Show simple item record

Current Trends in Functional Imaging of Pheochromocytomas and Paragangliomas

dc.contributor.authorShulkin, Barry L.en_US
dc.contributor.authorIlias, Ioannisen_US
dc.contributor.authorSisson, James C.en_US
dc.contributor.authorPacak, Karelen_US
dc.date.accessioned2010-06-01T21:50:36Z
dc.date.available2010-06-01T21:50:36Z
dc.date.issued2006-08en_US
dc.identifier.citationSHULKIN, BARRY L . ; ILIAS, IOANNIS; SISSON, JAMES C . ; PACAK, KAREL (2006). "Current Trends in Functional Imaging of Pheochromocytomas and Paragangliomas." Annals of the New York Academy of Sciences 1073(1 Pheochromocytoma: First International Symposium ): 374-382. <http://hdl.handle.net/2027.42/74881>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74881
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17102106&dopt=citationen_US
dc.description.abstractMost pheochromocytomas/paragangliomas should be evaluated with anatomical imaging (computed tomography or magnetic resonance imaging) followed by functional imaging (nuclear medicine modalities). Functional imaging assures that the tumor is indeed a pheochromocytoma/paraganglioma and enables more thorough localization, especially detecting as many lesions as possible (in particular for metastatic disease). Functional imaging for pheochromocytomas/paragangliomas, can use radiolabled ligands specific for pathways of synthesis, metabolism, and inactivation of catecholamines or nonspecific ligands. In an overview of the available nuclear medicine modalities, we summarize the accumulated experience and recommend when functional imaging should be applied to patients with pheochromocytoma/paraganglioma.en_US
dc.format.extent190906 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights2006 New York Academy of Sciencesen_US
dc.subject.otherNuclear Medicine Methodsen_US
dc.subject.otherRadionuclide Imagingen_US
dc.subject.otherPositron Emission Tomographyen_US
dc.subject.otherPheochromocytoma Diagnosisen_US
dc.titleCurrent Trends in Functional Imaging of Pheochromocytomas and Paragangliomasen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDivision of Nuclear Medicine, Department of Radiology, University of Michigan Medical Center, 1500 East Medical Center Drive, UH B1G 505D, Ann Arbor, Michigan 48109-0028, USAen_US
dc.contributor.affiliationotherDivision of Nuclear Medicine, Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USAen_US
dc.contributor.affiliationotherDepartment of Pharmacology, Medical School, University of Patras, Rion-GR-26504, Greeceen_US
dc.contributor.affiliationotherReproductive Biology and Medicine Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1109, USAen_US
dc.identifier.pmid17102106en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74881/1/annals.1353.041.pdf
dc.identifier.doi10.1196/annals.1353.041en_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceNeumann, H.P. et al. 2002. Germ-line mutations in nonsyndromic pheochromocytoma. N. Engl. J. Med. 346: 1459 – 1466.en_US
dc.identifier.citedreferenceMundschenk, J. et al. 1998. Malignant pheochromocytoma. Exp. Clin. Endocrinol. Diabetes 106: 373 – 376.en_US
dc.identifier.citedreferenceAverbuch, S.D. et al. 1988. Malignant pheochromocytoma: effective treatment with a combination of cyclophosphamide, vincristine and dacarbazine. Ann. Intern. Med. 109: 267 – 273.en_US
dc.identifier.citedreferenceProye, C. et al. 1992. High incidence of malignant pheochromocytoma in a surgical unit: 26 cases out of 100 patients operated from 1971 to 1991. J. Endocrinol. Invest. 15: 651 – 663.en_US
dc.identifier.citedreferenceTischler, A. 1998. The adrenal medulla and extra-adrenal paraganglia. In Functional Endocrine Pathology. K. Kovacs & S. Asa, Eds.: 550 – 595. Blackwell. Oxford.en_US
dc.identifier.citedreferenceGoldstein, R.E. et al. 1999. Clinical experience over 48 years with pheochromocytoma. Ann. Surg. 229: 755 – 766.en_US
dc.identifier.citedreferenceSchulz, C. et al. 2004. Principles of catecholamine biosynthesis, metabolism and release. Front. Horm. Res. 31: 1 – 25.en_US
dc.identifier.citedreferenceWieland, D.M. et al. 1980. Radiolabeled adrenergic neuron-blocking agents: adrenomedullary imaging with [ 131 I]iodobenzylguanidine. J. Nucl. Med. 21: 349 – 353.en_US
dc.identifier.citedreferenceSisson, J.C. et al. 1981. Scintigraphic localization of pheochromocytoma. N. Engl. J. Med. 305: 12 – 17.en_US
dc.identifier.citedreferenceShulkin, B. et al. 1986. 123I-4-Amino-3-iodobenzylguanidine (123I-AIBG), a new sympatho-adrenal imaging agent: comparison with 123I-meta-iodobenzylguanidine (123I-MIBG). J. Nucl. Med. 27: 1138 – 1142.en_US
dc.identifier.citedreferenceShulkin, B.L. et al. 1992. PET scanning with hydroxyephedrine: an approach to the localization of pheochromocytoma. J. Nucl. Med. 33: 1125 – 1131.en_US
dc.identifier.citedreferenceTrampal, C. et al. 2004. Pheochromocytomas: detection with 11 C hydroxyephedrine PET. Radiology 230: 423 – 428.en_US
dc.identifier.citedreferenceShulkin, B.L. et al. 1995. PET epinephrine studies of pheochromocytoma. J. Nucl. Med. 36: 22P – 23P.en_US
dc.identifier.citedreferenceIlias, I. et al. 2003. Superiority of 6-[ 18 F]-fluorodopamine positron emission tomography versus [ 131 I]-metaiodobenzylguanidine scintigraphy in the localization of metastatic pheochromocytoma. J. Clin. Endocrinol. Metab. 88: 4083 – 4087.en_US
dc.identifier.citedreferenceIlias, I. et al. 2004. Comparison of 6-[ 18 F]-fluorodopamine positron emission tomography with [123In]-metaiodobenzylguanidine and [111In]-pentetreotide scintigraphy in the localization of pheochromocytoma, ENDO. 86th Annual Meeting of the American Endocrine Society, New Orleans, LA, The Endocrine Society: 452 – 453.en_US
dc.identifier.citedreferenceHoegerle, S. et al. 2002. Pheochromocytomas: detection with 18 F DOPA whole body PET—initial results. Radiology 222: 507 – 512.en_US
dc.identifier.citedreferenceShulkin, B.L. et al. 1999. Pheochromocytomas: imaging with 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET. Radiology 212: 35 – 41.en_US
dc.identifier.citedreferenceMamede, M. et al. 2005. Discordant localization of [18-F]-fluorodeoxyglucose, in [18-F]-fluorodopamine-negative metastatic pheochromocytoma sites. J. Nucl. Med. 46 ( CD-ROM Suppl. ): 1324.en_US
dc.identifier.citedreferenceEzuddin, S. et al. 2005. MIBG and FDG PET findings in a patient with malignant pheochromocytoma: a significant discrepancy. Clin. Nucl. Med. 30: 579 – 581.en_US
dc.identifier.citedreferenceHofland, L.J. et al. 1999. Immunohistochemical detection of somatostatin receptor subtypes sst1 and sst2A in human somatostatin receptor positive tumors. J. Clin. Endocrinol. Metab. 84: 775 – 780.en_US
dc.identifier.citedreferenceReubi, J.C. et al. 1992. In vitro and in vivo detection of somatostatin receptors in pheochromocytomas and paragangliomas. J. Clin. Endocrinol. Metab. 74: 1082 – 1089.en_US
dc.identifier.citedreferenceMundschenk, J. et al. 2003. Somatostatin receptor subtypes in human pheochromocytoma: subcellular expression pattern and functional relevance for octreotide scintigraphy. J. Clin. Endocrinol. Metab. 88: 5150 – 5157.en_US
dc.identifier.citedreferencevan der Harst, E. et al. 2001. [(123)I]metaiodobenzylguanidine and [(111)In ]octreotide uptake in benign and malignant pheochromocytomas. J. Clin. Endocrinol. Metab. 86: 685 – 693.en_US
dc.identifier.citedreferenceSchmidt, M. et al. 2002. Clinical value of somatostatin receptor imaging in patients with suspected head and neck paragangliomas. Eur. J. Nucl. Med. Mol. Imaging 29: 1571 – 1580.en_US
dc.identifier.citedreferenceLamberts, S.W. et al. 1990. Somatostatin-receptor imaging in the localization of endocrine tumors. N. Engl. J. Med. 323: 1246 – 1249.en_US
dc.identifier.citedreferenceKrenning, E.P. et al. 1993. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur. J. Nucl. Med. 20: 716 – 731.en_US
dc.identifier.citedreferenceTelischi, F.F. et al. 2000. Octreotide scintigraphy for the detection of paragangliomas. Otolaryngol. Head Neck Surg. 122: 358 – 362.en_US
dc.identifier.citedreferenceDuet, M. et al. 2003. Clinical impact of somatostatin receptor scintigraphy in the management of paragangliomas of the head and neck. J. Nucl. Med. 44: 1767 – 1774.en_US
dc.identifier.citedreferenceBustillo, A. et al. 2004. Octreotide scintigraphy in the head and neck. Laryngoscope 114: 434 – 440.en_US
dc.identifier.citedreferenceBerry, C.R. et al. 2002. Imaging of pheochromocytoma in 2 dogs using p-[18F] fluorobenzylguanidine. Vet. Radiol. Ultrasound. 43: 183 – 186.en_US
dc.identifier.citedreferencePlachcinska, A. et al. 2003. Clinical usefulness of 99mTc-EDDA/HYNIC-TOC scintigraphy in oncological diagnostics: a preliminary communication. Eur. J. Nucl. Med. Mol. Imaging 30: 1402 – 1406.en_US
dc.identifier.citedreferenceHofmann, M. et al. 2001. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur. J. Nucl. Med. 28: 1751 – 1757.en_US
dc.identifier.citedreferenceAnderson, C.J. et al. 2001. 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J. Nucl. Med. 42: 213 – 221.en_US
dc.identifier.citedreferenceWester, H.J. et al. 2003. PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation of a novel 18F-labelled, carbohydrated analogue of octreotide. Eur. J. Nucl. Med. Mol. Imaging 30: 117 – 122.en_US
dc.identifier.citedreferenceSchottelius, M. et al. 2004. First (18)F-labeled tracer suitable for routine clinical imaging of sst receptor-expressing tumors using positron emission tomography. Clin. Cancer Res. 10: 3593 – 3606.en_US
dc.identifier.citedreferenceKowalski, J. et al. 2003. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-octreotide in comparison to [111In]-DTPAOC SPECT: first results in patients with neuroendocrine tumors. Mol. Imaging Biol. 5: 42 – 48.en_US
dc.identifier.citedreferenceGabriel, M. et al. 2003. An intrapatient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. J. Nucl. Med. 44: 708 – 716.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.