Show simple item record

Hexameric ring structure of the N-terminal domain of Mycobacterium tuberculosis DnaB helicase

dc.contributor.authorBiswas, Tapanen_US
dc.contributor.authorTsodikov, Oleg V.en_US
dc.date.accessioned2010-06-01T21:37:11Z
dc.date.available2010-06-01T21:37:11Z
dc.date.issued2008-06en_US
dc.identifier.citationBiswas, Tapan; Tsodikov, Oleg V. (2008). "Hexameric ring structure of the N-terminal domain of Mycobacterium tuberculosis DnaB helicase." FEBS Journal 275(12): 3064-3071. <http://hdl.handle.net/2027.42/74669>en_US
dc.identifier.issn1742-464Xen_US
dc.identifier.issn1742-4658en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74669
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18479467&dopt=citationen_US
dc.format.extent813980 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 Federation of European Biochemical Societiesen_US
dc.subject.otherCrystal Structureen_US
dc.subject.otherDnaB Helicaseen_US
dc.subject.otherPrimaseen_US
dc.subject.otherReplicationen_US
dc.subject.otherTuberculosisen_US
dc.titleHexameric ring structure of the N-terminal domain of Mycobacterium tuberculosis DnaB helicaseen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid18479467en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74669/1/j.1742-4658.2008.06460.x.pdf
dc.identifier.doi10.1111/j.1742-4658.2008.06460.xen_US
dc.identifier.sourceFEBS Journalen_US
dc.identifier.citedreferenceHirota Y, Ryter A & Jacob F ( 1968 ) Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. Cold Spring Harb Symp Quant Biol 33, 677 – 693.en_US
dc.identifier.citedreferenceLeBowitz JH & McMacken R ( 1986 ) The Escherichia coli dnaB replication protein is a DNA helicase. J Biol Chem 261, 4738 – 4748.en_US
dc.identifier.citedreferenceBaker TA, Sekimizu K, Funnell BE & Kornberg A ( 1986 ) Extensive unwinding of the plasmid template during staged enzymatic initiation of DNA replication from the origin of the Escherichia coli chromosome. Cell 45, 53 – 64.en_US
dc.identifier.citedreferenceSchaeffer PM, Headlam MJ & Dixon NE ( 2005 ) Protein–protein interactions in the eubacterial replisome. IUBMB Life 57, 5 – 12.en_US
dc.identifier.citedreferenceCorn JE & Berger JM ( 2006 ) Regulation of bacterial priming and daughter strand synthesis through helicase–primase interactions. Nucleic Acids Res 34, 4082 – 4088.en_US
dc.identifier.citedreferenceKaplan DL ( 2000 ) The 3′-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase. J Mol Biol 301, 285 – 299.en_US
dc.identifier.citedreferenceGalletto R, Jezewska MJ & Bujalowski W ( 2004 ) Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: quantitative analysis of the rate of the dsDNA unwinding, processivity and kinetic step-size of the Escherichia coli DnaB helicase using rapid quench-flow method. J Mol Biol 343, 83 – 99.en_US
dc.identifier.citedreferenceMok M & Marians KJ ( 1987 ) The Escherichia coli preprimosome and DNA B helicase can form replication forks that move at the same rate. J Biol Chem 262, 16644 – 16654.en_US
dc.identifier.citedreferenceTanner NA, Hamdan SM, Jergic S, Schaeffer PM, Dixon NE & van Oijen AM ( 2008 ) Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nat Struct Mol Biol 15, 170 – 176.en_US
dc.identifier.citedreferenceBailey S, Eliason WK & Steitz TA ( 2007 ) The crystal structure of the Thermus aquaticus DnaB helicase monomer. Nucleic Acids Res 35, 4728 – 4736.en_US
dc.identifier.citedreferenceBiswas SB, Chen PH & Biswas EE ( 1994 ) Structure and function of Escherichia coli DnaB protein: role of the N-terminal domain in helicase activity. Biochemistry 33, 11307 – 11314.en_US
dc.identifier.citedreferenceWang G, Klein MG, Tokonzaba E, Zhang Y, Holden LG & Chen XS ( 2008 ) The structure of a DnaB-family replicative helicase and its interactions with primase. Nat Struct Mol Biol 15, 94 – 100.en_US
dc.identifier.citedreferenceBird LE, Pan H, Soultanas P & Wigley DB ( 2000 ) Mapping protein–protein interactions within a stable complex of DNA primase and DnaB helicase from Bacillus stearothermophilus. Biochemistry 39, 171 – 182.en_US
dc.identifier.citedreferenceBailey S, Eliason WK & Steitz TA ( 2007 ) Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase. Science 318, 459 – 463.en_US
dc.identifier.citedreferenceSingleton MR, Sawaya MR, Ellenberger T & Wigley DB ( 2000 ) Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589 – 600.en_US
dc.identifier.citedreferenceOakley AJ, Loscha KV, Schaeffer PM, Liepinsh E, Pintacuda G, Wilce MC, Otting G & Dixon NE ( 2005 ) Crystal and solution structures of the helicase-binding domain of Escherichia coli primase. J Biol Chem 280, 11495 – 11504.en_US
dc.identifier.citedreferenceLu YB, Ratnakar PV, Mohanty BK & Bastia D ( 1996 ) Direct physical interaction between DnaG primase and DnaB helicase of Escherichia coli is necessary for optimal synthesis of primer RNA. Proc Natl Acad Sci USA 93, 12902 – 12907.en_US
dc.identifier.citedreferenceThirlway J, Turner IJ, Gibson CT, Gardiner L, Brady K, Allen S, Roberts CJ & Soultanas P ( 2004 ) DnaG interacts with a linker region that joins the N- and C-domains of DnaB and induces the formation of 3-fold symmetric rings. Nucleic Acids Res 32, 2977 – 2986.en_US
dc.identifier.citedreferenceLeipe DD, Aravind L, Grishin NV & Koonin EV ( 2000 ) The bacterial replicative helicase DnaB evolved from a RecA duplication. Genome Res 10, 5 – 16.en_US
dc.identifier.citedreferenceKaplan DL & O’Donnell M ( 2002 ) DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands. Mol Cell 10, 647 – 657.en_US
dc.identifier.citedreferenceSan Martin MC, Stamford NP, Dammerova N, Dixon NE & Carazo JM ( 1995 ) A structural model for the Escherichia coli DnaB helicase based on electron microscopy data. J Struct Biol 114, 167 – 176.en_US
dc.identifier.citedreferenceTsodikov OV, Record MT Jr & Sergeev YV ( 2002 ) Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J Comput Chem 23, 600 – 609.en_US
dc.identifier.citedreferenceThirlway J & Soultanas P ( 2006 ) In the Bacillus stearothermophilus DnaB–DnaG complex, the activities of the two proteins are modulated by distinct but overlapping networks of residues. J Bacteriol 188, 1534 – 1539.en_US
dc.identifier.citedreferenceStordal L & Maurer R ( 1996 ) Defect in general priming conferred by linker region mutants of Escherichia coli dnaB. J Bacteriol 178, 4620 – 4627.en_US
dc.identifier.citedreferenceMiles CS, Weigelt J, Stamford NP, Dammerova N, Otting G & Dixon NE ( 1997 ) Precise limits of the N-terminal domain of DnaB helicase determined by NMR spectroscopy. Biochem Biophys Res Commun 231, 126 – 130.en_US
dc.identifier.citedreferenceSyson K, Thirlway J, Hounslow AM, Soultanas P & Waltho JP ( 2005 ) Solution structure of the helicase-interaction domain of the primase DnaG: a model for helicase activation. Structure 13, 609 – 616.en_US
dc.identifier.citedreferenceFass D, Bogden CE & Berger JM ( 1999 ) Crystal structure of the N-terminal domain of the DnaB hexameric helicase. Structure 7, 691 – 698.en_US
dc.identifier.citedreferenceWeigelt J, Brown SE, Miles CS, Dixon NE & Otting G ( 1999 ) NMR structure of the N-terminal domain of E. coli DnaB helicase: implications for structure rearrangements in the helicase hexamer. Structure 7, 681 – 690.en_US
dc.identifier.citedreferenceSu XC, Schaeffer PM, Loscha KV, Gan PH, Dixon NE & Otting G ( 2006 ) Monomeric solution structure of the helicase-binding domain of Escherichia coli DnaG primase. FEBS J 273, 4997 – 5009.en_US
dc.identifier.citedreferenceTougu K & Marians KJ ( 1996 ) The extreme C terminus of primase is required for interaction with DnaB at the replication fork. J Biol Chem 271, 21391 – 21397.en_US
dc.identifier.citedreferenceChang P & Marians KJ ( 2000 ) Identification of a region of Escherichia coli DnaB required for functional interaction with DnaG at the replication fork. J Biol Chem 275, 26187 – 26195.en_US
dc.identifier.citedreferenceLuft JR, Collins RJ, Fehrman NA, Lauricella AM, Veatch CK & DeTitta GT ( 2003 ) A deliberate approach to screening for initial crystallization conditions of biological macromolecules. J Struct Biol 142, 170 – 179.en_US
dc.identifier.citedreferenceOtwinowski Z & Minor W ( 1997 ) Processing of X-ray diffraction data collected in oscillation mode. Macromolec Crystallogr A 276, 307 – 326.en_US
dc.identifier.citedreferenceYeates TO ( 1997 ) Detecting and overcoming crystal twinning. Methods Enzymol 276, 344 – 358.en_US
dc.identifier.citedreferenceMccoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC & Read RJ ( 2007 ) Phaser crystallographic software. J Appl Crystallogr 40, 658 – 674.en_US
dc.identifier.citedreferenceEmsley P & Cowtan K ( 2004 ) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126 – 2132.en_US
dc.identifier.citedreferenceMurshudov GN, Vagin AA & Dodson EJ ( 1997 ) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240 – 255.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.