Show simple item record

The effect of thread pattern upon implant osseointegration

dc.contributor.authorAbuhussein, Hebaen_US
dc.contributor.authorPagni, Giorgioen_US
dc.contributor.authorRebaudi, Albertoen_US
dc.contributor.authorWang, Hom-Layen_US
dc.date.accessioned2010-06-01T21:42:10Z
dc.date.available2010-06-01T21:42:10Z
dc.date.issued2010-02en_US
dc.identifier.citationAbuhussein, Heba; Pagni, Giorgio; Rebaudi, Alberto; Wang, Hom-Lay (2010). "The effect of thread pattern upon implant osseointegration." Clinical Oral Implants Research 21(2): 129-136. <http://hdl.handle.net/2027.42/74748>en_US
dc.identifier.issn0905-7161en_US
dc.identifier.issn1600-0501en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74748
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19709058&dopt=citationen_US
dc.description.abstractObjectives : Implant design features such as macro- and micro-design may influence overall implant success. Limited information is currently available. Therefore, it is the purpose of this paper to examine these factors such as thread pitch, thread geometry, helix angle, thread depth and width as well as implant crestal module may affect implant stability. Search Strategy : A literature search was conducted using MEDLINE to identify studies, from simulated laboratory models, animal, to human, related to this topic using the keywords of implant thread, implant macrodesign, thread pitch, thread geometry, helix angle, thread depth, thread width and implant crestal module. Results : The results showed how thread geometry affects the distribution of stress forces around the implant. A decreased thread pitch may positively influence implant stability. Excess helix angles in spite of a faster insertion may jeopardize the ability of implants to sustain axial load. Deeper threads seem to have an important effect on the stabilization in poorer bone quality situations. The addition of threads or microthreads up to the crestal module of an implant might provide a potential positive contribution on bone-to to-implant contact as well as on the preservation of marginal bone; nonetheless this remains to be determined. Conclusions : Appraising the current literature on this subject and combining existing data to verify the presence of any association between the selected characteristics may be critical in the achievement of overall implant success. To cite this article: Abuhussein H, Pagni G, Rebaudi A, Wang H-L. The effect of thread pattern upon implant osseointegration. Clin. Oral Impl. Res . 21 , 2010; 129–136. doi: 10.1111/j.1600-0501.2009.01800.xen_US
dc.format.extent414219 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2010 John Wiley & Sons A/Sen_US
dc.subject.otherDental Implantsen_US
dc.subject.otherImplant Threaden_US
dc.subject.otherOsseointegrationen_US
dc.subject.otherThread Depthen_US
dc.subject.otherThread Pitchen_US
dc.subject.otherThread Shapeen_US
dc.titleThe effect of thread pattern upon implant osseointegrationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Periodontics & Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Biophisical, Medical and Dental Science & Technology, University of Genoa, Italyen_US
dc.identifier.pmid19709058en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74748/1/j.1600-0501.2009.01800.x.pdf
dc.identifier.doi10.1111/j.1600-0501.2009.01800.xen_US
dc.identifier.sourceClinical Oral Implants Researchen_US
dc.identifier.citedreferenceAbrahamsson, I. & Berglundh, T. ( 2006 ) Tissue characteristics at microthreaded implants: an experimental study in dogs. Clinical Implant Dentistry & Related Research 8: 107 – 113.en_US
dc.identifier.citedreferenceAlbrektsson, T., Branemark, P.I., Hansson, H.A. & Lindstrom, J. ( 1981 ) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthopaedica Scandinavica 52: 155 – 170.en_US
dc.identifier.citedreferenceAndersson, B. ( 1995 ) Implants for single-tooth replacement. A clinical and experimental study on the Branemark Ceraone system. Swedish Dental Journal 108 ( Suppl. ): 1 – 41.en_US
dc.identifier.citedreferenceBarbier, L. & Schepers, E. ( 1997 ) Adaptive bone remodeling around oral implants under axial and nonaxial loading conditions in the dog mandible. International Journal of Oral & Maxillofacial Implants 12: 215 – 223.en_US
dc.identifier.citedreferenceBoggan, R.S., Strong, J.T., Misch, C.E. & Bidez, M.W. ( 1999 ) Influence of hex geometry and prosthetic table width on static and fatigue strength of dental implants. Journal of Prosthetic Dentistry 82: 436 – 440.en_US
dc.identifier.citedreferenceBolind, P.K., Johansson, C.B., Becker, W., Langer, L., Sevetz, E.B. Jr & Albrektsson, T.O. ( 2005 ) A descriptive study on retrieved non-threaded and threaded implant designs. Clinical Oral Implants Research 16: 447 – 455.en_US
dc.identifier.citedreferenceBozkaya, D., Muftu, S. & Muftu, A. ( 2004 ) Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. Journal of Prosthetic Dentistry 92: 523 – 530.en_US
dc.identifier.citedreferenceBrunski, J.B. ( 1999 ) In vivo bone response to biomechanical loading at the bone/dental–implant interface. Advances in Dental Research 13: 99 – 119.en_US
dc.identifier.citedreferenceBumgardner, J.D., Boring, J.G., Cooper, R.C. Jr, Gao, C., Givaruangsawat, S., Gilbert, J.A., Misch, C.M. & Steflik, D.E. ( 2000 ) Preliminary evaluation of a new dental implant design in canine models. Implant Dentistry 9: 252 – 260.en_US
dc.identifier.citedreferenceChun, H.J., Cheong, S.Y., Han, J.H., Heo, S.J., Chung, J.P., Rhyu, I.C., Choi, Y.C., Baik, H.K., Ku, Y. & Kim, M.H. ( 2002 ) Evaluation of design parameters of osseointegrated dental implants using finite element analysis. Journal of Oral Rehabilitation 29: 565 – 574.en_US
dc.identifier.citedreferenceChung, S.H., Heo, S.J., Koak, J.Y., Kim, S.K., Lee, J.B., Han, J.S., Han, C.H., Rhyu, I.C. & Lee, S.J. ( 2008 ) Effects of implant geometry and surface treatment on osseointegration after functional loading: a dog study. Journal of Oral Rehabilitation 35: 229 – 236.en_US
dc.identifier.citedreferenceDuyck, J., Ronold, H.J., Van Oosterwyck, H., Naert, I., Vander Sloten, J. & Ellingsen, J.E. ( 2001 ) The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clinical Oral Implants Research 12: 207 – 218.en_US
dc.identifier.citedreferenceFrost, H.M. ( 1990 ) Skeletal structural adaptations to mechanical usage (satmu): redefining Wolff's law: the bone modeling problem. Anatomical Record 226: 403 – 413.en_US
dc.identifier.citedreferenceFugazzotto, P.A. ( 2005 ) Success and failure rates of osseointegrated implants in function in regenerated bone for 72 to 133 months. International Journal of Oral & Maxillofacial Implants 20: 77 – 83.en_US
dc.identifier.citedreferenceGeng, J.P., Ma, Q.S., Xu, W., Tan, K.B. & Liu, G.R. ( 2004a ) Finite element analysis of four thread-form configurations in a stepped screw implant. Journal of Oral Rehabilitation 31: 233 – 239.en_US
dc.identifier.citedreferenceGeng, J.P., Xu, D.W., Tan, K.B. & Liu, G.R. ( 2004b ) Finite element analysis of an osseointegrated stepped screw dental implant. Journal of Oral Implantology 30: 223 – 233.en_US
dc.identifier.citedreferenceGoodacre, C.J., Bernal, G., Rungcharassaeng, K. & Kan, J.Y. ( 2003 ) Clinical complications with implants and implant prostheses. Journal of Prosthetic Dentistry 90: 121 – 132.en_US
dc.identifier.citedreferenceHaas, R., Mensdorff-Pouilly, N., Mailath, G. & Watzek, G. ( 1995 ) Branemark single tooth implants: a preliminary report of 76 implants. Journal of Prosthetic Dentistry 73: 274 – 279.en_US
dc.identifier.citedreferenceHanggi, M.P., Hanggi, D.C., Schoolfield, J.D., Meyer, J., Cochran, D.L. & Hermann, J.S. ( 2005 ) Crestal bone changes around titanium implants. Part i: a retrospective radiographic evaluation in humans comparing two non-submerged implant designs with different machined collar lengths. Journal of Periodontology 76: 791 – 802.en_US
dc.identifier.citedreferenceHansson, S. ( 1999 ) The implant neck: smooth or provided with retention elements. A biomechanical approach. Clinical Oral Implants Research 10: 394 – 405.en_US
dc.identifier.citedreferenceHansson, S. & Werke, M. ( 2003 ) The implant thread as a retention element in cortical bone: The effect of thread size and thread profile: a finite element study. Journal of Biomechanics 36: 1247 – 1258.en_US
dc.identifier.citedreferenceHermann, J.S., Schoolfield, J.D., Nummikoski, P.V., Buser, D., Schenk, R.K. & Cochran, D.L. ( 2001 ) Crestal bone changes around titanium implants: a methodologic study comparing linear radiographic with histometric measurements. International Journal of Oral & Maxillofacial Implants 16: 475 – 485.en_US
dc.identifier.citedreferenceJones, F.D., ed. ( 1964 ) Machine Shop Training Course. Industrial Press.en_US
dc.identifier.citedreferenceJung, Y.C., Han, C.H. & Lee, K.W. ( 1996 ) A 1-year radiographic evaluation of marginal bone around dental implants. International Journal of Oral & Maxillofacial Implants 11: 811 – 818.en_US
dc.identifier.citedreferenceKohn, D.H. ( 1992 ) Overview of factors important in implant design. Journal of Oral Implantology 18: 204 – 219.en_US
dc.identifier.citedreferenceKong, L., Liu, B.L., Hu, K.J., Li, D.H., Song, Y.L., Ma, P. & Yang, J. ( 2006 ) optimized thread pitch design and stress analysis of the cylinder screwed dental implant. Hua Xi Kou Qiang Yi Xue Za Zhi 24: 509 – 512–515.en_US
dc.identifier.citedreferenceLang, N.P. & Salvi, G. ( 2008 ) Implants in restorative dentistry. In: Lindhe, J., Lang, N.P. & Karring, T., eds. Clinical Periodontology and Implant Dentistry. 5th edition, 1138 – 1145. Denmark: Blackwell Munksgaard.en_US
dc.identifier.citedreferenceLee, D.W., Choi, Y.S., Park, K.H., Kim, C.S. & Moon, I.S. ( 2007 ) Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study. Clinical Oral Implants Research 18: 465 – 470.en_US
dc.identifier.citedreferenceLemons, J. ( 1993 ) Biomaterials in Implant Dentistry Contemporary Implant Dentistry. St Louis: Mosby.en_US
dc.identifier.citedreferenceLiang, D.K., Wang, J.H., Ma, Q.S., Lu, Y.P. & Zhu, R.F. ( 2002 ) the influence of the screw thread and the height of constraints on the stress distribution around dental implants by using three-dimensional finite element analysis. Shanghai Kou Qiang Yi Xue 11: 324 – 326.en_US
dc.identifier.citedreferenceMa, P., Liu, H.C., Li, D.H., Lin, S., Shi, Z. & Peng, Q.J. ( 2007 ) influence of helix angle and density on primary stability of immediately loaded dental implants: Three-dimensional finite element analysis. Zhonghua Kou Qiang Yi Xue Za Zhi 42: 618 – 621.en_US
dc.identifier.citedreferenceMailath, G., Stoiber, B., Watzek, G. & Matejka, M. ( 1989 ) Bone resorption at the entry of osseointegrated implants – a biomechanical phenomenon. Finite element study. Zeitschrift fur Stomatologie 86: 207 – 216.en_US
dc.identifier.citedreferenceMeijer, H.J., Starmans, F.J., Steen, W.H. & Bosman, F. ( 1993 ) A three-dimensional, finite-element analysis of bone around dental implants in an edentulous human mandible. Archives of Oral Biology 38: 491 – 496.en_US
dc.identifier.citedreferenceMisch, C. ( 2008 ) Contemporary Implant Dentistry. St Louis, MI: Elsevier.en_US
dc.identifier.citedreferenceMisch, C.E., Bidez, M.W. & Sharawy, M. ( 2001 ) A bioengineered implant for a predetermined bone cellular response to loading forces. A literature review and case report. Journal of Periodontology 72: 1276 – 1286.en_US
dc.identifier.citedreferenceMisch, C.E., Strong, T. & Bidez, M.W. ( 2008 ) Scientific rationale for dental implant design. In: Misch, C.E., ed. Contemporary Implant Dentistry. 3 edition, 200 – 229. St Louis: Mosby.en_US
dc.identifier.citedreferenceMotoyoshi, M., Yano, S., Tsuruoka, T. & Shimizu, N. ( 2005 ) Biomechanical effect of abutment on stability of orthodontic mini-implant. A finite element analysis. Clinical Oral Implants Research 16: 480 – 485.en_US
dc.identifier.citedreferencePalmer, R.M., Palmer, P.J. & Smith, B.J. ( 2000 ) A 5-year prospective study of astra single tooth implants. Clinical Oral Implants Research 11: 179 – 182.en_US
dc.identifier.citedreferencePrendergast, P.J. & Huiskes, R. ( 1996 ) Microdamage and osteocyte-lacuna strain in bone: a microstructural finite element analysis. Journal of Biomechanical Engineering 118: 240 – 246.en_US
dc.identifier.citedreferenceQuirynen, M., Naert, I. & van Steenberghe, D. ( 1992 ) Fixture design and overload influence marginal bone loss and fixture success in the branemark system. Clinical Oral Implants Research 3: 104 – 111.en_US
dc.identifier.citedreferenceRoberts, W.E., Smith, R.K., Zilberman, Y., Mozsary, P.G. & Smith, R.S. ( 1984 ) Osseous adaptation to continuous loading of rigid endosseous implants. American Journal of Orthodontics 86: 95 – 111.en_US
dc.identifier.citedreferenceSchrotenboer, J., Tsao, Y.P., Kinariwala, V. & Wang, H.L. ( 2008 ) Effect of microthreads and platform switching on crestal bone stress levels: a finite element analysis. Journal of Periodontology 79: 2166 – 2172.en_US
dc.identifier.citedreferenceSteigenga, J., Al-Shammari, K., Misch, C., Nociti, F.H. Jr & Wang, H.L. ( 2004 ) Effects of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibia of rabbits. Journal of Periodontology 75: 1233 – 1241.en_US
dc.identifier.citedreferenceSteigenga, J.T., al-Shammari, K.F., Nociti, F.H., Misch, C.E. & Wang, H.L. ( 2003 ) Dental implant design and its relationship to long-term implant success. Implant Dentistry 12: 306 – 317.en_US
dc.identifier.citedreferenceVaillancourt, H., Pilliar, R.M. & McCammond, D. ( 1995 ) Finite element analysis of crestal bone loss around porous-coated dental implants. Journal of Applied Biomaterials 6: 267 – 282.en_US
dc.identifier.citedreferenceWolff, J. ( 1892 ) The Laws of Bone Remodeling. Berlin: Springer.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.