Show simple item record

Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release

dc.contributor.authorNeely, Melody N.en_US
dc.contributor.authorFriedman, David I.en_US
dc.date.accessioned2010-06-01T21:44:28Z
dc.date.available2010-06-01T21:44:28Z
dc.date.issued1998-06en_US
dc.identifier.citationNeely, Melody N.; Friedman, David I. (1998). "Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release." Molecular Microbiology 28(6): 1255-1267. <http://hdl.handle.net/2027.42/74784>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74784
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=9680214&dopt=citationen_US
dc.format.extent781768 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights1998 Blackwell Science Ltden_US
dc.titleFunctional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin releaseen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109 0620, USA.en_US
dc.identifier.pmid9680214en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74784/1/j.1365-2958.1998.00890.x.pdf
dc.identifier.doi10.1046/j.1365-2958.1998.00890.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAcheson, W.K., Donohue-Rolfe, A., Keusch, G.T. ( 1991 ) The family of Shiga and Shiga-like toxins. In Sourcebook of Bacterial Protein Toxins. Alouf, J.E., and Freer, J.H. (eds). London: Academic Press, pp. 415 – 433.en_US
dc.identifier.citedreferenceal-Jumaili, I., Burke, D.A., Scotland, S.M., al-Mardini, H., Record, C.O. ( 1992 ) A method of enhancing verocytotoxin production by Escherichia coli. FEMS Microbiol Lett 72: 121 – 125.en_US
dc.identifier.citedreferenceBear, S.E., Court, D.L., Friedman, D.I. ( 1984 ) An accessory role for Escherichia coli integration host factor: characterization of a lambda mutant dependent upon integration host factor for DNA packaging. J Virol 52: 966 – 972.en_US
dc.identifier.citedreferenceBishai, W.R. & Murphy, J.R. ( 1988 ) Bacteriophage gene products that cause human disease. In The Bacteriophages. Calendar, R. (ed.). New York: Plenum Press, pp. 683 – 724.en_US
dc.identifier.citedreferenceBlasi, U. & Young, R. ( 1996 ) Two beginnings for a single purpose: the dual-start holins in the regulation of phage lysis. Mol Microbiol 21: 675 – 682.en_US
dc.identifier.citedreferenceBolivar, F. ( 1978 ) Construction and characterization of new cloning vehicles. III. Derivatives of plasmid pBR322 carrying unique Eco RI sites for selection of Eco RI generated recombinant DNA molecules. Gene 4: 121 – 136.en_US
dc.identifier.citedreferenceCalderwood, S.B. & Mekalanos, J.J. ( 1987 ) Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J Bacteriol 169: 4759 – 4764.en_US
dc.identifier.citedreferenceCampbell, A. ( 1988 ) Phage evolution and speciation. In The Bacteriophages 1. Calendar, R. (ed). New York: Plenum Press, pp. 1 – 14.en_US
dc.identifier.citedreferenceChattopadhyay, S., Garcia-Mena, J., DeVito, J., Wolska, K., Das, A. ( 1995 ) Bipartite function of a small RNA hairpin in transcription antitermination in bacteriophage lambda. Proc Natl Acad Sci USA 92: 4061 – 4065.en_US
dc.identifier.citedreferenceCheetham, B.F. & Katz, M.E. ( 1995 ) A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol Microbiol 18: 201 – 208.en_US
dc.identifier.citedreferenceChurchward, G., Belin, D., Nagamine, Y. ( 1984 ) A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors. Gene 31: 165 – 171.en_US
dc.identifier.citedreferenceDas, A. ( 1992 ) How the phage lambda N gene product suppresses transcription termination: communication of RNA polymerase with regulatory proteins mediated by signals in nascent RNA. J Bacteriol 174: 6711 – 6716.en_US
dc.identifier.citedreferenceDe Crombrugghe, B., Mudryj, M., DiLauro, R., Gottesman, M. ( 1979 ) Specificity of the bacteriophage lambda N gene product (pN): nut sequences are necessary and sufficient for antitermination by pN. Cell 18: 1145 – 1151.en_US
dc.identifier.citedreferencede Grandis, S., Ginsberg, J., Toone, M., Climie, S., Friesen, J., Brunton, J. ( 1987 ) Nucleotide sequence and promoter mapping of the Escherichia coli Shiga-like toxin operon of bacteriophage H-19B. J Bacteriol 169: 4313 – 4319.en_US
dc.identifier.citedreferenceDevereux, J., Haeberli, P., Smithies, O. ( 1984 ) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387 – 395.en_US
dc.identifier.citedreferenceDoelling, J.H. & Franklin, N.C. ( 1989 ) Effects of all single base substitutions in the loop of boxB on antitermination of transcription by bacteriophage lambda's N protein. Nucleic Acids Res 17: 5565 – 5577.en_US
dc.identifier.citedreferenceFranklin, N.C. ( 1985 a) Conservation of genome form but not sequence in the transcription antitermination determinants of bacteriophages lambda, phi 21 and P22. J Mol Biol 181: 75 – 84.en_US
dc.identifier.citedreferenceFranklin, N.C. ( 1985 b) ‘N’ transcription antitermination proteins of bacteriophages lambda, phi 21 and P22. J Mol Biol 181: 85 – 91.en_US
dc.identifier.citedreferenceFriedman, D.I. & Court, D.L. ( 1995 ) Transcription antitermination: The lambda paradigm updated. Mol Microbiol 18: 191 – 200.en_US
dc.identifier.citedreferenceFriedman, D.I. & Gottesman, M. ( 1983 ) Lytic Mode of Lambda Development. In Lambda II. Hendrix, R.W., Roberts, J.W., Stahl, F.W., and Weisberg, R.A. (eds). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 21 – 51.en_US
dc.identifier.citedreferenceFriedman, D.I., Olson, E.R., Johnson, L.L., Alessi, D., Craven, M.G. ( 1990 ) Transcription-dependent competition for a host factor: the function and optimal sequence of the phage lambda boxA transcription antitermination signal. Genes Dev 4: 2210 – 2222.en_US
dc.identifier.citedreferenceGottesman, M.E. & Weisberg, R.A. ( 1995 ) Termination and antitermination of transcription in temperate bacteriophage. Semin Virol 6: 35 – 42.en_US
dc.identifier.citedreferenceGottesman, M.E. & Yarmolinsky, M.B. ( 1968 ) Integration-negative Mutants of Bacteriophage Lambda. J Mol Biol 31: 487 – 505.en_US
dc.identifier.citedreferenceGuo, H.C., Kainz, M., Roberts, J.W. ( 1991 ) Characterization of the late-gene regulatory region of phage 21. J Bacteriol 173: 1554 – 1560.en_US
dc.identifier.citedreferenceHerskowitz, I. & Signer, E. ( 1970 ) Control of transcription from the r strand of bacteriophage lambda. Cold Spring Harb Symp Quant Biol 35: 355 – 368.en_US
dc.identifier.citedreferenceHuang, A., de Grandis, S., Friesen, J., Karmali, M., Petric, M., Congi, R., Brunton, J.L. ( 1986 ) Cloning and expression of the genes specifying Shiga-like toxin production in Escherichia coli H19. J Bacteriol 166: 375 – 379.en_US
dc.identifier.citedreferenceHuang, A., Friesen, J., Brunton, J.L. ( 1987 ) Characterization of a bacteriophage that carries the genes for production of Shiga-like toxin I in Escherichia coli. J Bacteriol 169: 4308 – 4312.en_US
dc.identifier.citedreferenceKing, R.A., Banik-Maiti, S., Jin, D.J., Weisberg, R.A. ( 1996 ) Transcripts that increase the processivity and elongation rate of RNA polymerase. Cell 87: 893 – 903.en_US
dc.identifier.citedreferenceKnight, P. ( 1997 ) Hemorrhagic E. coli: The danger increases. Am Soc Microbiol News 59: 247 – 250.en_US
dc.identifier.citedreferenceLazinski, D., Grzadzielska, E., Das, A. ( 1989 ) Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell 59: 207 – 218.en_US
dc.identifier.citedreferenceLinn, T. & St.pierre, R. ( 1990 ) Improved vector system for constructing transcriptional fusions that ensures independent translation of lacZ. J Bacteriol 172: 1077 – 1084.en_US
dc.identifier.citedreferenceMiller, J.H. ( 1992 ) A Short Course in Bacterial Genetics. A Laboratory Manual for Eschericia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.en_US
dc.identifier.citedreferenceMiller, H.I. & Friedman, D.I. ( 1980 ) An E. coli gene product required for lambda site-specific recombination. Cell 20: 711 – 719.en_US
dc.identifier.citedreferenceMogridge, J., Mah, T.-F., Greenblatt, J. ( 1995 ) A protein-RNA interaction network facilitates the template-independent cooperative assembly on RNA polymerase of a stable antitermination complex containing the λN protein. Genes Dev 9: 2831 – 2844.en_US
dc.identifier.citedreferenceMonod, J., Cohen-Bazire, G., Cohn, M. ( 1951 ) Sur la Biosynthese de la β-galactosidase (lactase) chez Escherichia coli. La specificite de l'induction. Biochim Biophys Acta 7: 585 – 599.en_US
dc.identifier.citedreferenceMorales, V.M., Backman, A., Bagdasarian, M. ( 1991 ) A series of wide-host-range low-copy- number vectors that allow direct screening for recombinants. Gene 97: 39 – 47.en_US
dc.identifier.citedreferenceMÜhldorfer, I., Hacker, J., Keusch, G.T., Acheson, D.W., Tschape, H., Kane, A.V., et al ( 1996 ) Regulation of the Shiga-like toxin II operon in Escherichia coli. Infect Immun 64: 495 – 502.en_US
dc.identifier.citedreferenceNewland, J.W. & Neill, R.J. ( 1988 ) DNA probes for Shiga-like toxins I and II and for toxin- converting bacteriophages. J Clin Microbiol 26: 1292 – 1297.en_US
dc.identifier.citedreferenceNewland, J.W., Strockbine, N.A., Miller, S.F., O'brien, A.D., Holmes, R.K. ( 1985 ) Cloning of Shiga-like toxin structural genes from a toxin converting phage of Escherichia coli. Science 230: 179 – 181.en_US
dc.identifier.citedreferenceNodwell, J.R. & Greenblatt, J. ( 1993 ) Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10. Cell 72: 261 – 268.en_US
dc.identifier.citedreferenceO'brien, A.D. & Holmes, R.K. ( 1987 ) Shiga and Shiga-like toxins. Microbiol Rev 51: 206 – 220.en_US
dc.identifier.citedreferenceO'brien, A.D. & Holmes, R.K. ( 1996 ) Protein toxins of Escherichia coli and Salmonella. In Escherichia coli and Salmonella: Cellular and Molecular Biology. Neidhardt, F.C. (ed). Washington, DC: American Society for Microbiology Press, pp. 2788 – 2802.en_US
dc.identifier.citedreferenceO'brien, A.D., Newland, J.W., Miller, S.F., Holmes, R.K., Smith, H.W., Formal, S.B. ( 1984 a) Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 226: 694 – 696.en_US
dc.identifier.citedreferenceO'brien, A.D., Chen, M.E., Holmes, R.K., Kaper, J., Levine, M.M. ( 1984 b) Environmental and human isolates of Vibrio cholerae and Vibrio parahaemolyticus produce a Shigella dysenteriae 1 (Shiga)-like cytotoxin. Lancet 1: 77 – 78.en_US
dc.identifier.citedreferenceO'brien, A.D., Marques, L.R., Kerry, C.F., Newland, J.W., Holmes, R.K. ( 1989 ) Shiga-like toxin converting phage of enterohemorrhagic Escherichia coli strain 933. Microb Pathogen 6: 381 – 390.en_US
dc.identifier.citedreferenceO'brien, A.D., Tesh, V.L., Donohue-Rolfe, A., Jackson, M.P., Olsnes, S., Sandvig, K., et al ( 1992 ) Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr Top Microbiol Immunol 180: 65 – 94.en_US
dc.identifier.citedreferenceOberto, J., Clerget, M., Ditto, M., Cam, K., Weisberg, R.A. ( 1993 ) Antitermination of early transcription in phage HK022. Absence of a phage-encoded antitermination factor. J Mol Biol 229: 368 – 381.en_US
dc.identifier.citedreferenceOlson, E.R., Flamm, E.L., Friedman, D.I. ( 1982 ) Analysis of nutR: a region of phage lambda required for antitermination of transcription. Cell 31: 61 – 70.en_US
dc.identifier.citedreferencePatterson, T.A., Zhang, Z., Baker, T., Johnson, L.L., Friedman, D.I., Court, D.L. ( 1994 ) Bacteriophage lambda N-dependent transcription antitermination. Competition for an RNA site may regulate antitermination. J Mol Biol 236: 217 – 228.en_US
dc.identifier.citedreferencePeltz, S.W., Brown, A.L., Hasan, N., Podhajska, A.J., Szybalski, W. ( 1985 ) Thermosensitivity of a DNA recognition site: activity of a truncated nutL antiterminator of coliphage lambda. Science 228: 91 – 93.en_US
dc.identifier.citedreferenceRichardson, J.P. & Greenblatt, J. ( 1996 ) Control of RNA chain elongation and termination. In Escherichia coli and Salmonella: Cellular and Molecular Biology. Neidhardt, F.C. (ed,). Washington, DC: American Society for Microbiology Press, pp. 822 – 848.en_US
dc.identifier.citedreferenceRiley, M.A. ( 1993 ) Molecular mechanisms of colicin evolution. Mol Biol Evol 10: 1380 – 1395.en_US
dc.identifier.citedreferenceRoberts, J. ( 1992 ) Antitermination and the control of transcription elongation. In Transcriptional Regulation. McKnight, S.L., and Yamamoto, K.R. (eds). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 389 – 406.en_US
dc.identifier.citedreferenceRobledo, R., Gottesman, M.E., Weisberg, R.A. ( 1990 ) λ nutR mutations convert HK022 Nun protein from a transcription termination factor to a suppressor of termination. J Mol Biol 212: 635 – 643.en_US
dc.identifier.citedreferenceSalstrom, J.S. & Szybalski, W. ( 1978 ) Coliphage lambda nutL -: a unique class of mutants defective in the site of gene N product utilization for antitermination of leftward transcription. J Mol Biol 124: 195 – 221.en_US
dc.identifier.citedreferenceSambrook, J., Fritsch, E., Maniatis, T. ( 1989 ) Molecular Cloning, A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.en_US
dc.identifier.citedreferenceScotland, S.M., Smith, H.R., Willshaw, G.A., Rowe, B. ( 1983 ) Vero cytotoxin production in strain of Escherichia coli is determined by genes carried on bacteriophage (letter). Lancet 2: 216.en_US
dc.identifier.citedreferenceSmith, H.R., Day, N.P., Scotland, S.M., Gross, R.J., Rowe, B. ( 1984 ) Phage-determined production of vero cytotoxin in strains of Escherichia coli serogroup 0157 (letter). Lancet 1: 1242 – 1243.en_US
dc.identifier.citedreferenceSmith, H.W., Green, P., Parsell, Z. ( 1983 ) Vero cell toxins in Escherichia coli and related bacteria: transfer by phage and conjugation and toxic action in laboratory animals, chickens and pigs. J Gen Microbiol 129: 3121 – 3137.en_US
dc.identifier.citedreferenceSung, L.M., Jackson, M.P., O'brien, A.D., Holmes, R.K. ( 1990 ) Transcription of the Shiga-like toxin type II and Shiga-like toxin type II variant operons of Escherichia coli. J Bacteriol 172: 6386 – 6395.en_US
dc.identifier.citedreferenceSussman, R. & Jacob, F. ( 1962 ) Sur un systeme de repression thermosensible chez le bacteriophage λ d'Escherichia coli. CR Acad Sci Paris 254: 1517 – 1519.en_US
dc.identifier.citedreferenceVogel, U. & Jensen, K.F. ( 1995 ) Effects of the antiterminator BoxA on transcription elongation kinetics and ppGpp inhibition of transcription elongation in Escherichia coli. J Biol Chem 270: 18335 – 18340.en_US
dc.identifier.citedreferenceWaldorf, M.K. & Mekalanos, J.J. ( 1996 ) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910 – 1914.en_US
dc.identifier.citedreferenceZuber, M., Patterson, T.A., Court, D.L. ( 1987 ) Analysis of nutR, a site required for transcription antitermination in phage lambda. Proc Natl Acad Sci USA 84: 4514 – 4518.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.