Show simple item record

A dispersal-limited sampling theory for species and alleles

dc.contributor.authorEtienne, Rampal S.en_US
dc.contributor.authorAlonso, Daviden_US
dc.date.accessioned2010-06-01T21:34:20Z
dc.date.available2010-06-01T21:34:20Z
dc.date.issued2005-11en_US
dc.identifier.citationEtienne, Rampal S.; Alonso, David (2005). "A dispersal-limited sampling theory for species and alleles." Ecology Letters 8(11): 1147-1156. <http://hdl.handle.net/2027.42/74624>en_US
dc.identifier.issn1461-023Xen_US
dc.identifier.issn1461-0248en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74624
dc.format.extent179541 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 Blackwell Publishing Ltd/CNRSen_US
dc.subject.otherBinomial Samplingen_US
dc.subject.otherBiodiversityen_US
dc.subject.otherCommunityen_US
dc.subject.otherDispersal-limited Samplingen_US
dc.subject.otherEwens Sampling Formulaen_US
dc.subject.otherHypergeometric Samplingen_US
dc.subject.otherNeutral Modelen_US
dc.subject.otherRandom Samplingen_US
dc.titleA dispersal-limited sampling theory for species and allelesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumEcology and Evolutionary Biology, University of Michigan, 830 North University Av, Ann Arbor, MI 48109-1048, USAen_US
dc.contributor.affiliationotherCommunity and Conservation Ecology Group, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlandsen_US
dc.identifier.pmid21352438en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74624/1/j.1461-0248.2005.00817.x.pdf
dc.identifier.doi10.1111/j.1461-0248.2005.00817.xen_US
dc.identifier.sourceEcology Lettersen_US
dc.identifier.citedreferenceAlonso, D. & McKane, A.J. ( 2004 ). Sampling Hubbell's neutral theory of biodiversity. Ecol. Lett., 7, 901 – 910.en_US
dc.identifier.citedreferenceBrown, J.H. & Kodric-Brown, A. ( 1977 ). Turnover rate in insular biogeography: effect of immigration on extinction. Ecology, 58, 445 – 449.en_US
dc.identifier.citedreferenceBulmer, M.G. ( 1974 ). On fitting the Poisson lognormal distribution to species-abundance data. Biometrics, 30, 101 – 110.en_US
dc.identifier.citedreferenceDewdney, A.K. ( 1998 ). A general theory of the sampling process with applications to the ‘veil line’. Theor. Popul. Biol., 54, 294 – 302.en_US
dc.identifier.citedreferenceDewdney, A.K. ( 2000 ). A dynamical model of communities and a new species-abundance distribution. Biol. Bull., 35, 152 – 165.en_US
dc.identifier.citedreferenceDiserud, O.H. & Engen, S. ( 2000 ). A general and dynamic species abundance model, embracing the lognormal and the gamma models. Am. Nat., 155, 497 – 511.en_US
dc.identifier.citedreferenceEngen, S. & Lande, R. ( 1996a ). Population dynamic models generating the lognormal species abundance distribution. Math. Biosci., 132, 169 – 183.en_US
dc.identifier.citedreferenceEngen, S. & Lande, R. ( 1996b ). Population dynamic models generating the species abundance distributions of the Gamma type. J. Theor. Biol., 178, 325 – 331.en_US
dc.identifier.citedreferenceEtienne, R.S. ( 2005 ). A new sampling formula for neutral biodiversity. Ecol. Lett., 8, 253 – 260.en_US
dc.identifier.citedreferenceEtienne, R.S. & Olff, H. ( 2004a ). How dispersal limitation shapes species – body size distributions in local communities. Am. Nat., 163, 69 – 83.en_US
dc.identifier.citedreferenceEtienne, R.S. & Olff, H. ( 2004b ). A novel genealogical approach to neutral biodiversity theory. Ecol. Lett., 7, 170 – 175.en_US
dc.identifier.citedreferenceEtienne, R.S. & Olff, H. ( 2005 ). Bayesian analysis of species-abundance data: assessing the relative importance of dispersal and niche-partitioning for the maintenance of biodiversity. Ecol. Lett., 8, 493 – 504.en_US
dc.identifier.citedreferenceEwens, W.J. ( 1972 ). The sampling theory of selectively neutral alleles. Theor. Popul. Biol., 3, 87 – 112.en_US
dc.identifier.citedreferenceFisher, R.A., Corbet, A.S. & Williams, C.B. ( 1943 ). The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol., 12, 42 – 58.en_US
dc.identifier.citedreferenceGriffiths, R.C. & Lessard, S. ( 2005 ). Ewens’ sampling formula and related formulae: combinatorial proofs, extensions to variable population size and applications to ages of alleles. Theor. Popul. Biol. ( in press ).en_US
dc.identifier.citedreferenceGrinnell, J. ( 1922 ). On the role of the accidental. Auk, 39, 373 – 380.en_US
dc.identifier.citedreferenceHanski, I. ( 1983 ). Coexistence of competitors in patchy environment. Ecology, 64, 493 – 500.en_US
dc.identifier.citedreferenceHe, F.L. ( 2005 ). Deriving a neutral model of species abundance from fundamental mechanisms of population dynamics. Funct. Ecol., 19, 187 – 193.en_US
dc.identifier.citedreferenceHubbell, S.P. ( 1997 ). A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. Coral Reefs, 16, S9 – S21.en_US
dc.identifier.citedreferenceHubbell, S.P. ( 2001 ). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ, USA.en_US
dc.identifier.citedreferenceJohnson, N.L., Kotz, S. & Balakrishnan, N. ( 1997 ). Discrete Multivariate Distributions. Wiley, New York, NY, USA.en_US
dc.identifier.citedreferenceKarlin, S. & McGregor, J. ( 1972 ). Addendum to a paper of W. Ewens. Theor. Popul. Biol., 3, 113 – 116.en_US
dc.identifier.citedreferenceLande, R., Engen, S. & Saether, B.-E. ( 2003 ). Stochastic Population Dynamics in Ecology and Conservation. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford, UK.en_US
dc.identifier.citedreferenceLevins, R. & Culver, D. ( 1971 ). Regional coexistence of species and competition between rare species. Proc Natl Acad Sci U S A, 68, 1246 – 1248.en_US
dc.identifier.citedreferenceLoreau, M. & Mouquet, N. ( 1999 ). Immigration and the maintenance of local species diversity. Am. Nat., 154, 427 – 440.en_US
dc.identifier.citedreferenceMacArhur, R.H. & Wilson, E.O. ( 1967 ). Island Biogeography. Princeton University Press, Princeton, NJ, USA.en_US
dc.identifier.citedreferenceMcGill, B.J. ( 2003 ). A test of the unified neutral theory of biodiversity. Nature, 422, 881 – 885.en_US
dc.identifier.citedreferenceMcKane, A.J., Alonso, D. & SolÉ, R.V. ( 2000 ). A mean field stochastic theory for species rich assembled communities. Phys. Rev. E, 62, 8466 – 8484.en_US
dc.identifier.citedreferenceMcKane, A.J., Alonso, D. & SolÉ, R.V. ( 2004 ). Analytic solution of Hubbell's model of local community dynamics. Theor. Popul. Biol., 65, 67 – 73.en_US
dc.identifier.citedreferenceMoran, P.A.P. ( 1958 ). Random processes in genetics. Proc Camb Philol Soc, 54, 60 – 71.en_US
dc.identifier.citedreferenceMoran, P.A.P. ( 1962 ). Statistical Processes of Evolutionary Theory. Clarendon Press, Oxford, UK.en_US
dc.identifier.citedreferenceNee, S. ( 2005 ). The neutral theory of biodiversity: do the numbers add up ? Funct. Ecol., 19, 173 – 176.en_US
dc.identifier.citedreferencePielou, E.C. ( 1969 ). An Introduction to Mathematical Ecology. Wiley, New York, NY, USA.en_US
dc.identifier.citedreferenceSlade, P.F. & Wakeley, J. ( 2005 ). The structured ancestral selection graph and the many-demes limit. Genetics, 169, 1117 – 1131.en_US
dc.identifier.citedreferenceSolÉ, R.V., Alonso, D. & McKane, A.J. ( 2000 ). Scaling in a network model of multispecies communities. Physica A, 286, 337 – 344.en_US
dc.identifier.citedreferenceTilman, D. ( 1994 ). Competition and biodiversity in spatially structured habitats. Ecology, 75, 2 – 16.en_US
dc.identifier.citedreferenceVallade, M. & Houchmandzadeh, B. ( 2003 ). Analytical solution of a neutral model of biodiversity. Phys. Rev. E, 68, 061902.en_US
dc.identifier.citedreferenceVolkov, I., Banavar, J.R., Hubbell, S.P. & Maritan, A. ( 2003 ). Neutral theory and relative species abundance in ecology. Nature, 424, 1035 – 1037.en_US
dc.identifier.citedreferenceWakeley, J. ( 1998 ). Segregating sites in Wright's island model. Theor. Popul. Biol., 53, 166 – 175.en_US
dc.identifier.citedreferenceWakeley, J. ( 1999 ). Non-equilibrium migration in human history. Genetics, 153, 1863 – 1871.en_US
dc.identifier.citedreferenceWakeley, J. & Aliacar, N. ( 2001 ). Gene genealogies in a metapopulation. Genetics, 159, 893 – 905; Corrigendum in Genetics 160, 1263 (2001).en_US
dc.identifier.citedreferenceWakeley, J. & Takahashi, T. ( 2004 ). The many-demes limit for selection and drift in a subdivided population. Theor. Popul. Biol., 66, 83 – 91.en_US
dc.identifier.citedreferenceWatterson, G.A. ( 1974 ). Models for the logarithmic species abundance distribution. Theor. Popul. Biol., 6, 217 – 250.en_US
dc.identifier.citedreferenceWright, S. ( 1931 ). Evolution in Mendelian populations. Genetics, 16, 97 – 159.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.