Show simple item record

Kinetics of toluene degradation by toluene-oxidizing bacteria as a function of oxygen concentration, and the effect of nitrate

dc.contributor.authorLeahy, Joseph G.en_US
dc.contributor.authorOlsen, Ronald H.en_US
dc.date.accessioned2010-06-01T21:49:53Z
dc.date.available2010-06-01T21:49:53Z
dc.date.issued1997-05en_US
dc.identifier.citationLeahy, Joseph G; Olsen, Ronald H (1997). "Kinetics of toluene degradation by toluene-oxidizing bacteria as a function of oxygen concentration, and the effect of nitrate." FEMS Microbiology Ecology 23(1): 23-30. <http://hdl.handle.net/2027.42/74870>en_US
dc.identifier.issn0168-6496en_US
dc.identifier.issn1574-6941en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74870
dc.description.abstractThe kinetics of toluene degradation as a function of oxygen concentration were compared for six strains of toluene-oxidizing bacteria using initial rate assays. The effect of nitrate was also examined. Rates of degradation and the relative effect of oxygen on the degradation rate were correlated with the pathway for toluene oxidation. Strains which synthesize toluene dioxygenases, Pseudomonas putida F1, P. fluorescens CFS215, and Pseudomonas sp. strain W31, degraded toluene at significantly higher rates (151–166 nmol/mg per min) than strains synthesizing toluene monooxygenases, Burkholderia cepacia G4 (23 nmol/mg per min) and B. pickettii PKO1 (14 nmol/mg per min), or a methylmonooxygenase, P. putida PaW1 (12 nmol/mg per min). Rates declined 30–48% for the dioxygenase strains and 25% for PaW1 as the oxygen concentration was decreased from 240 to 50 ΜM, but declined less than 10% for G4 and PKO1. Nitrate enhanced toluene degradation by the denitrifying strains PKO1 and W31 at oxygen concentrations below 30 ΜM, but had no significant effect on any of the other strains. Biphasic kinetics were observed for all of the strains, with double-reciprocal plots of the data exhibiting an inflection point at a ‘critical oxygen concentration’ between 20 and 30 ΜM. Below this concentration, the rate of toluene degradation was inhibited to a greater extent than predicted by the kinetic data for higher oxygen concentrations. For the denitrifying strains PKO1 and W31, however, monophasic kinetics were observed when nitrate was provided as an alternative electron acceptor. These observations suggest that biphasic kinetics result when rates of toluene degradation are limited by the availability of electron acceptor at the critical oxygen concentration, and that this limitation is overcome by denitrifying strains able to respire nitrate. Taken together, our findings suggest that the synthesis of monooxygenases and the ability to denitrify represent independent adaptations for toluene utilization in low oxygen environments. Moreover, these data support the use of nitrate in mixed electron acceptor strategies for the bioremediation of contaminated aquifers, as well as the targeted use of monooxygenase and dioxygenase strains in settings in which their physiological traits can be best exploited.en_US
dc.format.extent1005993 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1997 Federation of European Microbiological Societiesen_US
dc.subject.otherPseudomonasen_US
dc.subject.otherBurkholderiaen_US
dc.subject.otherKineticsen_US
dc.subject.otherToluene Biodegradationen_US
dc.subject.otherOxygenaseen_US
dc.subject.otherDenitrificationen_US
dc.titleKinetics of toluene degradation by toluene-oxidizing bacteria as a function of oxygen concentration, and the effect of nitrateen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74870/1/j.1574-6941.1997.tb00387.x.pdf
dc.identifier.doi10.1111/j.1574-6941.1997.tb00387.xen_US
dc.identifier.sourceFEMS Microbiology Ecologyen_US
dc.identifier.citedreference1 Sandmeyer, E.E. (1984) Aromatic hydrocarbons. In: Patty's Industrial Hygiene and Technology, vol. 2, B, 3rd edn. (Clayton, C.D. and Clayton, F.E., Eds.), pp. 3384–3387. Interscience Publishers, New York.en_US
dc.identifier.citedreferenceWestrick, J.J., Mello, J.W. and Thomas, R.F. ( 1984 ) The groundwater supply survey. J. Am. Water Works Assoc. 76, 52 – 59.en_US
dc.identifier.citedreferenceAssinder, S.J. and Williams, P.A. ( 1990 ) The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv. Microb. Physiol. 31, 1 – 69.en_US
dc.identifier.citedreferenceKukor, J.J. and Olsen, R.H. ( 1989 ) Diversity of toluene degradation following long term exposure to BTEX in situ. Adv. Appl. Biotechnol. 4, 405 – 421.en_US
dc.identifier.citedreferenceMikesell, M.D., Kukor, J.J. and Olsen, R.H. ( 1994 ) Metabolic diversity of aromatic hydrocarbon-degrading bacteria from a petroleum-contaminated aquifer. Biodegradation 4, 249 – 259.en_US
dc.identifier.citedreferenceThomas, J.M. and Ward, C.H. ( 1989 ) In situ biorestoration of organic contaminants in the subsurface. Environ. Sci. Technol. 23, 760 – 766.en_US
dc.identifier.citedreferenceLee, M.D., Thomas, J.M., Borden, R.C., Bedient, P.B., Ward, C.H. and Wilson, J.T. ( 1986 ) Biorestoration of aquifers contaminated with organic compounds. Crit. Rev. Environ. Control 18, 29 – 89.en_US
dc.identifier.citedreferenceBarbaro, J.R., Barker, J.F., Lemon, L.A. and Mayfield, C.I. ( 1992 ) Biotransformation of BTEX under anaerobic, denitrifying conditions: field and laboratory observations. J. Contam. Hydrol. 11, 245 – 272.en_US
dc.identifier.citedreferenceAnid, P.J., Alvarez, P.J.J. and Vogel, T.M. ( 1993 ) Biodegradation of monoaromatic hydrocarbons in aquifer columns amended with hydrogen peroxide and nitrate. Water Res. 27, 685 – 691.en_US
dc.identifier.citedreferenceBradley, P.M., Aelion, C.M. and Vroblesky, D.A. ( 1992 ) Influence of environmental factors on denitrification in sediment contaminated with JP-4 jet fuel. Ground Water 30, 843 – 848.en_US
dc.identifier.citedreferenceGersberg, R.M., Dawsey, W.J. and Bradley, M.D. ( 1991 ) Biodegradation of monoaromatic hydrocarbons in groundwater under denitrifying conditions. Bull. Environ. Contam. Toxicol. 47, 230 – 237.en_US
dc.identifier.citedreferenceHutchins, S.R. ( 1991 ) Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor. Appl. Environ. Microbiol. 57, 2403 – 2407.en_US
dc.identifier.citedreferenceMajor, D.W., Mayfield, C.I. and Barker, J.F. ( 1988 ) Biotransformation of benzene by denitrification in aquifer sand. Ground Water 26, 8 – 14.en_US
dc.identifier.citedreference14 Mikesell, M.D., Olsen, R.H. and Kukor, J.J. (1991) Stratification of anoxic BTEX-degrading bacteria at three petroleum-contaminated sites. In: In Situ Bioreclamation (Hinchee, R. and Olfenbuttel, R.F., Eds.), pp. 351–362. Butterworth-Heinemann, Stoneham, MA.en_US
dc.identifier.citedreferenceOlsen, R.H., Mikesell, M.D. and Kukor, J.J. ( 1994 ) Enumeration and characterization of BTEX-degrading bacteria from hypoxic environments functional with mixed electron acceptors. Res. Microbiol. 145, 47 – 49.en_US
dc.identifier.citedreferenceLeahy, J.G., Byrne, A.M. and Olsen, R.H. ( 1996 ) Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria. Appl. Environ. Microbiol. 62, 825 – 833.en_US
dc.identifier.citedreferenceChiang, C.Y., Salanitro, J.P., Chai, E.Y., Colthart, J.D. and Klein, C.L. ( 1989 ) Aerobic biodegradation of benzene, toluene, and xylene in a sandy aquifer – data analysis and computer modeling. Ground Water 27, 823 – 834.en_US
dc.identifier.citedreferenceDuetz, W.A., De Jong, C., Williams, P.A. and Van Andel, J.G. ( 1994 ) Competition in chemostat culture between Pseudomonas strains that use different pathways for the degradation of toluene. Appl. Environ. Microbiol. 60, 2858 – 2863.en_US
dc.identifier.citedreferenceGibson, D.T., Hensley, M., Yoshioka, H. and Mabry, T.J. ( 1970 ) Formation of (+)- cis -2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. Biochemistry 9, 1626 – 1630.en_US
dc.identifier.citedreferenceYeh, W.-K., Gibson, D.T. and Liu, T.-N. ( 1977 ) Toluene dioxygenase: a multicomponent enzyme system. Biochem. Biophys. Res. Commun. 78, 401 – 410.en_US
dc.identifier.citedreferenceSuzuki, M., Hayakawa, T., Shaw, J.P., Rekik, M. and Harayama, S. ( 1991 ) Primary structure of xylene monooxygenase: similarities to and differences from the alkane hydroxylation system. J. Bacteriol. 173, 1690 – 1695.en_US
dc.identifier.citedreferenceWorsey, M.J. and Williams, P.A. ( 1975 ) Metabolisms of toluene and xylenes by Pseudomonas ([sic] putida ( arvilla ) mt-2: evidence for a new function of the TOL plasmid. J. Bacteriol. 124, 7 – 13.en_US
dc.identifier.citedreferenceShields, M.S., Montgomery, S.O., Chapman, P.J., Cuskey, S.M. and Pritchard, P.H. ( 1989 ) Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4. Appl. Environ. Microbiol. 55, 1624 – 1629.en_US
dc.identifier.citedreference24 Gibson, T.L., Abdul, A.S. and Olsen, R.H. (1988) Microbial degradation of aromatic hydrocarbons in hydrogeologic material: microcosm studies. In: Proceedings of the Second National Outdoor Action Conference on Aquifer Restoration: Groundwater and Geophysical Methods, vol. 1, pp. 53–69. National Water Well Association, Dublin, OH.en_US
dc.identifier.citedreferenceOlsen, R.H., Kukor, J.J. and Kaphammer, B. ( 1994 ) A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1. J. Bacteriol. 176, 3749 – 3756.en_US
dc.identifier.citedreference26 Mikesell, M.D. and Olsen, R.H. (1992) Degradation of aromatic hydrocarbons under anoxic conditions by Pseudomonas sp. W31, p. 353, Q-109. Abstr. 92nd Gen. Meet. Am. Soc. Microbiol. 1992. American Society for Microbiology, Washington, DC.en_US
dc.identifier.citedreference27 Hanson, R.S. and Phillips, J.A. (1981) Chemical composition,. In: Manual of Methods for General Bacteriology (Gerhardt, P., Ed.), pp. 328–364. American Society for Microbiology, Washington, DC.en_US
dc.identifier.citedreference28 Smibert, R.M. and Krieg, N.R. (1981) Systematics. General characterization. In: Manual of Methods for General Bacteriology (Gerhardt, P., Ed.), pp. 409–443. American Society for Microbiology, Washington, DC.en_US
dc.identifier.citedreferenceTros, M.E., Schraa, G. and Zehnder, A.J.B. ( 1996 ) Transformation of low concentrations of 3-chlorobenzoate by Pseudomonas sp. strain B13: kinetics and residual concentrations. Appl. Environ. Microbiol. 62, 437 – 442.en_US
dc.identifier.citedreference30 SAS System for Personal Computers (1990) SAS Institute Inc., Cary, NC.en_US
dc.identifier.citedreference31 Sokal, R.R. and Rohlf, F.J. (1980) Biometry, 2nd edn. W.H. Freeman and Co., New York.en_US
dc.identifier.citedreferenceCoyne, M.S. and Tiedje, J.M. ( 1990 ) Induction of denitrifying enzymes in oxygen-limited Achromobacter cycloclastes continuous culture. FEMS Microbiol. Ecol. 73, 263 – 270.en_US
dc.identifier.citedreferenceDavies, K.J.P., Lloyd, D. and Boddy, L. ( 1989 ) The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa. J. Gen. Microbiol. 135, 2445 – 2451.en_US
dc.identifier.citedreferenceKorner, H. and Zumft, W. ( 1989 ) Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl. Environ. Microbiol. 55, 1670 – 1676.en_US
dc.identifier.citedreferenceKrul, J.M. and Veeningen, R. ( 1977 ) The synthesis of the dissimilatory nitrate reductase under aerobic conditions in a number of denitrifying bacteria, isolated from activated sludge and drinking water. Water Res. 11, 39 – 43.en_US
dc.identifier.citedreferencePatureau, D., Bernet, N. and Moletta, R. ( 1996 ) Effect of oxygen on denitrification in continuous chemostat culture with Comamonas sp SGLY2. J. Ind. Microbiol. 16, 124 – 128.en_US
dc.identifier.citedreference37 Robertson, L.A. and Kuenen, J.G. (1984) Aerobic denitrification – old wine in new bottles? Antonie van Leeuwenhoek 50, 525–544.en_US
dc.identifier.citedreferenceBonin, P. and Gilewicz, M. ( 1991 ) A direct demonstration of ‘co-respiration’ of oxygen and nitrogen oxides by Pseudomonas nautica: some spectral and kinetic properties of the respiratory components. FEMS Microbiol. Lett. 80, 183 – 188.en_US
dc.identifier.citedreferenceThomas, K.L., Lloyd, D. and Boddy, L. ( 1994 ) Effects of oxygen, pH and nitrate concentration on denitrification by Pseudomonas species. FEMS Microbiol Lett. 118, 181 – 186.en_US
dc.identifier.citedreferenceKrooneman, J., Wieringa, E.B.A., Moore, E.R.B., Gerritse, J., Prins, R.A. and Gottschal, J.C. ( 1996 ) Isolation of Alcaligenes sp. strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via a pathway not involving (chloro)catechols. Appl. Environ. Microbiol. 62, 2427 – 2434.en_US
dc.identifier.citedreferenceShaler, T.A. and Klecka, G.M. ( 1986 ) Effects of dissolved oxygen concentration on biodegradation of 2,4-dichlorophenoxyacetic acid. Appl. Environ. Microbiol. 51, 950 – 955.en_US
dc.identifier.citedreferenceFritzsche, C. ( 1994 ) Degradation of pyrene at low defined oxygen concentrations by a Mycobacterium sp. Appl. Environ. Microbiol. 60, 1687 – 1689.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.