Show simple item record

Innate and adaptive autoimmunity in type 1 diabetes

dc.contributor.authorMorran, Michael P.en_US
dc.contributor.authorMcInerney, Marcia F.en_US
dc.contributor.authorPietropaolo, Massimoen_US
dc.date.accessioned2010-06-01T21:49:43Z
dc.date.available2010-06-01T21:49:43Z
dc.date.issued2008-04en_US
dc.identifier.citationMorran, Michael P; McInerney, Marcia F; Pietropaolo, Massimo (2008). "Innate and adaptive autoimmunity in type 1 diabetes." Pediatric Diabetes 9(2): 152-161. <http://hdl.handle.net/2027.42/74867>en_US
dc.identifier.issn1399-543Xen_US
dc.identifier.issn1399-5448en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74867
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18221432&dopt=citationen_US
dc.format.extent145619 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 Blackwell Munksgaarden_US
dc.subject.otherAutoimmunityen_US
dc.subject.otherInnate Immunityen_US
dc.subject.otherT1Den_US
dc.subject.otherTLRsen_US
dc.titleInnate and adaptive autoimmunity in type 1 diabetesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPediatricsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumLaboratory of Immunogenetics, The Brehm Center for Type 1 Diabetes Research and Analysis, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Medicinal and Biological Chemistry, College of Pharmacy, University of Toledo, Toledo, OH, USAen_US
dc.identifier.pmid18221432en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74867/1/j.1399-5448.2007.00334.x.pdf
dc.identifier.doi10.1111/j.1399-5448.2007.00334.xen_US
dc.identifier.sourcePediatric Diabetesen_US
dc.identifier.citedreferenceTodd JA, Walker NM, Cooper JD et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 2007: 39: 857 – 864.en_US
dc.identifier.citedreferenceHakonarson H, Grant SFA, Bradfield JP et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 2007 ( Epub ) doi: 10.1038/nature 06010.en_US
dc.identifier.citedreferenceThomson G. HLA DR antigens and susceptibility to insulin-dependent diabetes mellitus. Am J Hum Genet 1984: 36: 1309 – 1317.en_US
dc.identifier.citedreferenceTodd JA, Bell JL, McDevitt HO. HLA-DQΒ gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 1987: 329: 599 – 604.en_US
dc.identifier.citedreferenceMorel PA, Dorman JS, Todd JA, McDevitt HO, Trucco M. Aspartic acid at position 57 of the HLA-DQ beta chain protects against type 1 diabetes: a family study. Proc Natl Acad Sci U S A 1988: 85: 8111 – 8115.en_US
dc.identifier.citedreferenceAly TA, Ide A, Jahromi MM et al. Extreme genetic risks for type 1A diabetes. Proc Natl Acad Sci U S A 2006: 103: 14074 – 14079.en_US
dc.identifier.citedreferencePietropaolo M, Barinas-Mitchell E, Kuller LH. Perspectives in diabetes heterogeneity of diabetes mellitus. Unraveling a dispute: is systemic inflammation related to islet autoimmunity? Diabetes 2007: 56: 1189 – 1197.en_US
dc.identifier.citedreferenceDelovitch TL, Singh B. The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 1997: 7: 727 – 738.en_US
dc.identifier.citedreferenceKatz JD, Benoist C, Mathis D. T helper cell subsets in insulin-dependent diabetes. Science 1995: 268: 1185 – 1188.en_US
dc.identifier.citedreferenceRabinovitch A, Suarez-Pinzon WL, Sorensen O. Interleukin 12 mRNA expression in islets correlates with beta-cell destruction in NOD mice. J Autoimmun 1996: 9: 645 – 651.en_US
dc.identifier.citedreferenceVon Herrath MG, Oldstone MB. Interferon-gamma is essential for destruction of beta-cells and development of insulin-dependent diabetes mellitus. J Exp Med 1997: 185: 531 – 539.en_US
dc.identifier.citedreferenceWong FS, Janeway CA. The role of CD4 and CD8 T cells in type 1 diabetes in the NOD mouse. Res Immunol 1997: 148: 327 – 332.en_US
dc.identifier.citedreferenceYoon JW, Jun HS, Santamaria P. Cellular and molecular mechanisms for the initiation and progression of beta-cell destruction resulting from the collaboration between macrophages and T cells. Autoimmunity 1998: 127: 109 – 112.en_US
dc.identifier.citedreferenceLee KU, Kim MK, Amano K et al. Preferential infiltration of macrophages during early stages of insulitis in diabetes-prone BB rats. Diabetes 1989: 37: 1053 – 1058.en_US
dc.identifier.citedreferenceVoorbij HA, Jeucken PH, Kabel PJ, De Haan M, Drexhage HA. Dendritic cells and scavenger macrophages in pancreatic islets of pre-diabetic BB rats. Diabetes 1989: 38: 1623 – 1629.en_US
dc.identifier.citedreferenceJansen A, Homo-Delarche F, Hooijkaas H, Leenen PJ, Dardenne M, Drexhage HA. Immunohistochemical characterization of monocyte-macrophage and dendritic cells in the initiation of insulitis and beta cell destruction in NOD mice. Diabetes 1994: 43: 667 – 675.en_US
dc.identifier.citedreferenceLee KU, Amano K, Yoon JW. Evidence for initial involvement of macrophages in development of insulitis in NOD mice. Diabetes 1988: 37: 989 – 991.en_US
dc.identifier.citedreferenceBeyan H, Buckley LR, Yousaf N, Londei M, Leslie RDG. A role for innate immunity in type 1 diabetes? Diabetes Metab Res Rev 2003: 19: 89 – 100.en_US
dc.identifier.citedreferenceRabinovitch A, Suarez-Pinzon W. Cytokines and their roles in pancreatic islet B cell destruction and insulin dependent diabetes mellitus. Biochem Pharmacol 1998: 55: 1139 – 1149.en_US
dc.identifier.citedreferenceJun HS, Yoon CS, Zbytnuik L, van Rooijen N, Yoon JW. The role of macrophages in T-cell mediated autoimmune diabetes in nonobese diabetic mice. J Exp Med 1999: 189: 347 – 358.en_US
dc.identifier.citedreferenceOschilewski U, Kiesel U, Kolb H. Administration of silica prevents diabetes in BB rats. Diabetes 1985: 34: 197 – 199.en_US
dc.identifier.citedreferenceLee KU, Pak CY, Amano K, Yoon JW. Prevention of lymphocytic thyroiditis and insulitis in diabetes prone BB rats by the depletion of macrophages. Diabetologia 1988: 31: 400 – 402.en_US
dc.identifier.citedreferenceAtkinson MA, Eisenbarth GS. Type I diabetes: new perspectives on disease pathogenesis and treatment. Lancet 2001: 358: 221 – 229.en_US
dc.identifier.citedreferenceMedzhitov R, Janeway CA Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997: 91: 295 – 298.en_US
dc.identifier.citedreferenceBottazzo GF, Dean BM, McNally JM, Mackay EH, Swift PG, Gamble DR. In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. N Engl J Med 1985: 313: 353 – 360.en_US
dc.identifier.citedreferenceConrad B, Weidman E, Trucco G et al. Evidence for superantigen involvement in insulin-dependent diabetes mellitus etiology. Nature 1994: 371: 351 – 355.en_US
dc.identifier.citedreferenceWong FS, Karttunen J, Dumont C et al. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nat Med 1999: 5: 1026 – 1031.en_US
dc.identifier.citedreferenceLieberman SM, Evans AM, Han B et al. Identification of the beta cell antigen targeted by a prevalent population of pathogenic CD+8 T cells in autoimmune diabetes. Proc Natl Acad Sci U S A 2003: 100: 8384 – 8388.en_US
dc.identifier.citedreferenceKhatrri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD+4CD+25 T-regulatory cells. Nat Immunol 2003: 4: 337 – 342.en_US
dc.identifier.citedreferenceFontenot JD, Gavin MA, Rudensky AY. FoxP3 programs the development and function of CD+4 CD+25 regulatory T-cells. Nat Immunol 2003: 4: 330 – 336.en_US
dc.identifier.citedreferenceHori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2004: 299: 1057 – 1061.en_US
dc.identifier.citedreferenceRandolph DA, Fathman CG. CD+4CD+25 regulatory T cells and their therapeutic potential. Annu Rev Med 2006: 57: 381 – 402.en_US
dc.identifier.citedreferenceSt Clair EW, Turka LA, Saxon A et al. New reagents on the horizon for immune tolerance. Annu Rev Med 2007: 58: 329 – 346.en_US
dc.identifier.citedreferenceBluestone JA, Tang Q. How do CD4+CD25+ regulatory T cells control autoimmunity? Curr Opin Immunol 2005: 17: 638 – 642.en_US
dc.identifier.citedreferenceTang Q, Bluestone JA. Regulatory T-cell physiology and application to treat autoimmunity. Immunol Rev 2006: 212: 217 – 237.en_US
dc.identifier.citedreferenceBrusko TM, Wasserfall CH, Clare-salzler MJ, Schatz DA, Atkinson MA. Functional defects and the influence of age on the frequency of CD+4CD+25 T-cells in type 1 diabetes. Diabetes 2005: 54: 1407 – 1414.en_US
dc.identifier.citedreferenceLindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI. Defective suppressor function in CD+4CD+25 t cells from patients with type 1 diabetes. Diabetes 2005: 54: 92 – 99.en_US
dc.identifier.citedreferencePutnam AL, Vendrame F, Dotta F, Gottlieb PA. CD+4CD+25high regulatory T cells in human autoimmune diabetes. J Autoimmun 2005: 24: 55 – 62.en_US
dc.identifier.citedreferenceMason D, Powrie F. Control of immune pathology by regulatory T cells. Curr Opin Immunol 1998: 10: 649 – 655.en_US
dc.identifier.citedreferenceTang Q, Henrikson KJ, Bi M et al. In vitro-expanded antigen specific regulatory T cells suppress autoimmune diabetes. J Exp Med 2004: 199: 1455 – 1465.en_US
dc.identifier.citedreferenceBendelac A. Mouse NK+1 T cells. Curr Opin Immunol 1995: 7: 367.en_US
dc.identifier.citedreferenceBendelac A, Rivera MN, Park SH, Roark JH. Mouse CD1-specific NK1 T cells – development, specificity, and function. Annu Rev Immunol 1997: 15: 535 – 562.en_US
dc.identifier.citedreferenceMacdonald HR. NK1.1+ T cell receptor-ΑΒ+ cell – new clues to their origin, specificity, and function. J Exp Med 1995: 182: 633 – 638.en_US
dc.identifier.citedreferenceBurdin N, Brossay L, Kronenberg M. Immunization with Α-galactosylceramide polarizes CD1-reactive NK T-cells toward Th2 cytokine synthesis. Eur J Immunol 1999: 29: 2014 – 2025.en_US
dc.identifier.citedreferenceSingh N, Hong S, Scherer DC et al. Cutting edge: activation of NK T-cells by CD1d and Α-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J Immunol 1999: 163: 2373 – 2377.en_US
dc.identifier.citedreferenceGombert JM, Herbelin A, Tancrede-Bohin E, Dy M, Carnaud C, Bach JF. Early quantitative and functional deficiency of NK+1 like thymocytes in the NOD mouse. Eur J Immunol 1996: 26: 2989 – 2998.en_US
dc.identifier.citedreferenceGodfrey DI, Kinder SJ, Silvera P, Baxter AG. Flow cytometric study of T cell development in NOD mice reveals a deficiency in ΑΒTCR+ CD-4 CD-8 thymocytes. J Autoimmun 1997: 10: 279 – 285.en_US
dc.identifier.citedreferenceWilson SB, Kent SC, Patton KT et al. Extreme Th1 bias of invariant VΑ24JΑQ T cells in type 1 diabetes. Nature 1998: 391: 177 – 181.en_US
dc.identifier.citedreferenceHammond KJL, Poulton LD, Palimsano LJ, Silveira PA, Godfrey DI, Baxter AG. ΑΒ-T cell receptor (TCR)+ CD-4 CD-8 (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD/Lt) mice by the influence of interleukin-4 (IL-4) and/or IL-10. J Exp Med 1998: 187: 1047 – 1056.en_US
dc.identifier.citedreferenceGodfrey DI, Hammond KJ, Poulton LD, Smyth MJ, Baxter AG. NKT cells: facts, functions and fallacies. Immunol Today 2000: 21: 573 – 583.en_US
dc.identifier.citedreferenceTakeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003: 21: 335 – 376.en_US
dc.identifier.citedreferenceDabbagh K, Lewis DB. Toll-like receptors and T-helper-1/T-helper-2 responses. Curr Opin Infect Dis 2003: 16: 199.en_US
dc.identifier.citedreferencePasare C, Medzhitov R. Toll-like receptors and acquired immunity. Semin Immunol 2004: 16: 23 – 26.en_US
dc.identifier.citedreferenceAkira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006: 124: 783 – 801.en_US
dc.identifier.citedreferenceJohnson GB, Brunn GJ, Platt JL. Activation of mammalian Toll-like receptors by endogenous agonists. Crit Rev Immunol 2003: 23: 15.en_US
dc.identifier.citedreferenceOhashi K, Burkart V, Flohe S, Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J Immunol 2000: 164: 558.en_US
dc.identifier.citedreferenceButtari B, Profumo E, Mattei V et al. Oxidized beta2glycoprotein I induces human dendritic cell maturation and promotes a T helper type 1 response. Blood 2005: 106: 3880.en_US
dc.identifier.citedreferenceTermeer C, Benedix F, Sleeman J et al. Oligosaccharides of Hyaluronan activate dendritic cells via Toll-like receptor 4. J Exp Med 2002: 195: 99.en_US
dc.identifier.citedreferenceMedzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001: 1: 135 – 145.en_US
dc.identifier.citedreferenceAkira S, Takeda K. Toll-like receptor signaling. Nat Rev Immunol 2004: 4: 499 – 511.en_US
dc.identifier.citedreferenceKawai T, Akira S. TLR signaling. Nature 2006: 13: 816 – 825.en_US
dc.identifier.citedreferenceWei Du, Wong SF, Chervonsky A et al. Autoimmune diabetes development in TLR and MYD88 deficient NOD mice. Diabetes 2006: 55 ( Suppl. 1 ): A89.en_US
dc.identifier.citedreferenceMcSorley SJ, Ehst BD, Yu Y, Gewirtz AT. Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J Immunol 2002: 169: 3914 – 3919.en_US
dc.identifier.citedreferenceMartin DA, Elkon KB. Autoantibodies make a U-turn: the toll hypothesis for autoantibody specificity. J Exp Med 2005: 202: 1465 – 1469.en_US
dc.identifier.citedreferenceFritz JH, Le Bourhis L, Sellge G et al. Nod-like proteins in immunity, inflammation and disease. Nat Immunol 2006: 12: 1250 – 1257.en_US
dc.identifier.citedreferenceKlesney-Tait J, Turnbull IR, Colonna M. The TREM receptor family and signal integration. Nat Immunol 2006: 12: 1266 – 1273.en_US
dc.identifier.citedreferenceRobinson MJ, Sancho D, Slack EC, LeibundtGut-Landmanns S, Reis e Sousa C. Myeloid C-type lectins in innate immunity. Nat Immunol 2006: 12: 1258 – 1265.en_US
dc.identifier.citedreferenceMeagher C, Sharif S, Hussain S, Cameron MJ, Arreaza GA, Delovitch TL. Cytokines and chemokines in the pathogenesis of murine type 1 diabetes. Adv Exp Med Biol 2003: 520: 133 – 158.en_US
dc.identifier.citedreferenceVarela-Calvino R, Peakman M. Enteroviruses and type 1 diabetes. Diabetes Metab Res Rev 2003: 19: 431 – 441.en_US
dc.identifier.citedreferenceGreen J, Casabonne D, Newton R. Coxsackie B virus serology and type I diabetes mellitus: a systemic review of published case-control studies. Diabet Med 2004: 21: 507 – 514.en_US
dc.identifier.citedreferenceBarbu AR, Akusjarvi G, Welsh N. Adenoviral-mediated transduction of human pancreatic islets: importance of adenoviral genome for cell viability and association with a deficient antiviral response. Endocrinology 2005: 146: 2406 – 2414.en_US
dc.identifier.citedreferenceChen LK, Chou YC, Tsai ST, Hwang SJ, Lee SD. Hepatitis C virus infection-related type 1 diabetes mellitus. Diabet Med 2005: 22: 340 – 343.en_US
dc.identifier.citedreferenceMohammad MK, Morran M, Slotterbeck B et al. Dysregulated Toll-like receptor expression and signaling in bone marrow derived macrophages at the onset of diabetes in the non-obese diabetic mouse. Int Immunol 2007: 18: 1101 – 1113.en_US
dc.identifier.citedreferenceMoriyama H, Wen L, Abiru N et al. Induction and acceleration of insulitis/diabetes in mice with a viral mimic (polyinosinic-polycytidylic acid) and an insulin self-peptide. Proc Natl Acad Sci U S A 2002: 99: 5539.en_US
dc.identifier.citedreferenceHonda K, Taniguchi T. IRFs: master regulators of signaling by Toll-like receptors and cytosolic pattern recognition receptors. Nat Rev 2006: 6: 644 – 658.en_US
dc.identifier.citedreferenceHussain MJ, Peakman M, Gallati H et al. Elevated serum levels of macrophage-derived cytokines precede and accompany the onset of IDDM. Diabetologia 1996: 39: 60.en_US
dc.identifier.citedreferenceShanmugam N, Reddy M, Guha M, Natarajan R. High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 2003: 52: 1256.en_US
dc.identifier.citedreferenceKabelitz D. Expression and function of Toll-like receptors in T lymphocytes. Curr Opin Immunol 2007: 19: 39 – 45.en_US
dc.identifier.citedreferenceHornung V, Rothenfusser S, British S et al. Quantitative expression of Toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 2002: 168: 4531 – 4537.en_US
dc.identifier.citedreferenceZarember KA, Godowski PJ. Tissue expression of Toll-like receptors and differential regulation of Toll-like receptor mRNA in leukocytes in response to microbes, their products, and cytokines. J Immunol 2002: 168: 554 – 561.en_US
dc.identifier.citedreferenceCaron G, Duluc D, Fremaux I et al. Direct stimulation of human T-cells via TLR5 and TLR7/8 and R-848 up-regulate proliferation and IFN-g production by memory CD+4 T-cells. J Immunol 2005: 175: 1551 – 1557.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.