Show simple item record

Is The Amphibian Tree of Life really fatally flawed?

dc.contributor.authorFrost, Darrel R.en_US
dc.contributor.authorGrant, Taranen_US
dc.contributor.authorFaivovich, Julianen_US
dc.contributor.authorBain, Raoul H.en_US
dc.contributor.authorHaas, Alexanderen_US
dc.contributor.authorHaddad, Celio F. B.en_US
dc.contributor.authorde Sa, Rafael O.en_US
dc.contributor.authorChanning, Alanen_US
dc.contributor.authorWilkinson, Marken_US
dc.contributor.authorDonnellan, Stephen C.en_US
dc.contributor.authorRaxworthy, Christopher J.en_US
dc.contributor.authorCampbell, Jonathan A.en_US
dc.contributor.authorBlotto, Boris L.en_US
dc.contributor.authorMoler, Paulen_US
dc.contributor.authorDrewes, Robert C.en_US
dc.contributor.authorNussbaum, Ronald A.en_US
dc.contributor.authorLynch, John D.en_US
dc.contributor.authorGreen, David M.en_US
dc.contributor.authorWheeler, Ward C.en_US
dc.date.accessioned2010-06-01T21:38:22Z
dc.date.available2010-06-01T21:38:22Z
dc.date.issued2008-06en_US
dc.identifier.citationFrost, Darrel R.; Grant, Taran; Faivovich, Julian; Bain, Raoul H.; Haas, Alexander; Haddad, Celio F. B.; de Sa, Rafael O.; Channing, Alan; Wilkinson, Mark; Donnellan, Stephen C.; Raxworthy, Christopher J.; Campbell, Jonathan A.; Blotto, Boris L.; Moler, Paul; Drewes, Robert C.; Nussbaum, Ronald A.; Lynch, John D.; Green, David M.; Wheeler, Ward C. (2008). "Is The Amphibian Tree of Life really fatally flawed?." Cladistics 24(3): 385-395. <http://hdl.handle.net/2027.42/74688>en_US
dc.identifier.issn0748-3007en_US
dc.identifier.issn1096-0031en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74688
dc.description.abstractWiens (2007 , Q. Rev. Biol. 82, 55–56) recently published a severe critique of Frost et al.'s (2006, Bull. Am. Mus. Nat. Hist. 297, 1–370) monographic study of amphibian systematics, concluding that it is “a disaster” and recommending that readers “simply ignore this study”. Beyond the hyperbole, Wiens raised four general objections that he regarded as “fatal flaws”: (1) the sampling design was insufficient for the generic changes made and taxonomic changes were made without including all type species; (2) the nuclear gene most commonly used in amphibian phylogenetics, RAG-1, was not included, nor were the morphological characters that had justified the older taxonomy; (3) the analytical method employed is questionable because equally weighted parsimony “assumes that all characters are evolving at equal rates”; and (4) the results were at times “clearly erroneous”, as evidenced by the inferred non-monophyly of marsupial frogs. In this paper we respond to these criticisms. In brief: (1) the study of Frost et al. did not exist in a vacuum and we discussed our evidence and evidence previously obtained by others that documented the non-monophyletic taxa that we corrected. Beyond that, we agree that all type species should ideally be included, but inclusion of all potentially relevant type species is not feasible in a study of the magnitude of Frost et al. and we contend that this should not prevent progress in the formulation of phylogenetic hypotheses or their application outside of systematics. (2) Rhodopsin, a gene included by Frost et al. is the nuclear gene that is most commonly used in amphibian systematics, not RAG-1. Regardless, ignoring a study because of the absence of a single locus strikes us as unsound practice. With respect to previously hypothesized morphological synapomorphies, Frost et al. provided a lengthy review of the published evidence for all groups, and this was used to inform taxonomic decisions. We noted that confirming and reconciling all morphological transformation series published among previous studies needed to be done, and we included evidence from the only published data set at that time to explicitly code morphological characters (including a number of traditionally applied synapomorphies from adult morphology) across the bulk of the diversity of amphibians (Haas, 2003, Cladistics 19, 23–90). Moreover, the phylogenetic results of the Frost et al. study were largely consistent with previous morphological and molecular studies and where they differed, this was discussed with reference to the weight of evidence. (3) The claim that equally weighted parsimony assumes that all characters are evolving at equal rates has been shown to be false in both analytical and simulation studies. (4) The claimed “strong support” for marsupial frog monophyly is questionable. Several studies have also found marsupial frogs to be non-monophyletic. Wiens et al. (2005, Syst. Biol. 54, 719–748) recovered marsupial frogs as monophyletic, but that result was strongly supported only by Bayesian clade confidence values (which are known to overestimate support) and bootstrap support in his parsimony analysis was < 50%. Further, in a more recent parsimony analysis of an expanded data set that included RAG-1 and the three traditional morphological synapomorphies of marsupial frogs, Wiens et al. (2006, Am. Nat. 168, 579–596) also found them to be non-monophyletic. Although we attempted to apply the rule of monophyly to the naming of taxonomic groups, our phylogenetic results are largely consistent with conventional views even if not with the taxonomy current at the time of our writing. Most of our taxonomic changes addressed examples of non-monophyly that had previously been known or suspected (e.g., the non-monophyly of traditional Hyperoliidae, Microhylidae, Hemiphractinae, Leptodactylidae, Phrynobatrachus , Ranidae, Rana , Bufo ; and the placement of Brachycephalus within “ Eleutherodactylus ”, and Lineatriton within “ Pseudoeurycea ”), and it is troubling that Wiens and others, as evidenced by recent publications, continue to perpetuate recognition of non-monophyletic taxonomic groups that so profoundly misrepresent what is known about amphibian phylogeny. © The Willi Hennig Society 2007.en_US
dc.format.extent234580 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2008 The Willi Hennig Societyen_US
dc.titleIs The Amphibian Tree of Life really fatally flawed?en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMuseum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, MI 48109-1079, USAen_US
dc.contributor.affiliationotherDivision of Vertebrate Zoology (Herpetology), American Museum of Natural History, New York, NY 10024, USAen_US
dc.contributor.affiliationotherFaculdade de BiociÊncias, PontifÍcia Universidade CatÓlica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazilen_US
dc.contributor.affiliationotherDepartamento de Zoologia, Instituto de BiociÊncias, Universidade Estadual Paulista (UNESP), Caixa Postal 199, 13506-900 Rio Claro, SÃo Paulo, Brazilen_US
dc.contributor.affiliationotherBiocenter Grindel and Zoological Museum Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germanyen_US
dc.contributor.affiliationotherDepartment of Biology, University of Richmond, Richmond, VA 23173-0001, USAen_US
dc.contributor.affiliationotherDepartment of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africaen_US
dc.contributor.affiliationotherDepartment of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UKen_US
dc.contributor.affiliationotherSouth Australia Museum, Evolutionary Biology Unit, North Terrace, Adelaide 5000, South Australiaen_US
dc.contributor.affiliationotherDepartment of Biology, University of Texas at Arlington, TX 76019-0001, USAen_US
dc.contributor.affiliationotherDivision HerpetologÍa, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Angel Gallardo 470, 1405 Buenos Aires, Argentinaen_US
dc.contributor.affiliationother7818 SW CR-346, Archer, FL 32618, USAen_US
dc.contributor.affiliationotherDepartment of Herpetology, California Academy of Sciences, 875 Howard Street, San Francisco, CA 94103-3009, USAen_US
dc.contributor.affiliationotherInstituto de Ciencias Naturales, Universidad Nacional de Colombia, Apartado 7495, Bogota, Colombiaen_US
dc.contributor.affiliationotherRedpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canadaen_US
dc.contributor.affiliationotherDivision of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74688/1/j.1096-0031.2007.00181.x.pdf
dc.identifier.doi10.1111/j.1096-0031.2007.00181.xen_US
dc.identifier.sourceCladisticsen_US
dc.identifier.citedreferenceAguilar, C., Pacheco, V., 2005. ContribuciÓn de la morfologÍa bucofarÍngea larval a la filogenia de Batrachophrynus y Telmatobius. In: Lavilla, E.O., De la Riva, I. (Eds.), Estudio Sobre las Ranas Andinas de los GÉneros Telmatobius y Batrachophrynus (Anura: Leptodactylidae). MonografÍas de HerpetologÍa, 7. AsociaciÓn HerpetolÓgica EspaÑola, Valencia, pp. 219 – 238.en_US
dc.identifier.citedreferenceBÁez, A.M., Basso, N.G., 1996. The earliest known frogs of the Jurassic of South America: review and cladistic appraisal of their relationships. MÜnchner Geowissenschaft. Abh. (A) 30, 131 – 158.en_US
dc.identifier.citedreferenceBiju, S.D., Bossuyt, F., 2003. New frog family from India reveals an ancient biogeographical link with the Seychelles. Nature 425, 711 – 714.en_US
dc.identifier.citedreferenceBlair, W.F., ed., 1972. Evolution in the Genus Bufo. University of Texas Press, Austin, TX.en_US
dc.identifier.citedreferenceBossuyt, F., Brown, R.M., Hillis, D.M., Cannatella, D.C., Milinkovitch, M.C., 2006. Phylogeny and biogeography of a cosmopolitan frog radiation: Late Cretaceous diversification resulted in continent-scale endemism in the family Ranidae. Syst. Biol. 55, 579 – 594.en_US
dc.identifier.citedreferenceBurton, T.C., 1998. Pointing the way: the distribution and evolution of some characters of the finger muscles of frogs. Am. Mus. Novit. 3229, 1 – 13.en_US
dc.identifier.citedreferenceChaparro, J.C., Pramuk, J.B., Gluesenkamp, A.G., 2007. A new species of arboreal Rhinella (Anura: Bufonidae) from cloud forest of southeastern Peru. Herpetologica 63, 203 – 212.en_US
dc.identifier.citedreferenceChe, J., Pang, J., Zhao, H., Wu, G., Zhao, E., Zhang, Y., 2007. Phylogeny of Raninae (Anura: Ranidae) inferred from mitochondrial and nuclear sequences. Mol. Phylogenet. Evol. 42, 1 – 13.en_US
dc.identifier.citedreferenceChippindale, P.T., Bonett, R.M., Baldwin, A.S., Wiens, J.J., 2004. Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders. Evolution 58, 2809 – 2822.en_US
dc.identifier.citedreferenceCÓrdova, J.H., Descailleaux, J., 2005. El anÁlisis cladistico preliminar de los cariotipos de cinco especies de Telmatobius y dos de Batrachophrynus no apoya su separaciÓn genÉrica. In: Lavilla, E.O., De la Riva, I. (Eds.), Estudio Sobre las Ranas Andinas de los GÉneros Telmatobius y Batrachophrynus (Anura: Leptodactylidae). MonografÍas de HerpetologÍa, 7. AsociaciÓn HerpetolÓgica EspaÑola, Valencia, pp. 187 – 217.en_US
dc.identifier.citedreferenceCummings, M., Handley, S., Myers, D., Reed, D., Rokas, A., Winka, K., 2003. Comparing bootstrap and posterior probability values in the four-taxon case. Syst. Biol. 52, 477 – 487.en_US
dc.identifier.citedreferenceCunningham, M., Cherry, M.I., 2004. Molecular systematics of African 20-chromosome toads (Anura: Bufonidae). Mol. Phylogenet. Evol. 32, 671 – 685.en_US
dc.identifier.citedreferenceDarst, C.R., Cannatella, D.C., 2004. Novel relationships among hyloid frogs inferred from 12S and 16S mitochondrial DNA sequences. Mol. Phylogenet. Evol. 31, 462 – 475.en_US
dc.identifier.citedreferenceDubois, A., 1992. Notes sur la classification des Ranidae (Amphibiens anoures). Bull. Mens. Soc. Linn. Lyon 61, 305 – 352.en_US
dc.identifier.citedreferenceDuellman, W.E., Trueb, L., 1986. Biology of Amphibians. McGraw-Hill Co., New York.en_US
dc.identifier.citedreferenceDuellman, W.E., Lehr, E., Venegas, P.J., 2006a. Two new species of Eleutherodactylus (Anura: Leptodactylidae) from the Andes of northern Peru. Zootaxa 1285, 51 – 64.en_US
dc.identifier.citedreferenceDuellman, W.E., Trueb, L., Lehr, E., 2006b. A new species of marsupial frog (Anura: Hylidae: Gastrotheca ) from the Amazon slopes of the Cordillera Oriental in Peru. Copeia 2006, 595 – 603.en_US
dc.identifier.citedreferenceErixon, P., Svennblad, B., Britton, T., Oxelman, B., 2003. Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Syst. Biol. 52, 665 – 673.en_US
dc.identifier.citedreferenceFaivovich, J., Haddad, C.F.B., Garcia, P.C.A., Frost, D.R., Campbell, J.A., Wheeler, W.C., 2005. Systematic review of the frog family Hylidae, with special reference to Hylinae: a phylogenetic analysis and taxonomic revision. Bull. Am. Mus. Nat. Hist. 294, 1 – 240.en_US
dc.identifier.citedreferenceFelsenstein, J., 1988. Phylogenies from molecular sequences: inference and reliability. Annu. Rev. Genet. 22, 521 – 565.en_US
dc.identifier.citedreferenceFleissner, R., Metzler, D., Von Haeseler, A., 2005. Simultaneous statistical multiple alignment and phylogeny reconstruction. Syst. Biol. 54, 548 – 561.en_US
dc.identifier.citedreferenceFord, L.S., Cannatella, D.C., 1993. The major clades of frogs. Herpetol. Monogr. 7, 94 – 117.en_US
dc.identifier.citedreferenceFrost, D.R., 2007. Amphibian Species of the World: An Online Reference. Version 5.0. (1 February 2007). Electronic database accessible at http://research.amnh.org/ herpetology/amphibia/index.php/. American Museum of Natural History, New York.en_US
dc.identifier.citedreferenceFrost, D.R., Grant, T., Faivovich, J., Bain, R.H., Haas, A., Haddad, C.F.B., de SÁ, R.O., Channing, A., Wilkinson, M., Donnellan, S.C., Raxworthy, C.J., Campbell, J.A., Blotto, B.L., Moler, P., Drewes, R.C., Nussbaum, R.A., Lynch, J.D., Green, D.M., Wheeler, W.C., 2006. The amphibian tree of life. Bull. Am. Mus. Nat. Hist. 297, 1 – 370.en_US
dc.identifier.citedreferenceGao, K., Shubin, N.H., 2001. Late Jurassic salamanders from northern China. Nature 410, 574 – 577.en_US
dc.identifier.citedreferenceGlaw, F., Vences, M., 2006. Phylogeny and genus-level classification of mantellid frogs (Amphibia, Anura). Org. Divers. Evol. 6, 236 – 253.en_US
dc.identifier.citedreferenceGoloboff, P.A., 2003. Parsimony, likelihood, and simplicity. Cladistics 19, 91 – 103.en_US
dc.identifier.citedreferenceGrant, T., Frost, D.R., Caldwell, J.P., Gagliardo, R., Haddad, C.F.B., Kok, P.J.R., Means, D.B., Noonan, B.P., Schargel, W.E., Wheeler, W.C., 2006. Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bull. Am. Mus. Nat. Hist. 299, 1 – 262.en_US
dc.identifier.citedreferenceGraybeal, A., 1997. Phylogenetic relationships of bufonid frogs and tests of alternate macroevolutionary hypotheses characterizing their radiation. Zool. J. Linn. Soc. 119, 297 – 338.en_US
dc.identifier.citedreferenceGraybeal, A., Cannatella, D.C., 1995. A new taxon of Bufonidae from Peru, with descriptions of two new species and a review of the phylogenetic status of supraspecific bufonid taxa. Herpetologica 51, 105 – 131.en_US
dc.identifier.citedreferenceHaas, A., 2003. Phylogeny of frogs as inferred from primarily larval characters (Amphibia: Anura). Cladistics 19, 23 – 90.en_US
dc.identifier.citedreferenceHein, J., 1989. A new method that simultaneously aligns and reconstructs ancestral sequences for any number of homologous sequences, when the phylogeny is given. Mol. Phylogenet. Evol. 6, 649 – 668.en_US
dc.identifier.citedreferenceHeyer, W.R., 1975. A preliminary analysis of the intergeneric relationships of the frog family Leptodactylidae. Smithson. Contrib. Zool. 199, 1 – 55.en_US
dc.identifier.citedreferenceInternational Commission on Zoological Nomenclature, 1999. International Code of Zoological Nomenclature, 4th edn. International Trust for Zoological Nomenclature, London.en_US
dc.identifier.citedreferenceKolaczkowski, B., Thornton, J.W., 2004. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 431, 980 – 984.en_US
dc.identifier.citedreferenceLaurent, R.F., 1986. Sous classe des lissamphibiens (Lissamphibia). In: GrassÉ, P., Delsol, M. (Eds.), TraitÉ de Zoologie. Anatomie, Systematique, Biologie, Vol. 14. (Batraciens). Fascicule 1b. Masson, Paris, pp. 594 – 797.en_US
dc.identifier.citedreferenceLehr, E., Trueb, L., 2007. Diversity among New World microhylid frogs (Anura: Microhylidae): morphological and osteological comparisons between Nelsonophryne (GÜnther 1901) and a new genus from Peru. Zool. J. Linn. Soc. 149, 583 – 609.en_US
dc.identifier.citedreferenceLunter, G., MiklÓs, I., Drummond, A., Jensen, J.L., Hein, J., 2005. Bayesian coestimation of phylogeny and sequence alignment. BMC Bioinformatics 6, 83.en_US
dc.identifier.citedreferenceLynch, J.D., 1971. Evolutionary relationships, osteology, and zoogeography of leptodactyloid frogs. Misc. Publ. Mus. Nat. Hist. Univ. Kansas 53, 1 – 238.en_US
dc.identifier.citedreferenceLynch, J.D., 1973. The transition from archaic to advanced frogs. In: Vial, J.L. (Ed.), Evolutionary Biology of the Anurans: Contemporary Research on Major Problems. University of Missouri Press, Columbia, MO, pp. 133 – 182.en_US
dc.identifier.citedreferenceLynch, J.D., 1978. A re-assessment of the telmatobiine leptodactylid frogs of PatagÓnia. Occas. Pap. Mus. Nat. Hist. University Kansas 72, 1 – 57.en_US
dc.identifier.citedreferenceMacey, J.R., 2005. Plethodontid salamander mitochondrial genomics: a parsimony evaluation of character conflict and implications for historical biogeography. Cladistics 21, 194 – 202.en_US
dc.identifier.citedreferenceNoble, G.K., 1931. The Biology of the Amphibia. McGraw-Hill, New York.en_US
dc.identifier.citedreferenceOgden, T.H., Rosenberg, M.S., 2007. Alignment and topological accuracy of the direct optimization approach via POY and traditional phylogenetics via ClustalW + PAUP. Syst. Biol. 56, 182 – 193.en_US
dc.identifier.citedreferenceParra-Olea, G., 2002. Molecular phylogenetic relationships of Neotropical salamanders of the genus Pseudoeurycea. Mol. Phylogenet. Evol. 22, 234 – 246.en_US
dc.identifier.citedreferenceParra-Olea, G., Wake, D.B., 2001. Extreme morphological and ecological homoplasy in tropical salamanders. Proc. Natl Acad. Sci. USA 98, 7888 – 7891.en_US
dc.identifier.citedreferencePauly, G.B., Hillis, D.M., Cannatella, D.C., 2004. The history of Nearctic colonization: molecular phylogenetics and biogeography of the Nearctic toads ( Bufo ). Evolution 58, 2517 – 2535.en_US
dc.identifier.citedreferencePramuk, J.B., 2006. Phylogeny of South American Bufo (Anura: Bufonidae) inferred from combined evidence. Zool. J. Linn. Soc. 146, 407 – 452.en_US
dc.identifier.citedreferenceRedelings, B.D., Suchard, M.A., 2005. Joint Bayesian estimation of alignment and phylogeny. Syst. Biol. 54, 401 – 418.en_US
dc.identifier.citedreferenceRoelants, K., Bossuyt, F., 2005. Archaeobatrachian paraphyly and Pangaean diversification of crown-group frogs. Syst. Biol. 54, 111 – 126.en_US
dc.identifier.citedreferenceRoelants, K., Gower, D.J., Wilkinson, M., Loader, S.P., Biju, S.D., Guillaume, K., Moriau, L., Bossuyt, F., 2007. Global patterns of diversification in the history of modern amphibians. Proc. Natl Acad. Sci. USA 104, 887 – 892.en_US
dc.identifier.citedreferenceRoshan, U., Livesay, D.R., Chikkagoudar, S., 2006. Improving progressive alignment for phylogeny reconstruction using parsimonious guide-trees. Sixth IEEE Symp. Bioinformatics Bioengineering (BIBE) 2006, 159 – 194.en_US
dc.identifier.citedreferenceSan Mauro, D., Vences, M., Alcobendas, M., Zardoya, R., Meyer, A., 2005. Initial diversification of living amphibians predated the breakup of Pangaea. Am. Nat. 165, 590 – 595.en_US
dc.identifier.citedreferenceSankoff, D., 1975. Minimal mutation trees of sequences. SIAM. J. Appl. Math. 28, 35 – 42.en_US
dc.identifier.citedreferenceSankoff, D., Cedergren, R.J., Lapalme, G., 1976. Frequency of insertion-deletion, transversion, and transition in evolution of 5S ribosomal RNA. J. Mol. Evol. 7, 133 – 149.en_US
dc.identifier.citedreferenceSankoff, D., Cedergren, R.J., McKay, W., 1982. A strategy for sequence phylogeny research. Nucleic Acids Res. 10, 421 – 431.en_US
dc.identifier.citedreferenceSchÄuble, C.S., Moritz, C., Slade, R.W., 2000. A molecular phylogeny for the frog genus Limnodynastes (Anura: Myobatrachidae). Mol. Phylogenet. Evol. 16, 379 – 391.en_US
dc.identifier.citedreferenceScott, E., 2005. A phylogeny of ranid frogs (Anura: Ranoidea: Ranidae), based on a simultaneous analysis of morphological and molecular data. Cladistics 21, 507 – 574.en_US
dc.identifier.citedreferenceSimmons, M.P., Pickett, K.M., Miya, M., 2004. How meaningful are Bayesian support values? Mol. Phylogenet. Evol. 21, 188 – 199.en_US
dc.identifier.citedreferenceSinsch, U., Juraske, N., 1995. Reassessment of central Peruvian Telmatobiinae (genera Batrachophrynus and Telmatobius ) II. Allozymes and phylogenetic relationships. Alytes 13, 52 – 66.en_US
dc.identifier.citedreferenceSinsch, U., Salas, A.W., Canales, V., 1995. Reassessment of central Peruvian Telmatobiinae (genera Batrachophrynus and Telmatobius ) I. Morphometry and classification. Alytes 13, 14 – 44.en_US
dc.identifier.citedreferenceSlowinski, J.B., 1998. The number of multiple alignments. Mol. Phylogenet. Evol. 10, 264 – 266.en_US
dc.identifier.citedreferenceSmith, H.M., Chiszar, D., 2006. Dilemma of name-recognition: why and when to use new combinations of scientific names. Herpetol. Conserv. Biol. 1, 6 – 8.en_US
dc.identifier.citedreferenceSmith, S.A., Stephens, P.R., Wiens, J.J., 2005. Replicate patterns of species richness, historical biogeography, and phylogeny in Holarctic treefrogs. Evolution 59, 2433 – 2450.en_US
dc.identifier.citedreferenceTaylor, D.J., Piel, W.H., 2004. An assessment of accuracy, error, and conflict with support values from genome-scale phylogenetic data. Mol. Biol. Evol. 21, 1534 – 1537.en_US
dc.identifier.citedreferenceThompson, J.D., Gibson, T.J., Plewniak, F.J., Higgins, D.G., 1997. The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876 – 4882.en_US
dc.identifier.citedreferenceThorne, J.L., Kishino, H., 1992. Freeing phylogenies from artifacts of alignment. Mol. Biol. Evol. 9, 1148 – 1162.en_US
dc.identifier.citedreferenceTuffley, C., Steel, M., 1997. Links between maximum likelihood and maximum parsimony under a simple model of site substitution. Bull. Math. Biol. 59, 581 – 607.en_US
dc.identifier.citedreferenceVan Bocxlaer, I., Roelants, K., Biju, S.D., Nagaraju, J., Bossuyt, F., 2006. Late Cretaceous vicariance in Gondwanan amphibians. PLoS One 1, 1 – 6.en_US
dc.identifier.citedreferenceWeisrock, D.W., Papenfuss, T.J., Macey, T.R., Litvinchuk, S.N., Polymeni, R., Ugartas, I.H., Zhao, E., Jowkar, H., Larson, A., 2006. A molecular assessment of phylogenetic relationships and lineage accumulation rates with the family Salamandridae (Amphibia, Caudata). Mol. Phylogenet. Evol. 41, 368 – 383.en_US
dc.identifier.citedreferenceWheeler, W.C., 1996. Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12, 1 – 9.en_US
dc.identifier.citedreferenceWheeler, W.C., Aagesen, L., Arango, C.P., Faivovich, J., Grant, T., D'Haese, C.A., Janies, D., Smith, W.L., VarÓn, A., Giribet, G., 2006. Dynamic Homology and Phylogenetic Systematics: A Unified Approach Using POY. American Museum of Natural History, New York.en_US
dc.identifier.citedreferenceWiens, J.J., 2007. Book review: The amphibian tree of life. Q. Rev. Biol. 82, 55 – 56.en_US
dc.identifier.citedreferenceWiens, J.J., Bonett, R.M., Chippindale, P.T., 2005a. Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. Syst. Biol. 54, 91 – 110.en_US
dc.identifier.citedreferenceWiens, J.J., Fetzner, J.W., Parkinson, C.L., Reeder, T.W., 2005b. Hylid frog phylogeny and sampling strategies for speciose clades. Syst. Biol. 54, 719 – 748.en_US
dc.identifier.citedreferenceWiens, J.J., Graham, C.H., Moen, D.S., Smith, S.A., Reeder, T.W., 2006. Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrogs unearth the roots of high tropical diversity. Am. Nat. 168, 579 – 596.en_US
dc.identifier.citedreferenceWiens, J.J., Parra-Olea, G., GarcÍa-ParÍs, M., Wake, D.B., 2007. Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders. Proc. R. Soc. London Series B, 274, 918 – 928.en_US
dc.identifier.citedreferenceWilkinson, M., 1997. Characters, congruence and quality: a study of neuroanatomical and traditional data in caecilian phylogeny. Biol. Rev. Cambridge Philos. Soc. 72, 423 – 470.en_US
dc.identifier.citedreferenceWilkinson, M., Nussbaum, R.A., 1996. On the phylogenetic position of the Uraeotyphlidae (Amphibia: Gymnophiona). Copeia 1996, 550 – 562.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.