Show simple item record

Comparative analysis of prototype two-component systems with either bifunctional or monofunctional sensors: differences in molecular structure and physiological function

dc.contributor.authorAlves, Ruien_US
dc.contributor.authorSavageau, Michael A.en_US
dc.date.accessioned2010-06-01T21:49:58Z
dc.date.available2010-06-01T21:49:58Z
dc.date.issued2003-04en_US
dc.identifier.citationAlves, Rui; Savageau, Michael A. (2003). "Comparative analysis of prototype two-component systems with either bifunctional or monofunctional sensors: differences in molecular structure and physiological function." Molecular Microbiology 48(1): 25-51. <http://hdl.handle.net/2027.42/74871>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74871
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12657043&dopt=citationen_US
dc.description.abstractSignal transduction by a traditional two-component system involves a sensor protein that recognizes a physiological signal, autophosphorylates and transfers its phosphate, and a response regulator protein that receives the phosphate, alters its affinity toward specific target proteins or DNA sequences and causes change in metabolic activity or gene expression. In some cases the sensor protein, when unphosphorylated, has a positive effect upon the rate of dephosphorylation of the regulator protein (bifunctional sensor), whereas in other cases it has no such effect (monofunctional sensor). In this work we identify structural and functional differences between these two designs. In the first part of the paper we use sequence data for two-component systems from several organisms and homology modelling techniques to determine structural features for response regulators and for sensors. Our results indicate that each type of reference sensor (bifunctional and monofunctional) has a distinctive structural feature, which we use to make predictions regarding the functionality of other sensors. In the second part of the paper we use mathematical models to analyse and compare the physiological function of systems that differ in the type of sensor and are otherwise equivalent. Our results show that a bifunctional sensor is better than a monofunctional sensor both at amplifying changes in the phosphorylation level of the regulator caused by signals from the sensor and at attenuating changes caused by signals from small phosphodonors. Cross-talk to or from other two-component systems is better suppressed if the transmitting sensor is monofunctional, which is the more appropriate design when such cross-talk represents pathological noise. Cross-talk to or from other two-component systems is better amplified if the transmitting sensor is bifunctional, which is the more appropriate design when such cross-talk represents a physiological signal. These results provide a functional rationale for the selection of each design that is consistent with available experimental evidence for several two-component systems.en_US
dc.format.extent965430 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rightsBlackwell Publishing Ltd, 2003en_US
dc.titleComparative analysis of prototype two-component systems with either bifunctional or monofunctional sensors: differences in molecular structure and physiological functionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, 5641 Medical Science Building II Ann Arbor, MI 48109–0620, USA.en_US
dc.contributor.affiliationotherGrupo de Bioquimica e Biologia Teoricas, Instituto Rocha Cabral, CalÇada Bento da Rocha Cabral 14, 1250 Lisboa, Portugal.en_US
dc.contributor.affiliationotherPrograma Gulbenkian de Doutoramentos em Biologia e Medicina, Departamento de Ensino, Instituto Gulbenkian de Ciencia, Rua da Quinta Grande 6, 1800 Oeiras, Portugal.en_US
dc.identifier.pmid12657043en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74871/1/j.1365-2958.2003.03344.x.pdf
dc.identifier.doi10.1046/j.1365-2958.2003.03344.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAlves, R., and Savageau, M. A. ( 2000a ) Extending the method of mathematically controlled comparison to include numerical comparisons. Bioinformatics 16: 786 – 798.en_US
dc.identifier.citedreferenceAlves, R., and Savageau, M. A. ( 2000b ) Systemic properties of ensembles of metabolic networks: application of graphical and statistical methods to simple unbranched pathways. Bioinformatics 16: 534 – 547.en_US
dc.identifier.citedreferenceAlves, R., and Savageau, M. A. ( 2000c ) Comparing systemic properties of ensembles of biological networks by graphical and statistical methods. Bioinformatics 16: 527 – 533.en_US
dc.identifier.citedreferenceArthur, M., Depardieu, F., Gerbaud, G., Galimand, M., Leclercq, R., and Courvalin, P. ( 1997 ) The VanS sensor negatively controls VanR-mediated transcriptional activation of glycopeptide resistance genes of Tn1546 and related elements in the absence of induction. J Bacteriol 179: 97 – 106.en_US
dc.identifier.citedreferenceBerman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. ( 2000 ) The Protein Data Bank. Nucleic Acids Res 28: 235 – 242.en_US
dc.identifier.citedreferenceBlat, Y., Gillespie, B., Bren, A., Dahlquist, F. W., and Eisenbach, M. ( 1998 ) Regulation of phosphatase activity in bacterial chemotaxis. J Mol Biol 284: 1191 – 1199.en_US
dc.identifier.citedreferenceChiang, R. C., Cavicchioli, R., and Gunsalus, R. P. ( 1997 ) Locked on and locked off signal transduction mutations in the periplasmic domain of the Escherichia coli NarQ and NarX sensors affect nitrate and nitrite dependent regulation by NarL and NarP. Mol Microbiol 24: 1049 – 1060.en_US
dc.identifier.citedreferenceDorf, R. C. ( 1992 ) Modern Control Systems, 6th edn. Reading, MA: Addison-Wesley.en_US
dc.identifier.citedreferenceEisenbach, M. ( 1996 ) Control of bacterial chemotaxis. Mol Microbiol 20: 903 – 910.en_US
dc.identifier.citedreferenceFeng, J., Atkinson, M. R., McCleary, W., Stock, J. B., Wanner, B. L., and Ninfa, A. J. ( 1992 ) Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis. J Bacteriol 174: 6061 – 6070.en_US
dc.identifier.citedreferenceGrob, P., Hennecke, H., and Gottfert, M. ( 1994 ) Cross talk between the two component regulatory systems NodVW and NwsAB of Bradyrhizobium japonicum. FEMS Microbiol Lett 120: 349 – 353.en_US
dc.identifier.citedreferenceGuex, N., and Peitsch, M. C. ( 1997 ) swiss-model and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis 18: 2714 – 2723.en_US
dc.identifier.citedreferenceHellingwerf, K. J., Crielaard, W. C., and de Mattos, M. J. T. ( 1998 ) Current topics in signal transduction in bacteria. Anton Leeuw Int J G 74: 211 – 227.en_US
dc.identifier.citedreferenceHlavacek, W. S., and Savageau, M. A. ( 1995 ) Subunit structure of regulator proteins influences the design of gene circuitry: Analysis of perfectly coupled and completely uncoupled circuits. J Mol Biol 248: 739 – 755.en_US
dc.identifier.citedreferenceHlavacek, W. S., and Savageau, M. A. ( 1996 ) Rules for coupled expression of regulator and effector genes in inducible circuits. J Mol Biol 255: 121 – 139.en_US
dc.identifier.citedreferenceHlavacek, W. S., and Savageau, M. A. ( 1997 ) Completely uncoupled and perfectly coupled gene expression in repressible systems. J Mol Biol 266: 538 – 558.en_US
dc.identifier.citedreferenceHoch, J. E., and Silhavy, T. J. ( 1995 ) Two-Component Signal Transduction. Washington D.C.: American Society for Microbiology Press.en_US
dc.identifier.citedreferenceHsing, W. H., Russo, F. D., Bernd, K. K., and Silhavy, T. J. ( 1998 ) Mutations that alter the kinase and phosphatase activities of the two-component sensor EnvZ. J Bacteriol 180: 4538 – 4546.en_US
dc.identifier.citedreferenceHulett, F. M. ( 1996 ) The signal-transduction network for Pho regulation in Bacillus subtilis. Mol Microbiol 19: 933 – 939.en_US
dc.identifier.citedreferenceIgo, M. M., Ninfa, A. J., Stock, J. B., and Silhavy, T. J. ( 1989 ) Phosphorylation and dephosphorylation of a bacterial transcriptional activator by a transmembrane receptor. Gene Devel 3: 1725 – 1734.en_US
dc.identifier.citedreferenceIrvine, D. H. ( 1991 ) The method of controlled mathematical comparisons. In Canonical Nonlinear Modeling: S-Systems Approach to Understanding Complexity. Voit, E. O., (ed.) New York: Van Nostrand Reinhold, pp. 90.en_US
dc.identifier.citedreferenceIrvine, D. H., and Savageau, M. A. ( 1985 ) Network regulation of the immune response: alternative control points for suppressor modulation of effector lymphocytes. J Immunol 134: 99 – 109.en_US
dc.identifier.citedreferenceJiang, P., and Ninfa, A. J. ( 1999 ) Regulation of autophosphorylation of Escherichia coli Nitrogen regulator II by the PII signal transduction protein. J Bacteriol 181: 1906 – 1911.en_US
dc.identifier.citedreferenceJung, K., and Altendorf, K. ( 1998 ) Individual substitutions of clustered arginine residues of the sensor kinase KdpD of Escherichia coli modulate the ratio of kinase to phosphatase activity. J Biol Chem 273: 26415 – 26420.en_US
dc.identifier.citedreferenceJung, K., Tjaden, B., and Altendorf, K. ( 1997 ) Purification, reconstitution, and characterization of KdpD, the turgor sensor of Escherichia coli. J Biol Chem 272: 10847 – 10852.en_US
dc.identifier.citedreferenceKadner, R. J. ( 1996 ) Cytoplasmic membrane. In Escherichia Coli and Salmonella: Cellular and Molecular Biology. Neidhardt, F. C., (ed). Washington D.C.: American Society for Microbiology Press, pp. 58 – 87.en_US
dc.identifier.citedreferenceKanamaru, K., Aiba, H., Mizushima, S., and Mizuno, T. ( 1989 ) Signal transduction and osmoregulation in Escherichia coli. A single amino acid change in the protein kinase, EnvZ, results in loss of its phosphorylation and dephosphorylation abilities with respect to the activator protein, OmpR. J Biol Chem 264: 21633 – 21637.en_US
dc.identifier.citedreferenceKeener, J., and Kustu, S. ( 1988 ) Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: roles of the conserved amino-terminal domain of NTRC. Proc Natl Acad Sci USA 85: 4976 – 4980.en_US
dc.identifier.citedreferenceLukat, G. S., McCleary, W. R., Stock, A. M., and Stock, J. B. ( 1992 ) Phosphorylation of bacterial response regulator proteins by low molecular weight phosphodonors. Proc Natl Acad Sci USA 89: 718 – 722.en_US
dc.identifier.citedreferenceMayover, T. L., Halkides, C. J., and Stewart, R. C. ( 1999 ) Kinetic characterization of CheY phosphorylation reactions: Comparison of P-CheA and small-molecule phosphodonors. Biochemistry 38: 2259 – 2271.en_US
dc.identifier.citedreferenceMcCleary, W. R. ( 1996 ) The activation of PhoB by Acetylphosphate. Mol Microbiol 20: 1155 – 1163.en_US
dc.identifier.citedreferenceMurzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. ( 1995 ) SCOP. a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247: 536 – 540.en_US
dc.identifier.citedreferenceNinfa, A. J., Ninfa, E. G., Lupas, A. N., Stock, A., Magasanik, B., and Stock, J. ( 1988 ) Crosstalk between bacterial chemotaxis signal transduction proteins and regulators of transcription of the NTR regulon – Evidence that nitrogen assimilation and chemotaxis are controlled by a common phosphotransfer mechanism. Proc Natl Acad Sci USA 84: 5492 – 5496.en_US
dc.identifier.citedreferenceNinfa, E. G., Stock, A., Mowbray, S., and Stock, J. ( 1991 ) Reconstitution of the bacterial chemotaxis signal transduction system from purified components. J Biol Chem 266: 9764 – 9770.en_US
dc.identifier.citedreferenceParkinson, J. S. ( 1993 ) Signal transduction schemes of bacteria. Cell 73: 857 – 871.en_US
dc.identifier.citedreferencePerego, M., and Hoch, J. A. ( 1996 ) Protein aspartate phosphatases control the output of two-component signal transduction systems. Trends Genetics 12: 97 – 101.en_US
dc.identifier.citedreferencePioszak, A. A., and Ninfa, A. J. ( 2003 ) Genetic and biochemical analysis of the phosphatase activity of Escherichia coli NRII (NtrB) and its regulation by the PII signal transduction protein. J. Bacteriol 185: 1299 – 1315.en_US
dc.identifier.citedreferencePosas, F., Takekawa, M., and Saito, H. ( 1998 ) Signal transduction by MAP kinase cascades in budding yeast. Curr Op Microbiol 1: 175 – 182.en_US
dc.identifier.citedreferencePratt, L. A., Hsing, W. H., Gibson, K. E., and Silhavy, T. J. ( 1996 ) From acids to osmZ: Multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli. Mol Microbiol 20: 911 – 917.en_US
dc.identifier.citedreferenceSanders, D. A., Gillecastro, B. L., Stoch, A. M., Burlingame, A. L., and Koshland, D. E. ( 1989 ) Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY. J Biol Chem 264: 21770 – 21778.en_US
dc.identifier.citedreferenceSavageau, M. A. ( 1969 ) Biochemical Systems Analysis II: The steady-state solution for an n-pool system using a power-law approximation. J Theor Biol 25: 370 – 379.en_US
dc.identifier.citedreferenceSavageau, M. A. ( 1971a ) Concepts relating the behaviour of biochemical systems to their underlying molecular properties. Arch Biochem Biophys 145: 612 – 621.en_US
dc.identifier.citedreferenceSavageau, M. A. ( 1971b ) Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems. Nature 229: 542 – 544.en_US
dc.identifier.citedreferenceSavageau, M. A. ( 1972 ) The behavior of intact biochemical control systems. Curr Top Cell Reg 6: 63 – 130.en_US
dc.identifier.citedreferenceSavageau, M. A. ( 1975 ) Optimal design of feedback control by inhibition: Dynamical considerations. J Mol Evol 5: 199 – 222.en_US
dc.identifier.citedreferenceSavageau, M. A. ( 1976 ) Biochemical Systems Analysis: a Study of Function and Design in Molecular Biology. Reading, MA: Addison-Wesley.en_US
dc.identifier.citedreferenceSchaller, G. E. ( 1997 ) Ethylene and cytokinin signalling in plants: the role of two-component systems. Essays Biochem 32: 101 – 111.en_US
dc.identifier.citedreferenceSchroder, I., Wolin, C. D., Cavicchioli, R., and Gunsalus, R. P. ( 1994 ) Phosphorylation and dephosphorylation of the NarQ, NarX, and NarL proteins of the nitrate dependent two-component regulatory system of Escherichia coli. J Bacteriol 176: 4985 – 4991.en_US
dc.identifier.citedreferenceShi, L., Liu, W., and Hulett, F. M. ( 1999 ) Decay of activated Bacillus subtilis pho response regulator, PhoP-P, involves the PhoR-P intermediate. Biochemistry 37: 14575 – 14584.en_US
dc.identifier.citedreferenceShiraishi, F., and Savageau, M. A. ( 1992 ) The tricarboxylic acid cycle in Dictyostelium discoideum II. Evaluation of model consistency and robustness. J Biol Chem 267: 22919 – 22925.en_US
dc.identifier.citedreferenceSorribas, A., and Savageau, M. A. ( 1989 ) A comparison of variant theories of intact biochemical systems 1. Enzyme–enzyme interactions and biochemical systems theory. Math Biosci 94: 161 – 193.en_US
dc.identifier.citedreferenceVoit, E. O., and Savageau, M. A. ( 1987 ) Accuracy of alternative representations for integrated biochemical systems. Biochemistry 26: 6869 – 6880.en_US
dc.identifier.citedreferenceWanner, B. L. ( 1992 ) Is cross regulation by phosphorylation of two-component response regulator proteins important in bacteria? J Bacteriol 174: 2053 – 2058.en_US
dc.identifier.citedreferenceWeiss, V. V., and Magasanik, B. ( 1988 ) Phosphorylation of nitrogen regulator I (NRI) of Escherichia coli. Proc Natl Acad Sci USA 85: 5492 – 5496.en_US
dc.identifier.citedreferenceWingrove, J. A., and Gober, J. W. ( 1996 ) Identification of an asymmetrically localized sensor histidine kinase responsible for temporally and spatially regulated transcription. Science 274: 597 – 601.en_US
dc.identifier.citedreferenceWolfram, S. ( 1997 ) Mathematica tm: a System for Doing Mathematics by Computer. Menlo Park, CA: Addison-Wesley.en_US
dc.identifier.citedreferenceWright, G. D., Holman, T. R., and Walsh, C. T. ( 1993 ) Purification and characterization of VanR and the cytosolic domain of VanS – A two component regulatory system required for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry 32: 5057 – 5063.en_US
dc.identifier.citedreferenceZhu, Y., Qin, L., Yoshida, T., and Inouye, M. ( 2000 ) Phosphatase activity of histidine kinase EnvZ without kinase catalytic domain. Proc Natl Acad Sci USA 97: 7808 – 7813.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.