 404 is important for its interaction with the glutamate substrate. J Biol Chem 2003; 278: 46488 – 93.en_US
dc.identifier.citedreferenceFregin A, Rost S, Wolz W, Krebsova A, Muller CR, Oldenburg J. Homozygosity mapping of a second gene locus for hereditary combined deficiency of vitamin K-dependent clotting factors to the centromeric region of chromosome 16. Blood 2002; 100: 3229 – 32.en_US
dc.identifier.citedreferenceKohn MH, Pelz HJ. A gene-anchored map position of the rat warfarin-resistance locus, Rw, and its orthologs in mice and humans. Blood 2000; 96: 1996 – 8.en_US
dc.identifier.citedreferenceRost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, Lappegard K, Seifried E, Scharrer I, Tuddenham EG, Muller CR, Strom TM, Oldenburg J. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004; 427: 537 – 41.en_US
dc.identifier.citedreferenceCain D, Hutson SM, Wallin R. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane. J Biol Chem 1997; 272: 29068 – 75.en_US
dc.identifier.citedreferenceBegent LA, Hill AP, Steventon GB, Hutt AJ, Pallister CJ, Cowell DC. Characterization and purification of the vitamin K1 2,3 epoxide reductases system from rat liver. J Pharm Pharmacol 2001; 53: 481 – 6.en_US
dc.identifier.citedreferenceLi T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW. Identification of the gene for vitamin K epoxide reductase. Nature 2004; 427: 541 – 4.en_US
dc.identifier.citedreferenceAngelillo-Scherrer A, de Frutos PG, Aparicio C, Melis E, Savi P, Lupu F, Arnout J, Dewerchin M, Hoylaerts MF, Herbert M, Colen D, Dahlback B, Carmeliet P. Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nature Med 2001; 7: 215 – 21.en_US
dc.identifier.citedreferenceYanagita M, Ishimoto Y, Arai H, Nagai K, Ito T, Nakano T, Salant DJ, Fukatsu A, Doi T, Kita T. Essential role of Gas6 for glomerular injury in nephrotoxic nephritis. J Clin Invest 2002; 110: 239 – 46.en_US
dc.identifier.citedreferenceMunroe PB, Olgunturk RO, Fryns JP, Van Maldergem L, Ziereisen F, Yuksel B, Gardiner RM, Chung E. Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome. Nat Genet 1999; 21: 142 – 4.en_US
dc.identifier.citedreferenceLuo G, Ducy P, Mckee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997; 386: 78 – 81.en_US
dc.identifier.citedreferenceDucy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G. Increased bone formation in osteocalcin-deficient mice. Nature 1996; 382: 448 – 52.en_US
dc.identifier.citedreferenceHall JG, Pauli RM, Wilson KM. Maternal and fetal sequelae of anticoagulation during pregnancy. Am J Med 1980; 68: 122 – 40.en_US
dc.identifier.citedreferenceHowe AM, Lipson AH, desilva M, Ouvrier R, Webster WS. Severe cervical dysplasia and nasal cartilage calcification following prenatal warfarin exposure. Am J Med Genet 1997; 71: 391 – 6.en_US
dc.identifier.citedreferenceMenger H, Lin AE, Toriello HV, Bernert G, Spranger JW. Vitamin K deficiency embryopathy. A phenocopy of the warfarin embryopathy due to a disorder of embryonic vitamin K metabolism. Am J Med Genet 1997; 72: 129 – 34.en_US
dc.identifier.citedreferenceZhu A, Raymond R, Zheng X, Westrick RJ, Furie BC, Furie B, Kaufman RJ, Ginsburg D. Abnormalities of development and hemostasis in γ-carboxylase deficient mice. Blood 1998; 92: 152a (Abstract).en_US
dc.identifier.citedreferenceMachin SJ, Miller BR. Congenital combined factor VII and factor VIII deficiency. Acta Haematol 1980; 63: 167 – 9.en_US
dc.identifier.citedreferenceSoff GA, Levin J. Familial Multiple Coagulation-Factor Deficiencies.1. Review of the Literature – Differentiation of Single Hereditary Disorders Associated with Multiple Factor Deficiencies from Coincidental Concurrence of Single Factor Deficiency States. Semin Thromb Hemost 1981; 7: 112 – 48.en_US
dc.identifier.citedreferenceSoff GA, Levin J, Bell WR. Familial Multiple Coagulation-Factor Deficiencies.2. Combined Factor-VIII, Factor-IX, and Factor-XI Deficiency and Combined Factor-IX and Factor-XI Deficiency – 2 Previously Uncharacterized Familial Multiple Factor Deficiency Syndromes. Semin Thromb Hemost 1981; 7: 149 – 69.en_US
dc.identifier.citedreferenceSano M, Saito H, Shimamoto Y, Sugiura I, Ohtsubo H, Kohda H, Yamaguchi M. Combined hereditary factor XI (plasma thromboplastin antecedent) deficiency, von Willebrand's disease, and xeroderma pigmentosum in a Japanese family. Am J Hematol 1993; 44: 129 – 33.en_US
dc.identifier.citedreferenceMarquardt T. Denecke J. Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies. Eur J Pediatr 2003; 162: 359 – 79.en_US
dc.identifier.citedreferenceSadler JE. Medicine: K is for koagulation. Nature 2004; 427: 493 – 4.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.