Show simple item record

Type II secretion: from structure to function

dc.contributor.authorJohnson, Tanya L.en_US
dc.contributor.authorAbendroth, Janen_US
dc.contributor.authorHol, Wim G. J.en_US
dc.contributor.authorSandkvist, Mariaen_US
dc.date.accessioned2010-06-01T21:31:10Z
dc.date.available2010-06-01T21:31:10Z
dc.date.issued2006-02en_US
dc.identifier.citationJohnson, Tanya L.; Abendroth, Jan; Hol, Wim G . J.; Sandkvist, Maria (2006). "Type II secretion: from structure to function." FEMS Microbiology Letters 255(2): 175-186. <http://hdl.handle.net/2027.42/74575>en_US
dc.identifier.issn0378-1097en_US
dc.identifier.issn1574-6968en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74575
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16448494&dopt=citationen_US
dc.description.abstractGram-negative bacteria use the type II secretion system to transport a large number of secreted proteins from the periplasmic space into the extracellular environment. Many of the secreted proteins are major virulence factors in plants and animals. The components of the type II secretion system are located in both the inner and outer membranes where they assemble into a multi-protein, cell-envelope spanning, complex. This review discusses recent progress, particularly newly published structures obtained by X-ray crystallography and electron microscopy that have increased our understanding of how the type II secretion apparatus functions and the role that individual proteins play in this complex system.en_US
dc.format.extent965489 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights© 2006 Federation of European Microbiological Societiesen_US
dc.subject.otherType II Secretionen_US
dc.subject.otherElectron Microscopyen_US
dc.subject.otherX-ray Structuresen_US
dc.titleType II secretion: from structure to functionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA anden_US
dc.contributor.affiliationotherDepartment of Biochemistry, Biomolecular Structure Center, School of Medicine, University of Washington, Seattle, WA, USAen_US
dc.identifier.pmid16448494en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74575/1/j.1574-6968.2006.00102.x.pdf
dc.identifier.doi10.1111/j.1574-6968.2006.00102.xen_US
dc.identifier.sourceFEMS Microbiology Lettersen_US
dc.identifier.citedreferenceAbendroth J, Bagdasarian M, Sandkvist M & Hol WGJ ( 2004a ) The structure of the cytoplasmic domain of EpsL, an inner membrane component of the type II secretion system of Vibrio cholerae: an unusual member of the actin-like ATPase superfamily. J Mol Biol 344: 619 – 633.en_US
dc.identifier.citedreferenceAbendroth J, Murphy P, Sandkvist M, Bagdasarian M & Holl WGJ ( 2005 ) The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J Mol Biol 348: 845 – 855.en_US
dc.identifier.citedreferenceAbendroth J, Rice AE, McLuskey K, Bagdasarian M & Hol WGJ ( 2004b ) The crystal structure of the periplasmic domain of the type II secretion system protein EpsM from Vibrio cholerae: the simplest version of the ferredoxin fold. J Mol Biol 338: 585 – 596.en_US
dc.identifier.citedreferenceBall G, Chapon-Herve V, Bleves S, Michel G & Bally M ( 1999 ) Assembly of XcpR in the cytoplasmic membrane is required for extracellular protein secretion in Pseudomonas aeruginosa. J Bacteriol 181: 382 – 388.en_US
dc.identifier.citedreferenceBitter W, Koster M, Latijnhouwers M, de Cock H & Tommassen J ( 1998 ) Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Mol Microbiol 27: 209 – 219.en_US
dc.identifier.citedreferenceBleves S, Gerard-Vincent M, Lazdunski A & Filloux A ( 1999 ) Structure-function analysis of XcpP, a component involved in general secretory pathway-dependent protein secretion in Pseudomonas aeruginosa. J Bacteriol 181: 4012 – 4019.en_US
dc.identifier.citedreferenceBouley J, Condemine G & Shevchik VE ( 2001 ) The PDZ domain of OutC and the N-terminal region of OutD determine the secretion specificity of the type II Out pathway of Erwinia chrysanthemi. J Mol Biol 308: 205 – 219.en_US
dc.identifier.citedreferenceBurrows LL ( 2005 ) Weapons of mass retraction. Mol Microbiol 57: 878 – 888.en_US
dc.identifier.citedreferenceCamberg JL & Sandkvist M ( 2005 ) Molecular analysis of the Vibrio cholerae type II secretion ATPase EpsE. J Bacteriol 187: 249 – 256.en_US
dc.identifier.citedreferenceChami M, Guilvout I, Gregorini M, Remigy HW, Muller SA, Valerio M, Engel A, Pugsley AP & Bayan N ( 2005 ) Structural insights into the secretin PulD and its trypsin resistant core. J Biol Chem 280: 37732 – 37741.en_US
dc.identifier.citedreferenceChen LY, Chen DY, Miaw J & Hu NT ( 1996 ) XpsD, an outer membrane protein required for protein secretion by Xanthomonas campestris pv. campestris, forms a multimer. J Biol Chem 271: 2703 – 2708.en_US
dc.identifier.citedreferenceChen Y, Shiue SJ, Huang CW, Chang JL, Chien YL, Hu NT & Chan NL ( 2005 ) Structure and function of the XpsE N-terminal domain, an essential component of the Xanthomonas campestris type II secretion system. J Biol Chem 280: 42356 – 42363.en_US
dc.identifier.citedreferenceCianciotto NP ( 2005 ) Type II secretion: a protein secretion system for all seasons. Trends Microbiol 13: 581 – 588.en_US
dc.identifier.citedreferenceCollins RF, Frye SA, Balasingham S, Ford RC, Tonjum T & Derrick JP ( 2005 ) Interaction with type IV pili induces structural changes in the bacterial outer membrane secretin PilQ. J Biol Chem 280: 18923 – 18930.en_US
dc.identifier.citedreferenceCondemine G & Shevchik VE ( 2000 ) Overproduction of the secretin OutD suppresses the secretion defect of an Erwinia chrysanthemi outB mutant. Microbiol 146: 639 – 647.en_US
dc.identifier.citedreferenceCraig L, Taylor RK, Pique ME, et al. ( 2003 ) Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol Cell 11: 1139 – 1150.en_US
dc.identifier.citedreferenceCrowther LJ, Anantha RP & Donnenberg MS ( 2004 ) The inner membrane subassembly of the enteropathogenic Escherichia coli bundle-forming pilus machine. Mol Microbiol 52: 67 – 79.en_US
dc.identifier.citedreferenceCrowther LJ, Yamagata A, Craig L, Tainer JA & Donnenberg MS ( 2005 ) The ATPase activity of BfpD is greatly enhanced by zinc and allosteric interactions with other Bfp proteins. J Biol Chem 280: 24839 – 24848.en_US
dc.identifier.citedreferenced'Enfert C, Ryter A & Pugsley AP ( 1987 ) Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for production, surface localization and secretion of the lipoprotein pullulanase. EMBO J 6: 3531 – 3538.en_US
dc.identifier.citedreferenceDeShazer D, Brett PJ, Burtnick MN & Woods DE ( 1999 ) Molecular characterization of genetic loci required for secretion of exoproducts in Burkholderia pseudomallei. J Bacteriol 181: 4661 – 4664.en_US
dc.identifier.citedreferenceDesvaux M, Parham NJ, Scott-Tucker A & Henderson IR ( 2004 ) The general secretory pathway: a general misnomer? Trends Microbiol 12: 306 – 309.en_US
dc.identifier.citedreferenceDouet V, Loiseau L, Barras F & Py B ( 2004 ) Systematic analysis, by the yeast two-hybrid, of protein interaction between components of the type II secretory machinery of Erwinia chrysanthemi. Res Microbiol 155: 71 – 75.en_US
dc.identifier.citedreferenceDow JM, Daniels MJ, Dums F, Turner PC & Gough C ( 1989 ) Genetic and biochemical analysis of protein export from Xanthomonas campestris. J Cell Sci Suppl 11: 59 – 72.en_US
dc.identifier.citedreferenceDurand E, Bernadac A, Ball G, Lazdunski A, Sturgis JN & Filloux A ( 2003 ) Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure. J Bacteriol 185: 2749 – 2758.en_US
dc.identifier.citedreferenceDurand E, Michel G, Voulhoux R, Kurner J, Bernadac A & Filloux A ( 2005 ) XcpX controls biogenesis of the Pseudomonas aeruginosa XcpT-containing pseudopilus. J Biol Chem 280: 31378 – 31389.en_US
dc.identifier.citedreferenceFilloux A ( 2004 ) The underlying mechanisms of type II protein secretion. Biochim Biophys Acta 1694: 163 – 179.en_US
dc.identifier.citedreferenceFilloux A, Bally M, Ball G, Akrim M, Tommassen J & Lazdunski A ( 1990 ) Protein secretion in gram-negative bacteria: transport across the outer membrane involves common mechanisms in different bacteria. EMBO J 9: 4323 – 4329.en_US
dc.identifier.citedreferenceForest KT, Satyshur KA, Worzalla GA, Hansen JK & Herdendorf TJ ( 2004 ) The pilus-retraction protein PilT: ultrastructure of the biological assembly. Acta Crystallogr D Biol Crystallogr 60: 978 – 982.en_US
dc.identifier.citedreferenceGenin S & Boucher CA ( 1994 ) A superfamily of proteins involved in different secretion pathways in gram-negative bacteria: modular structure and specificity of the N-terminal domain. Mol Gen Genet 243: 112 – 118.en_US
dc.identifier.citedreferenceGerard-Vincent M, Robert V, Ball G, Bleves S, Michel GPF, Lazdunski A & Filloux A ( 2002 ) Identification of XcpP domains that confer functionality and specificity to the Pseudomonas aeruginosa type II secretion apparatus. Mol Microbiol 44: 1651 – 1665.en_US
dc.identifier.citedreferencede Groot A, Filloux A & Tommassen J ( 1991 ) Conservation of xcp genes, involved in the two-step protein secretion process, in different Pseudomonas species and other gram-negative bacteria. Mol Gen Genet 229: 278 – 284.en_US
dc.identifier.citedreferenceHu NT, Leu WM, Lee MS, Chen A, Chen SC, Song YL & Chen LY ( 2002 ) XpsG, the major pseudopilin in Xanthomonas campestris pv. campestris, forms a pilus-like structure between cytoplasmic and outer membranes. Biochem J 365: 205 – 211.en_US
dc.identifier.citedreferenceIwobi A, Heesemann J, Garcia E, Igwe E, Noelting C & Rakin A ( 2003 ) Novel virulence-associated type II secretion system unique to high-pathogenicity Yersinia enterocolitica. Infect Immun 71: 1872 – 1879.en_US
dc.identifier.citedreferencede Keyzer J, van der Does C & Driessen AJ ( 2003 ) The bacterial translocase: a dynamic protein channel complex. Cell Mol Life Sci 60: 2034 – 2052.en_US
dc.identifier.citedreferenceKÖhler R, Schafer K, Muller S, Vignon G, Diederichs K, Philippsen A, Ringler P, Pugsley AP, Engel A & Welte W ( 2004 ) Structure and assembly of the pseudopilin PulG. Mol Microbiol 54: 647 – 664.en_US
dc.identifier.citedreferenceKubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M, Sukhan A, Galan JE & Aizawa S ( 1998 ) Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280: 602 – 605.en_US
dc.identifier.citedreferenceKuo WW, Kuo HW, Cheng CC, Lai HL & Chen LY ( 2005 ) Roles of the minor pseudopilins, XpsH, XpsI and XpsJ, in the formation of XpsG-containing pseudopilus in Xanthomonas campestris pv. campestris. J Biomed Sci 12: 587 – 599.en_US
dc.identifier.citedreferenceLaPointe CF & Taylor RK ( 2000 ) The type IV prepilin peptidases comprise a novel family of aspartic acid proteases. J Biol Chem 275: 1502 – 1510.en_US
dc.identifier.citedreferenceLathem WW, Grys TE, Witowski SE, Torres AG, Kaper JB, Tarr PI & Welch RA ( 2002 ) StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. Mol Microbiol 45: 277 – 288.en_US
dc.identifier.citedreferenceLee HM, Chen JR, Lee HL, Leu WM, Chen LY & Hu NT ( 2004 ) Functional dissection of the XpsN (GspC) protein of the Xanthomonas campestris pv. campestris type II secretion machinery. J Bacteriol 186: 2946 – 2955.en_US
dc.identifier.citedreferenceLee MS, Chen LY, Leu WM, Shiau RJ & Hu NT ( 2005 ) Associations of the major pseudopilin XpsG with XpsN (GspC) and secretin XpsD of Xanthomonas campestris pv. campestris type II secretion apparatus revealed by cross-linking analysis. J Biol Chem 280: 4585 – 4591.en_US
dc.identifier.citedreferenceLindeberg M, Salmond GP & Collmer A ( 1996 ) Complementation of deletion mutations in a cloned functional cluster of Erwinia chrysanthemi out genes with Erwinia carotovora out homologues reveals OutC and OutD as candidate gatekeepers of species-specific secretion of proteins via the type II pathway. Mol Microbiol 20: 175 – 190.en_US
dc.identifier.citedreferenceMarciano DK, Russel M & Simon SM ( 2001 ) Assembling filamentous phage occlude pIV channels. Proc Natl Acad Sci USA 98: 9359 – 9364.en_US
dc.identifier.citedreferenceMarlovits TC, Kubori T, Sukhan A, Thomas DR, Galan JE & Unger VM ( 2004 ) Structural insights into the assembly of the type III secretion needle complex. Science 306: 1040 – 1042.en_US
dc.identifier.citedreferenceMichel G, Bleves S, Ball G, Lazdunski A & Filloux A ( 1998 ) Mutual stabilization of the XcpZ and XcpY components of the secretory apparatus in Pseudomonas aeruginosa. Microbiol 144: 3379 – 3386.en_US
dc.identifier.citedreferenceNouwen N, Stahlberg H, Pugsley AP & Engel A ( 2000 ) Domain structure of secretin PulD revealed by limited proteolysis and electron microscopy. EMBO J 19: 2229 – 2236.en_US
dc.identifier.citedreferenceNunn D ( 1999 ) Bacterial type II protein export and pilus biogenesis: more than just homologies? Trends Cell Biol 9: 402 – 408.en_US
dc.identifier.citedreferenceNunn DN & Lory S ( 1992 ) Components of the protein-excretion apparatus of Pseudomonas aeruginosa are processed by the type IV prepilin peptidase. Proc Natl Acad Sci USA 89: 47 – 51.en_US
dc.identifier.citedreferenceNunn DN & Lory S ( 1993 ) Cleavage, methylation, and localization of the Pseudomonas aeruginosa export proteins XcpT, XcpU, XcpV, and XcpW. J Bacteriol 175: 4375 – 4382.en_US
dc.identifier.citedreferenceOpalka N, Beckmann R, Boisset N, Simon MN, Russel M & Darst SA ( 2003 ) Structure of the filamentous phage pIV multimer by cryo-electron microscopy. J Mol Biol 325: 461 – 470.en_US
dc.identifier.citedreferencePalmer T, Sargent F & Berks BC ( 2005 ) Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol 13: 175 – 180.en_US
dc.identifier.citedreferenceParge HE, Forest KT, Hickey MJ, Christensen DA, Getzoff ED & Tainer JA ( 1995 ) Structure of the fiber-forming protein pilin at 2.6- Å resolution. Nature 378: 32 – 38.en_US
dc.identifier.citedreferencePasloske BL, Scraba DG & Paranchych W ( 1989 ) Assembly of mutant pilins in Pseudomonas aeruginosa: formation of pili composed of heterologous subunits. J Bacteriol 171: 2142 – 2147.en_US
dc.identifier.citedreferencePeabody CR, Chung YJ, Yen MR, Vidal-Ingigliardi D, Pugsley AP & Saier MH Jr. ( 2003 ) Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149: 3051 – 3072.en_US
dc.identifier.citedreferencePlanet PJ, Kachlany SC, DeSalle R & Figurski DH ( 2001 ) Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci USA 98: 2503 – 2508.en_US
dc.identifier.citedreferencePossot OM, Gerard-Vincent M & Pugsley AP ( 1999 ) Membrane association and multimerization of secreton component PulC. J Bacteriol 181: 4004 – 4011.en_US
dc.identifier.citedreferencePossot OM, Vignon G, Bomchil N, Ebel F & Pugsley AP ( 2000 ) Multiple interactions between pullulanase secreton components involved in stabilization and cytoplasmic membrane association of PulE. J Bacteriol 182: 2142 – 2152.en_US
dc.identifier.citedreferencePy B, Loiseau L & Barras F ( 1999 ) Assembly of the type II secretion machinery of Erwinia chrysanthemi: direct interaction and associated conformational change between OutE, the putative ATP-binding component and the membrane protein OutL. J Mol Biol 289: 659 – 670.en_US
dc.identifier.citedreferencePy B, Loiseau L & Barras F ( 2001 ) An inner membrane platform in the type II secretion machinery of gram-negative bacteria. EMBO Rep 2: 244 – 248.en_US
dc.identifier.citedreferenceReeves PJ, Whitcombe D, Wharam S, Gibson M, Allison G, Bunce N, Barallon R, Douglas P, Mulholland V & Stevens S ( 1993 ) Molecular cloning and characterization of 13 out genes from Erwinia carotovora subspecies carotovora: genes encoding members of a general secretion pathway (GSP) widespread in gram-negative bacteria. Mol Microbiol 8: 443 – 456.en_US
dc.identifier.citedreferenceRico AI, Garcia-Ovalle M, Mingorance J & Vicente M ( 2004 ) Role of two essential domains of Escherichia coli FtsA in localization and progression of the division ring. Mol Microbiol 53: 1359 – 1371.en_US
dc.identifier.citedreferenceRobert V, Filloux A & Michel GP ( 2005a ) Role of XcpP in the functionality of the Pseudomonas aeruginosa secreton. Res Microbiol 156: 880 – 886.en_US
dc.identifier.citedreferenceRobert V, Filloux A & Michel GP ( 2005b ) Subcomplexes from the Xcp secretion system of Pseudomonas aeruginosa. FEMS Microbiol Lett 252: 43 – 50.en_US
dc.identifier.citedreferenceRobert V, Hayes F, Lazdunski A & Michel GP ( 2002 ) Identification of XcpZ domains required for assembly of the secreton of Pseudomonas aeruginosa. J Bacteriol 184: 1779 – 1782.en_US
dc.identifier.citedreferenceRobien MA, Krumm BE, Sandkvist M & Hol WGJ ( 2003 ) Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J Mol Biol 333: 657 – 674.en_US
dc.identifier.citedreferenceRossier O, Starkenburg SR & Cianciotto NP ( 2004 ) Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires' disease pneumonia. Infect Immun 72: 310 – 321.en_US
dc.identifier.citedreferenceRussel M ( 1998 ) Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. J Mol Biol 279: 485 – 499.en_US
dc.identifier.citedreferenceRussell RB, Sasieni PD & Sternberg MJ ( 1998 ) Supersites within superfolds. Binding site similarity in the absence of homology. J Mol Biol 282: 903 – 918.en_US
dc.identifier.citedreferenceSandkvist M ( 2001a ) Biology of type II secretion. Mol Microbiol 40: 271 – 283.en_US
dc.identifier.citedreferenceSandkvist M ( 2001b ) Type II secretion and pathogenesis. Infect Immun 69: 3523 – 3535.en_US
dc.identifier.citedreferenceSandkvist M, Bagdasarian M, Howard SP & Dirita VJ ( 1995 ) Interaction between the autokinase EpsE and EpsL in the cytoplasmic membrane is required for extracellular secretion in Vibrio cholerae. EMBO J 14: 1664 – 1673.en_US
dc.identifier.citedreferenceSandkvist M, Michel LO, Hough LP, Morales VM, Bagdasarian M, Koomey M, Dirita VJ & Bagdasarian M ( 1997 ) General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae. J Bacteriol 179: 6994 – 7003.en_US
dc.identifier.citedreferenceSandkvist M, Hough LP, Bagdasarian MM & Bagdasarian M ( 1999 ) Direct interaction of the EpsL and EpsM proteins of the general secretion apparatus in Vibrio cholerae. J Bacteriol 181: 3129 – 3135.en_US
dc.identifier.citedreferenceSandkvist M, Keith JM, Bagdasarian M & Howard SP ( 2000 ) Two regions of EpsL involved in species-specific protein-protein interactions with EpsE and EpsM of the general secretion pathway in Vibrio cholerae. J Bacteriol 182: 742 – 748.en_US
dc.identifier.citedreferenceSauvonnet N, Vignon G, Pugsley AP & Gounon P ( 2000 ) Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J 19: 2221 – 2228.en_US
dc.identifier.citedreferenceSchoenhofen IC, Li G, Strozen TG & Howard SP ( 2005 ) Purification and characterization of the N-terminal domain of ExeA: a novel ATPase involved in the type II secretion pathway of Aeromonas hydrophila. J Bacteriol 187: 6370 – 6378.en_US
dc.identifier.citedreferenceScott ME, Dossani ZY & Sandkvist M ( 2001 ) Directed polar secretion of protease from single cells of Vibrio cholerae via the type II secretion pathway. Proc Natl Acad Sci USA 98: 13978 – 13983.en_US
dc.identifier.citedreferenceShevchik VE, Robert-Baudouy J & Condemine G ( 1997 ) Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway, and secreted proteins. EMBO J 16: 3007 – 3016.en_US
dc.identifier.citedreferenceSilberg JJ, Hoff KG, Tapley TL & Vickery LE ( 2001 ) The Fe/S assembly protein IscU behaves as a substrate for the molecular chaperone Hsc66 from Escherichia coli. J Biol Chem 276: 1696 – 1700.en_US
dc.identifier.citedreferenceStrom MS & Lory S ( 1991 ) Amino acid substitutions in pilin of Pseudomonas aeruginosa. Effect on leader peptide cleavage, amino-terminal methylation, and pilus assembly. J Biol Chem 266: 1656 – 1664.en_US
dc.identifier.citedreferenceVignon G, Kohler R, Larquet E, Giroux S, Prevost MC, Roux P & Pugsley AP ( 2003 ) Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J Bacteriol 185: 3416 – 3428.en_US
dc.identifier.citedreferenceVoulhoux R, Ball G, Ize B, Vasil ML, Lazdunski A, Wu LF & Filloux A ( 2001 ) Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J 20: 6735 – 6741.en_US
dc.identifier.citedreferenceVoulhoux R, Bos MP, Geurtsen J, Mols M & Tommassen J ( 2003 ) Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299: 262 – 265.en_US
dc.identifier.citedreferenceWolfgang M, van Putten JPM, Hayes SF, Dorward D & Koomey M ( 2000 ) Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. EMBO J 19: 6408 – 6418.en_US
dc.identifier.citedreferenceYeo HJ, Savvides SN, Herr AB, Lanka E & Waksman G ( 2000 ) Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol Cell 6: 1461 – 1472.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.