Show simple item record

A comparative study of parameterized and full thermal-convection models in the interpretation of heat flow from cratons and mobile belts

dc.contributor.authorNyblade, Andrew A.en_US
dc.contributor.authorPollack, Henry N.en_US
dc.date.accessioned2010-06-01T21:42:40Z
dc.date.available2010-06-01T21:42:40Z
dc.date.issued1993-06en_US
dc.identifier.citationNyblade, Andrew A.; Pollack, Henry N. (1993). "A comparative study of parameterized and full thermal-convection models in the interpretation of heat flow from cratons and mobile belts." Geophysical Journal International 113(3): 747-751. <http://hdl.handle.net/2027.42/74756>en_US
dc.identifier.issn0956-540Xen_US
dc.identifier.issn1365-246Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74756
dc.description.abstractHeat flow from Archean cratons worldwide is typically lower than from younger mobile belts surrounding them. The contrast in heat flow between cratons and mobile belts has been attributed in previous studies to the greater thermal resistance of thicker lithosphere beneath the cratons which impedes the flow of mantle heat through the cratons and forces more mantle heat to escape through thinner mobile belt lithosphere. This interpretation is based on thermal models which employ a parameterized convection algorithm to calculate heat transfer in the sublithospheric mantle. We test this interpretation by comparing thermal models constructed using the parameterized convection scheme with models developed using an algorithm for full thermal convection. We show that thermal models constructed using the two different convection algorithms yield similar surface heat flow and thermal structure to moderate depths within the lithosphere. Therefore, we conclude that the interpretation of the heat-flow observations in terms of thicker lithosphere under Archean cratons than under mobile belts is robust in the sense that surface heat flow is not sensitive to the details of heat transfer within the convecting mantle and how deep mantle heat is delivered to the base of the lithosphere.en_US
dc.format.extent444501 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1993 Royal Astronomical Societyen_US
dc.subject.otherConvectionen_US
dc.subject.otherCratonsen_US
dc.subject.otherHeat Flowen_US
dc.subject.otherMobile Beltsen_US
dc.titleA comparative study of parameterized and full thermal-convection models in the interpretation of heat flow from cratons and mobile beltsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74756/1/j.1365-246X.1993.tb04665.x.pdf
dc.identifier.doi10.1111/j.1365-246X.1993.tb04665.xen_US
dc.identifier.sourceGeophysical Journal Internationalen_US
dc.identifier.citedreferenceBallard, S. & Pollack, H. N. 1987. Diversion of heat by Archean cratons: a model for southern Africa, Earth planet. Sci. Lett. 85, 253 – 264.en_US
dc.identifier.citedreferenceBallard, S., Pollack, H. N. & Skinner, N. J. 1987. Terrestrial heat flow in Botswana and Namibia, J. geophys. Res. 92, 6291 – 6300.en_US
dc.identifier.citedreferenceChapman, D. S. & Furlong, K. P. 1977. Continental heat flow-age relationships (abstract), EOS, Trans. Am. geophys. Union, 58, 1240.en_US
dc.identifier.citedreferenceGurnis, M. 1988. Large-scale mantle convection and the aggregation and dispersal of supercontinents, Nature, 332, 695 – 699.en_US
dc.identifier.citedreferenceGurnis, M. & Zhong, S. 1991. Generation of long wavelength heterogeneity in the mantle by the dynamic interaction between plates and convection, Geophys. Res. Lett. 18, 581 – 584.en_US
dc.identifier.citedreferenceJordan, T. H. 1988. Structure and formation of the continental tectosphere, J. Petrology, Spec. Lithosphere Issue, 11 – 37.en_US
dc.identifier.citedreferenceKing, S. D., Raefsky, A. & Hager, B. H. 1990. ConMan: vectorizing a finite element code for incompressible two-dimensional convection in the Earth's mantle, Phys. Earth planet. Inter. 59, 195 – 207.en_US
dc.identifier.citedreferenceMorgan, P. 1985. Crustal radiogenic heat production and the selective survival of ancient continental crust, J. geophys. Res. 90, C561 – C570.en_US
dc.identifier.citedreferenceNyblade, A. A., Pollack, H. N., Jones, D. L., Podmore, F. & Mushayandebvu, M. 1990. Terrestrial heat flow in east and southern Africa, J. geophys. Res. 95, 17371 – 17384.en_US
dc.identifier.citedreferenceShape, H. N. & Peltier, W. R. 1979. A thermal history model for the Earth with parameterized convection, Geophys. J. R. astr. Soc. 59, 171 – 205.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.