Show simple item record

Photodynamic Characterization and In Vitro Application of Methylene Blue-containing Nanoparticle Platforms ¶

dc.contributor.authorKopelman, Raoulen_US
dc.contributor.authorPhilbert, Martin A.en_US
dc.contributor.authorTang, Weien_US
dc.contributor.authorXu, Haoen_US
dc.date.accessioned2010-06-01T21:40:08Z
dc.date.available2010-06-01T21:40:08Z
dc.date.issued2005-03en_US
dc.identifier.citationTang, Wei; Xu, Hao; Kopelman, Raoul; Philbert, Martin A. (2005). "Photodynamic Characterization and In Vitro Application of Methylene Blue-containing Nanoparticle Platforms ¶ ." Photochemistry and Photobiology 81(2): 242-249. <http://hdl.handle.net/2027.42/74716>en_US
dc.identifier.issn0031-8655en_US
dc.identifier.issn1751-1097en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74716
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15595888&dopt=citationen_US
dc.description.abstractThis article presents the development and characterization of nanoparticles loaded with methylene blue (MB), which are designed to be administered to tumor cells externally and deliver singlet oxygen ( 1 O 2 ) for photodynamic therapy (PDT), i.e. cell kill via oxidative stress to the membrane. We demonstrated the encapsulation of MB, a photosensitizer (PS), in three types of sub-200 nm nanoparticles, composed of polyacrylamide, sol-gel silica and organically modified silicate (ORMOSIL), respectively. Induced by light irradiation, the entrapped MB generated 1 O 2 ), and the produced 1 O 2 was measured quantitatively with anthracene-9, 10-dipropionic acid, disodium salt, to compare the effects of different matrices on 1 O 2 delivery. Among these three different kinds of nanoparticles, the polyacrylamide nanoparticles showed the most efficient delivery of 1 O 2 but its loading of MB was low. In contrast, the sol-gel nanoparticles had the best MB loading but the least efficient 1 O 2 delivery. In addition to investigating the matrix effects, a preliminary in vitro PDT study using the MB-loaded polyacrylamide nanoparticles was conducted on rat C6 glioma tumor cells with positive photodynamic results. The encapsulation of MB in nanoparticles should diminish the interaction of this PS with the biological milieu, thus facilitating its systemic administration. Furthermore, the concept of the drug-delivering nanoparticles has been extended to a new type of dynamic nanoplatform (DNP) that only delivers 1 O 2 . This DNP could also be used as a targeted multifunctional platform for combined diagnostics and therapy of cancer.en_US
dc.format.extent1031607 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2005 American Society for Photobiologyen_US
dc.titlePhotodynamic Characterization and In Vitro Application of Methylene Blue-containing Nanoparticle Platforms ¶en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumDepartment of Environmental Health Sciences, University of Michigan, Ann Arbor, MIen_US
dc.identifier.pmid15595888en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74716/1/j.1751-1097.2005.tb00181.x.pdf
dc.identifier.doi10.1111/j.1751-1097.2005.tb00181.xen_US
dc.identifier.sourcePhotochemistry and Photobiologyen_US
dc.identifier.citedreferenceMacDonald, I. J. and T. J. Dougherty ( 2001 ) Basic principles of photodynamic therapy. J. Porphyr. Phthalocyanines 5, 105 – 129.en_US
dc.identifier.citedreferenceDougherty, T. J., C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng ( 1998 ) Photodynamic therapy. J. Natl. Cancer Inst. 90, 889 – 905.en_US
dc.identifier.citedreferenceSchuitmaker, J. J., P. Bass, H. van Leengoed, F. W. van der Meulen, W. M. Star and N. van Zandwijk ( 1996 ) Photodynamic therapy: a promising new modality for the treatment of cancer. J. Photochem. Photobiol. B: Biol. 34, 3 – 12.en_US
dc.identifier.citedreferenceSharman, W. M., C. M. Allen and J. E. van Lier ( 1999 ) Photodynamic therapeutics: basic principles and clinical applications. Drug Discov. Today 4, 507 – 517.en_US
dc.identifier.citedreferenceDolmans, D., D. Fukumura and R. K. Jain ( 2003 ) Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380 – 387.en_US
dc.identifier.citedreferenceBonnett, R. ( 1995 ) Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem. Soc. Rev. 24, 19 – 33.en_US
dc.identifier.citedreferenceGabrielli, D., E. Belisle, D. Severino, A. J. Kowaltowski and M. S. Baptista ( 2004 ) Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions. Photochem. Photobiol. 79, 227 – 232.en_US
dc.identifier.citedreferenceRedmond, R. W. and J. N. Gamlin ( 1999 ) A compilation of singlet oxygen yields from biologically relevant molecules. Photochem. Photobiol. 70, 391 – 475.en_US
dc.identifier.citedreferenceDeRosa, M. C. and R. J. Crutchley ( 2002 ) Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233, 351 – 371.en_US
dc.identifier.citedreferenceMellish, K. J., R. D. Cox, D. I. Vernon, J. Griffiths and S. B. Brown ( 2002 ) In vitro photodynamic activity of a series of methylene blue analogues. Photochem. Photobiol. 75, 392 – 397.en_US
dc.identifier.citedreferenceTuite, E. M. and J. M. Kelly ( 1993 ) Photochemical interactions of methylene blue and analogs with DNA and other biological substrates. J. Photochem. Photobiol. B: Biol. 21, 103 – 124.en_US
dc.identifier.citedreferenceOrth, K., A. Ruck, A. Stanescu and H. G. Beger ( 1995 ) Intraluminal treatment of inoperable esophageal tumors by intralesional photodynamic therapy with methylene blue. Lancet 345, 519 – 520.en_US
dc.identifier.citedreferenceWainwright, M. ( 1996 ) Non-porphyrin photosensitizers in biomedicine. Chem. Soc. Rev. 25, 351 – 359.en_US
dc.identifier.citedreferenceWilliams, J. L., J. Stamp, R. Devonshire and G. J. S. Fowler ( 1989 ) Methylene blue and the photodynamic therapy of superficial bladdercancer. J. Photochem. Photobiol. B: Biol. 4, 229 – 232.en_US
dc.identifier.citedreferenceOrth, K., G. Beck, F. Genze and A. Ruck ( 2000 ) Methylene blue mediated photodynamic therapy in experimental colorectal tumors in mice. J. Photochem. Photobiol. B: Biol. 57, 186 – 192.en_US
dc.identifier.citedreferenceWainwright, M., D. A. Phoenix, L. Rice, S. M. Burrow and J. Waring ( 1997 ) Increased cytotoxicity and phototoxicity in the methylene blue series via chromophore methylation. J. Photochem. Photobiol. B: Biol. 40, 233 – 239.en_US
dc.identifier.citedreferenceKonan, Y. N., R. Gurny and E. Allemann ( 2002 ) State of the art in the delivery of photosensitizers for photodynamic therapy. J. Photochem. Photobiol. B: Biol. 66, 89 – 106.en_US
dc.identifier.citedreferenceWang, S. Z., R. M. Gao, F. M. Zhou and M. Selke ( 2004 ) Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. J. Mater. Chem. 14, 487 – 493.en_US
dc.identifier.citedreferenceLabib, A., V. Lenaerts, F. Chouinard, J. C. Leroux, R. Ouellet and J. E. Vanlier ( 1991 ) Biodegradable nanospheres containing phthalocyanines and naphthalocyanines for targeted photodynamic tumor-therapy. Pharm. Res. 8, 1027 – 1031.en_US
dc.identifier.citedreferenceLenaerts, V., A. Labib, F. Chouinard, J. Rousseau, H. Ali and J. Vanlier ( 1995 ) Nanocapsules with a reduced liver uptake-targeting of phthalocyanines to Emt-6 mouse mammary-tumor in-vivo. Eur. J. Pharm. Biopharm. 41, 38 – 43.en_US
dc.identifier.citedreferenceKonan, Y. N., M. Berton, R. Gurny and E. Allemann ( 2003 ) Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur. J. Pharm. Sci. 18, 241 – 249.en_US
dc.identifier.citedreferenceKonan, Y. N., R. Cerny, J. Favet, M. Berton, R. Gurny and E. Allemann ( 2003 ) Preparation and characterization of sterile sub-200 nm mesotetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. Eur. J. Pharm. Biopharm. 55, 115 – 124.en_US
dc.identifier.citedreferenceKonan, Y. N., J. Chevallier, R. Gurny and E. Allemann ( 2003 ) Encapsulation of p-THPP into nanoparticles: cellular uptake, subcellular localization and effect of serum on photodynamic activity. Photochem. Photobiol. 77, 638 – 644.en_US
dc.identifier.citedreferenceRoy, I., T. Y. Ohulchanskyy, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty and P. N. Prasad ( 2003 ) Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J. Am. Chem. Soc. 125, 7860 – 7865.en_US
dc.identifier.citedreferenceHarrell, J. A. and R. Kopelman ( 2000 ) Biocompatible probes measure intracellular activity. Biophotonics Int. 7, 22 – 24.en_US
dc.identifier.citedreferenceMonson, E., M. Brasuel, M. A. Philbert and R. Kopelman ( 2003 ) PEBBLE nanosensors for in vitro bioanalysis. Chap. 59. In Biomedical Photonics Handbook ( Edited by T. Vo-Dinh ), pp. 1 – 14. CRC Press, New York.en_US
dc.identifier.citedreferenceXu, H., S. M. Buck, R. Kopelman, M. A. Philbert, M. Brasuel, B. Ross and A. Rehemtulla ( 2004 ) Photo-excitation based nano-explorers: chemical analysis inside live cells and photodynamic therapy. Jortner Festschrift, Isr. J. Chem. 44, 317 – 337.en_US
dc.identifier.citedreferenceXu, H., S. M. Buck, R. Kopelman, M. A. Philbert, M. Brasuel, E. Monson, C. Behrend, B. Ross, A. Rehemtulla and Y.-E. L. Koo ( 2004 ) Fluorescent PEBBLE nanosensors and nanoexplorers for real-time intracellular and biomedical applications. Chap. 10. In Topics in Flurescence Spectroscopy ( Edited by C. D. Geddes and J. R. Lakowicz ). Kluwer Academic/Plenum Press, New York. ( In press ).en_US
dc.identifier.citedreferenceRoss, B., A. Rehemtulla, Y.-E. L. Koo, R. Reddy, G. Kim, C. Behrend, S. Buck, R. J. Schneider II, R. Weissleder, M. A. Philbert and R. Kopelman ( 2004 ) Photonic and magnetic nanoexplorers for biomedical use: from subcellular imaging to cancer diagnostics and therapy. SPIE Proc. 5331, 76 – 83.en_US
dc.identifier.citedreferenceMoffat, B. A., R. G. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. Kopelman, M. A. Philbert, R. Weissleder, A. Rehemtulla and B. Ross ( 2003 ) A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. J. Mol. Imaging 2, 1 – 9.en_US
dc.identifier.citedreferenceLevy, L., Y. Sahoo, K. S. Kim, E. J. Bergey and P. N. Prasad ( 2002 ) Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mater. 14, 3715 – 3721.en_US
dc.identifier.citedreferenceXu, H., F. Yan, E. E. Monson and R. Kopelman ( 2003 ) Room-temperature preparation and characterization of poly (ethylene glycol)-coated silica nanoparticles for biomedical applications. J. Biomed. Mater. Res. 66A, 870 – 879.en_US
dc.identifier.citedreferenceLeroux, J. C., E. Doelker and R. Gurny ( 1996 ) The use of drug-loaded nanoparticles in cancer chemotherapy. In Microencapsulation Methods and Industrial Application ( Edited by S. Benita ), pp. 535 – 575. Marcel Dekker, New York.en_US
dc.identifier.citedreferenceClark, H. A., M. Hoyer, M. A. Philbert and R. Kopelman ( 1999 ) Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal. Chem. 71, 4831 – 4836.en_US
dc.identifier.citedreferencePark, E. J., M. Brasuel, C. Behrend, M. A. Philbert and R. Kopelman ( 2003 ) Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells. Anal. Chem. 75, 3784 – 3791.en_US
dc.identifier.citedreferenceStÖber, W., A. Fink and E. Bohn ( 1968 ) Controlled growth of monodisperse silica spheres in micron size range. J. Colloid Interface Sci. 26, 62 – 69.en_US
dc.identifier.citedreferenceXu, H., J. W. Aylott, R. Kopelman, T. J. Miller and M. A. Philbert ( 2001 ) A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma. Anal. Chem. 73, 4124 – 4133.en_US
dc.identifier.citedreferenceKoo, Y.-E. L., Y. Cao, R. Kopelman, S. M. Koo, M. Brasuel and M. A. Philbert ( 2004 ) Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors. Anal. Chem. 76, 2498 – 2505.en_US
dc.identifier.citedreferenceHah, H. J., J. S. Kim, B. J. Jeon, S. M. Koo and Y. E. Lee ( 2003 ) Simple preparation of monodisperse hollow silica particles without using templates. Chem. Commun. 1712 – 1713.en_US
dc.identifier.citedreferenceMoreno, M. J., E. Monson, R. G. Reddy, A. Rehemtulla, B. D. Ross, M. A. Philbert, R. J. Schneider and R. Kopelman ( 2003 ) Production of singlet oxygen by Ru(dpp(SO 3 ) 2 ) 3 incorporated in polyacrylamide PEBBLES. Sens. Actuators B: Chem. 90, 82 – 89.en_US
dc.identifier.citedreferenceYan, F. and R. Kopelman ( 2003 ) The embedding of meta-tetra(hydroxyphenyl)-chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH-dependent optical properties. Photochem. Photobiol. 78, 587 – 591.en_US
dc.identifier.citedreferenceNiedre, M., M. S. Patterson and B. C. Wilson ( 2002 ) Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo. Photochem. Photobiol. 75, 382 – 391.en_US
dc.identifier.citedreferenceSeverino, D., H. C. Junqueira, M. Gugliotti, D. S. Gabrielli and M. S. Baptista ( 2003 ) Influence of negatively charged interfaces on the ground and excited state properties of methylene blue. Photochem. Photobiol. 77, 459 – 468.en_US
dc.identifier.citedreferenceJunqueira, H. C., D. Severino, L. G. Dias, M. S. Gugliotti and M. S. Baptista ( 2002 ) Modulation of methylene blue photochemical properties based on adsorption at aqueous micelle interfaces. Phys. Chem. Chem. Phys. 4, 2320 – 2328.en_US
dc.identifier.citedreferenceOleinick, N. L., R. L. Morris and T. Belichenko ( 2002 ) The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem. Photobiol. Sci. 1, 1 – 21.en_US
dc.identifier.citedreferenceBall, D. J., Y. Luo, D. Kessel, J. Griffiths, S. B. Brown and D. I. Vernon ( 1998 ) The induction of apoptosis by a positively charged methylene blue derivative. J. Photochem. Photobiol. B: Biol. 42, 159 – 163.en_US
dc.identifier.citedreferenceNoodt, B. B., G. H. Rodal, M. Wainwright, Q. Peng, R. Horobin, J. M. Nesland and K. Berg ( 1998 ) Apoptosis induction by different pathways with methylene blue derivative and light from mitochondrial sites in V79 cells. Int. J. Cancer 75, 941 – 948.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.