Show simple item record

The TLR2-MyD88-NOD2-RIPK2 signalling axis regulates a balanced pro-inflammatory and IL-10-mediated anti-inflammatory cytokine response to Gram-positive cell walls

dc.contributor.authorMoreira, Lilian O.en_US
dc.contributor.authorEl Kasmi, Karim C.en_US
dc.contributor.authorSmith, Amber M.en_US
dc.contributor.authorFinkelstein, Daviden_US
dc.contributor.authorFillon, Sophieen_US
dc.contributor.authorKim, Yun-Gien_US
dc.contributor.authorNúñez, Gabrielen_US
dc.contributor.authorTuomanen, Elaineen_US
dc.contributor.authorMurray, Peter J.en_US
dc.date.accessioned2010-06-01T21:31:39Z
dc.date.available2010-06-01T21:31:39Z
dc.date.issued2008-10en_US
dc.identifier.citationMoreira, Lilian O.; El Kasmi, Karim C.; Smith, Amber M.; Finkelstein, David; Fillon, Sophie; Kim, Yun-Gi; NÚÑez, Gabriel; Tuomanen, Elaine; Murray, Peter J. (2008). "The TLR2-MyD88-NOD2-RIPK2 signalling axis regulates a balanced pro-inflammatory and IL-10-mediated anti-inflammatory cytokine response to Gram-positive cell walls." Cellular Microbiology 10(10): 2067-2077. <http://hdl.handle.net/2027.42/74582>en_US
dc.identifier.issn1462-5814en_US
dc.identifier.issn1462-5822en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74582
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18549453&dopt=citationen_US
dc.description.abstractSystemic infection with Streptococcus pneumoniae is associated with a vigorous pro-inflammatory response to structurally complex cell wall fragments (PnCW) that are shed during cell growth and antibiotic-induced autolysis. Consistent with previous studies, inflammatory cytokine production induced by PnCW was dependent on TLR2 but independent of NOD2, a cytoplasmic NLR protein. However, in parallel with the pro-inflammatory response, we found that PnCW also induced prodigious secretion of anti-inflammatory IL-10 from macrophages. This response was dependent on TLR2, but also involved NOD2 as absence of NOD2-reduced IL-10 secretion in response to cell wall and translated into diminished downstream effects on IL-10-regulated target gene expression. PnCW-mediated production of IL-10 via TLR2 required RIPK2 a kinase required for NOD2 function, and MyD88 but differed from that known for zymosan in that ERK pathway activation was not detected. As mutations in NOD2 are linked to aberrant immune responses, the temporal and quantitative effects of activation of the TLR2-NOD2-RIPK2 pathway on IL-10 secretion may affect the balance between pro- and anti-inflammatory responses to Gram-positive bacteria.en_US
dc.format.extent713918 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2008 Blackwell Publishing Ltden_US
dc.titleThe TLR2-MyD88-NOD2-RIPK2 signalling axis regulates a balanced pro-inflammatory and IL-10-mediated anti-inflammatory cytokine response to Gram-positive cell wallsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pathology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.en_US
dc.contributor.affiliationotherDepartment of Infectious Diseases, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA.en_US
dc.contributor.affiliationotherDepartment of Immunology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA.en_US
dc.contributor.affiliationotherHartwell Center for Biotechnology and Bioinformatics, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA.en_US
dc.identifier.pmid18549453en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74582/1/j.1462-5822.2008.01189.x.pdf
dc.identifier.doi10.1111/j.1462-5822.2008.01189.xen_US
dc.identifier.sourceCellular Microbiologyen_US
dc.identifier.citedreferenceBarreau, F., Meinzer, U., Chareyre, F., Berrebi, D., Niwa-Kawakita, M., Dussaillant, M., et al. ( 2007 ) CARD15/NOD2 is required for Peyer's patches homeostasis in mice. PLoS ONE 2: e523.en_US
dc.identifier.citedreferenceBenjamini, Y., Drai, D., Elmer, G., Kafkafi, N., and Golani, I. ( 2001 ) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125: 279 – 284.en_US
dc.identifier.citedreferenceBorm, M.E., van Bodegraven, A.A., Mulder, C.J., Kraal, G., and Bouma, G. ( 2008 ) The effect of NOD2 activation on TLR2-mediated cytokine responses is dependent on activation dose and NOD2 genotype. Genes Immun 9: 274 – 278.en_US
dc.identifier.citedreferenceChin, A.I., Dempsey, P.W., Bruhn, K., Miller, J.F., Xu, Y., and Cheng, G. ( 2002 ) Involvement of receptor-interacting protein 2 in innate and adaptive immune responses. Nature 416: 190 – 194.en_US
dc.identifier.citedreferenceDillon, S., Agrawal, A., Van Dyke, T., Landreth, G., McCauley, L., Koh, A., et al. ( 2004 ) A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J Immunol 172: 4733 – 4743.en_US
dc.identifier.citedreferenceDillon, S., Agrawal, S., Banerjee, K., Letterio, J., Denning, T.L., Oswald-Richter, K., et al. ( 2006 ) Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J Clin Invest 116: 916 – 928.en_US
dc.identifier.citedreferenceEdwards, J.P., Zhang, X., Frauwirth, K.A., and Mosser, D.M. ( 2006 ) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80: 1298 – 1307.en_US
dc.identifier.citedreferenceEl Kasmi, K.C., Holst, J., Coffre, M., Mielke, L., de Pauw, A., Lhocine, N., et al. ( 2006 ) General nature of the STAT3-activated anti-inflammatory response. J Immunol 177: 7880 – 7888.en_US
dc.identifier.citedreferenceEl Kasmi, K.C., Smith, A.M., Williams, L., Neale, G., Panopolous, A., Watowich, S.S., et al. ( 2007 ) Cutting edge: a transcriptional repressor and corepressor induced by the STAT3-regulated anti-inflammatory signaling pathway. J Immunol 179: 7215 – 7219.en_US
dc.identifier.citedreferenceFaustin, B., Lartigue, L., Bruey, J.M., Luciano, F., Sergienko, E., Bailly-Maitre, B., et al. ( 2007 ) Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25: 713 – 724.en_US
dc.identifier.citedreferenceFillon, S., Soulis, K., Rajasekaran, S., Benedict-Hamilton, H., Radin, J.N., Orihuela, C.J., et al. ( 2006 ) Platelet-activating factor receptor and innate immunity: uptake of Gram-positive bacterial cell wall into host cells and cell-specific pathophysiology. J Immunol 177: 6182 – 6191.en_US
dc.identifier.citedreferenceGosink, K.K., Mann, E.R., Guglielmo, C., Tuomanen, E.I., and Masure, H.R. ( 2000 ) Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect Immun 68: 5690 – 5695.en_US
dc.identifier.citedreferenceHasegawa, M., Fujimoto, Y., Lucas, P.C., Nakano, H., Fukase, K., Nunez, G., and Inohara, N. ( 2008 ) A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. EMBO J 27: 373 – 383.en_US
dc.identifier.citedreferenceHolst, J., Vignali, K.M., Burton, A.R., and Vignali, D.A. ( 2006a ) Rapid analysis of T-cell selection in vivo using T cell-receptor retrogenic mice. Nat Methods 3: 191 – 197.en_US
dc.identifier.citedreferenceHolst, J., Szymczak-Workman, A.L., Vignali, K.M., Burton, A.R., Workman, C.J., and Vignali, D.A. ( 2006b ) Generation of T-cell receptor retrogenic mice. Nat Protoc 1: 406 – 417.en_US
dc.identifier.citedreferenceHugot, J.P., Zaccaria, I., Cavanaugh, J., Yang, H., Vermeire, S., Lappalainen, M., et al. ( 2007 ) Prevalence of CARD15/NOD2 mutations in Caucasian healthy people. Am J Gastroenterol 102: 1259 – 1267.en_US
dc.identifier.citedreferenceInohara, C., McDonald, C., and Nunez, G. ( 2005 ) NOD-LRR proteins: role in host–microbial interactions and inflammatory disease. Annu Rev Biochem 74: 355 – 383.en_US
dc.identifier.citedreferenceInohara, N., and Nunez, G. ( 2003 ) NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 3: 371 – 382.en_US
dc.identifier.citedreferenceKanneganti, T.D., Lamkanfi, M., and Nunez, G. ( 2007 ) Intracellular NOD-like receptors in host defense and disease. Immunity 27: 549 – 559.en_US
dc.identifier.citedreferenceKawakami, Y., Inagaki, N., Salek-Ardakani, S., Kitaura, J., Tanaka, H., Nagao, K., et al. ( 2006 ) Regulation of dendritic cell maturation and function by Bruton's tyrosine kinase via IL-10 and Stat3. Proc Natl Acad Sci USA 103: 153 – 158.en_US
dc.identifier.citedreferenceKobayashi, K.S., Chamaillard, M., Ogura, Y., Henegariu, O., Inohara, N., Nunez, G., and Flavell, R.A. ( 2005 ) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307: 731 – 734.en_US
dc.identifier.citedreferenceKobayashi, K., Inohara, N., Hernandez, L.D., Galan, J.E., Nunez, G., Janeway, C.A., et al. ( 2002 ) RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416: 194 – 199.en_US
dc.identifier.citedreferenceKullberg, B.J., Ferwerda, G., de Jong, D.J., Drenth, J.P., Joosten, L.A., Van der Meer, J.W., and Netea, M.G. ( 2008 ) Crohn's disease patients homozygous for the 3020insC NOD2 mutation have a defective NOD2/TLR4 cross-tolerance to intestinal stimuli. Immunology 123: 600 – 605.en_US
dc.identifier.citedreferenceLang, R., Patel, D., Morris, J.J., Rutschman, R.L., and Murray, P.J. ( 2002 ) Shaping gene expression in activated and resting primary macrophages by IL-10. J Immunol 169: 2253 – 2263.en_US
dc.identifier.citedreferenceLesage, S., Zouali, H., Cezard, J.P., Colombel, J.F., Belaiche, J., Almer, S., et al. ( 2002 ) CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet 70: 845 – 857.en_US
dc.identifier.citedreferenceMaeda, S., Hsu, L.C., Liu, H., Bankston, L.A., Iimura, M., Kagnoff, M.F., et al. ( 2005 ) Nod2 mutation in Crohn's disease potentiates NF-kappaB activity and IL-1beta processing. Science 307: 734 – 738.en_US
dc.identifier.citedreferenceMariathasan, S., Weiss, D.S., Newton, K., McBride, J., O'Rourke, K., Roose-Girma, M., et al. ( 2006 ) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440: 228 – 232.en_US
dc.identifier.citedreferenceMarina-Garcia, N., Franchi, L., Kim, Y.G., Miller, D., McDonald, C., Boons, G.J., and Nunez, G. ( 2008 ) Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2. J Immunol 180: 4050 – 4057.en_US
dc.identifier.citedreferenceMoreillon, P., and Majcherczyk, P.A. ( 2003 ) Proinflammatory activity of cell-wall constituents from Gram-positive bacteria. Scand J Infect Dis 35: 632 – 641.en_US
dc.identifier.citedreferenceMurray, P.J. ( 2005 ) NOD proteins: an intracellular pathogen-recognition system or signal transduction modifiers? Curr Opin Immunol 17: 352 – 358.en_US
dc.identifier.citedreferenceMurray, P.J. ( 2006 ) Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Curr Opin Pharmacol 6: 379 – 386.en_US
dc.identifier.citedreferenceNetea, M.G., Kullberg, B.J., de Jong, D.J., Franke, B., Sprong, T., Naber, T.H., et al. ( 2004 ) NOD2 mediates anti-inflammatory signals induced by TLR2 ligands: implications for Crohn's disease. Eur J Immunol 34: 2052 – 2059.en_US
dc.identifier.citedreferenceNetea, M.G., Ferwerda, G., de Jong, D.J., Jansen, T., Jacobs, L., Kramer, M., et al. ( 2005 ) Nucleotide-binding oligomerization domain-2 modulates specific TLR pathways for the induction of cytokine release. J Immunol 174: 6518 – 6523.en_US
dc.identifier.citedreferenceOrihuela, C.J., Fillon, S., Smith-Sielicki, S.H., El Kasmi, K.C., Gao, G., Soulis, K., et al. ( 2006 ) Cell wall-mediated neuronal damage in early sepsis. Infect Immun 74: 3783 – 3789.en_US
dc.identifier.citedreferencePan, Q., Mathison, J., Fearns, C., Kravchenko, V.V., Da Silva Correia, J., Hoffman, H.M., et al. ( 2007 ) MDP-induced interleukin-1beta processing requires Nod2 and CIAS1/NALP3. J Leukoc Biol 82: 177 – 183.en_US
dc.identifier.citedreferencePark, J.H., Kim, Y.G., McDonald, C., Kanneganti, T.D., Hasegawa, M., Body-Malapel, M., et al. ( 2007 ) RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J Immunol 178: 2380 – 2386.en_US
dc.identifier.citedreferencePark, J.M., Greten, F.R., Wong, A., Westrick, R.J., Arthur, J.S., Otsu, K., et al. ( 2005 ) Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis – CREB and NF-kappaB as key regulators. Immunity 23: 319 – 329.en_US
dc.identifier.citedreferencePauleau, A.L., and Murray, P.J. ( 2003 ) Role of nod2 in the response of macrophages to Toll-like receptor agonists. Mol Cell Biol 23: 7531 – 7539.en_US
dc.identifier.citedreferenceRogers, N.C., Slack, E.C., Edwards, A.D., Nolte, M.A., Schulz, O., Schweighoffer, E., et al. ( 2005 ) Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22: 507 – 517.en_US
dc.identifier.citedreferenceSchmidt, N.W., Thieu, V.T., Mann, B.A., Ahyi, A.N., and Kaplan, M.H. ( 2006 ) Bruton's tyrosine kinase is required for TLR-induced IL-10 production. J Immunol 177: 7203 – 7210.en_US
dc.identifier.citedreferenceSlack, E.C., Robinson, M.J., Hernanz-Falcon, P., Brown, G.D., Williams, D.L., Schweighoffer, E., et al. ( 2007 ) Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan. Eur J Immunol 37: 1600 – 1612.en_US
dc.identifier.citedreferenceStrober, W., Murray, P.J., Kitani, A., and Watanabe, T. ( 2006 ) Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 6: 9 – 20.en_US
dc.identifier.citedreferenceStrober, W., Fuss, I., and Mannon, P. ( 2007 ) The fundamental basis of inflammatory bowel disease. J Clin Invest 117: 514 – 521.en_US
dc.identifier.citedreferenceTotemeyer, S., Sheppard, M., Lloyd, A., Roper, D., Dowson, C., Underhill, D., et al. ( 2006 ) IFN-gamma enhances production of nitric oxide from macrophages via a mechanism that depends on nucleotide oligomerization domain-2. J Immunol 176: 4804 – 4810.en_US
dc.identifier.citedreferenceTuomanen, E.I., Austrian, R., and Masure, H.R. ( 1995 ) Pathogenesis of pneumococcal infection. N Engl J Med 332: 1280 – 1284.en_US
dc.identifier.citedreferenceTuomanen, E., Tomasz, A., Hengstler, B., and Zak, O. ( 1985a ) The relative role of bacterial cell wall and capsule in the induction of inflammation in pneumococcal meningitis. J Infect Dis 151: 535 – 540.en_US
dc.identifier.citedreferenceTuomanen, E., Liu, H., Hengstler, B., Zak, O., and Tomasz, A. ( 1985b ) The induction of meningeal inflammation by components of the pneumococcal cell wall. J Infect Dis 151: 859 – 868.en_US
dc.identifier.citedreferenceWatanabe, T., Kitani, A., Murray, P.J., Wakatsuki, Y., Fuss, I.J., and Strober, W. ( 2006 ) Nucleotide binding oligomerization domain 2 deficiency leads to dysregulated TLR2 signaling and induction of antigen-specific colitis. Immunity 25: 473 – 485.en_US
dc.identifier.citedreferenceXavier, R.J., and Podolsky, D.K. ( 2007 ) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448: 427 – 434.en_US
dc.identifier.citedreferenceYoshimura, A., Lien, E., Ingalls, R.R., Tuomanen, E., Dziarski, R., and Golenbock, D. ( 1999 ) Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 163: 1 – 5.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.