Show simple item record

Bacterial-associated cholera toxin and GM 1 binding are required for transcytosis of classical biotype Vibrio cholerae through an in vitro M cell model system

dc.contributor.authorBlanco, Luz P.en_US
dc.contributor.authorDiRita, Victor J.en_US
dc.date.accessioned2010-06-01T21:55:36Z
dc.date.available2010-06-01T21:55:36Z
dc.date.issued2006-06en_US
dc.identifier.citationBlanco, Luz P.; DiRita, Victor J. (2006). "Bacterial-associated cholera toxin and GM 1 binding are required for transcytosis of classical biotype Vibrio cholerae through an in vitro M cell model system." Cellular Microbiology 8(6): 982-998. <http://hdl.handle.net/2027.42/74960>en_US
dc.identifier.issn1462-5814en_US
dc.identifier.issn1462-5822en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74960
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16681839&dopt=citationen_US
dc.description.abstractTo elucidate mechanisms involved in M cell uptake and transcytosis of Vibrio cholerae , we used an in vitro model of human M-like cells in a Caco-2 monolayer. Interspersed among the epithelial monolayer of Caco-2 cells we detect cells that display M-like features with or without prior lymphocyte treatment and we have established key parameters for V. cholerae transcytosis in this model. Cholera toxin (CT) mutants lacking the A subunit alone or both the A and B subunits were deficient for transcytosis. We explored this finding further and showed that expression of both subunits is required for binding by whole V. cholerae to immobilized CT receptor, the glycosphingolipid GM 1 . Confocal microscopy showed CT associated with transcytosing bacteria, and transcytosis was inhibited by pre-incubation with GM 1 before infection. Finally, heat treatment of the bacterial cells caused a loss of binding to GM 1 that was correlated with a significant decrease in uptake and transcytosis by the monolayer. Our data support a model in which the ability of bacteria to interact with GM 1 in a CT-dependent fashion plays a critical role in transcytosis of V. cholerae by M cells.en_US
dc.format.extent832510 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2006 The Authors; Journal compilation © 2006 Blackwell Publishing Ltden_US
dc.titleBacterial-associated cholera toxin and GM 1 binding are required for transcytosis of classical biotype Vibrio cholerae through an in vitro M cell model systemen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationotherUnit for Laboratory Animal Medicine, anden_US
dc.identifier.pmid16681839en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74960/1/j.1462-5822.2005.00681.x.pdf
dc.identifier.doi10.1111/j.1462-5822.2005.00681.xen_US
dc.identifier.sourceCellular Microbiologyen_US
dc.identifier.citedreferenceAbrami, L., Liu, S., Cosson, P., Leppla, S. H., and Gisou van der Goot, F. ( 2003a ) Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J Cell Biol 160: 321 – 328.en_US
dc.identifier.citedreferenceAbrami, L., Fivaz, M., Glauser, P. -E., Sugimoto, N., Zurzolo, C., and Gisou van der Goot, F. ( 2003b ) Sensitivity of polarized epithelial cells to the pore-forming toxin Aerolysin. Infect Immun 71: 739 – 746.en_US
dc.identifier.citedreferenceAhmed, K., Suzuki, Y., Miyamoto, D., and Nagatake, T. ( 2002 ) Asialo-GM 1 and asialo-GM 2 are putative adhesion molecules for Moraxella catarrhalis. Med Microbiol Immunol 191: 5 – 10.en_US
dc.identifier.citedreferencevan Alphen, L., Geelen-van den Broek, L., Blaas, L., van Ham, M., and Dankert, J. ( 1991 ) Blocking of fimbria-mediated adherence of Haemophilus influenzae by sialyl gangliosides. Infect Immun 59: 4473 – 4477.en_US
dc.identifier.citedreferenceBlank, N., Gabler, C., Schiller, M., Kriegel, M., Kalden, J. R., and Lorenz, H. -M. ( 2002 ) A fast, simple and sensitive method for the detection and quantification of detergent-resistant membranes. J Immunol Methods 271: 25 – 35.en_US
dc.identifier.citedreferenceCanil, C., Rosenshine, I., Ruschkowski, S., Donnenberg, M. S., Kaper, J. B., and Finlay, B. B. ( 1993 ) Enteropathogenic Escherichia coli decreases the transepithelial electric resistance of polarized epithelial monolayers. Infect Immun 61: 2755 – 2762.en_US
dc.identifier.citedreferenceChen, I., Finn, T. M., Yanqing, L., Guoming, Q., Rappuoli, R., and Pizza, M. ( 1998 ) Immunity against tetanus toxin and Bordetella pertussis tracheal colonization factor. Infect Immun 66: 1648 – 1653.en_US
dc.identifier.citedreferenceCoconnier, M. -H., Lorrot, M., Barbat, A., Laboisse, C., and Servin, A. L. ( 2000 ) Listeriolysin O-induced stimulation of mucin exocytosis in polarized intestinal mucin-secreting cells: evidence for toxin recognition of membrane-associated lipids and subsequent toxin internalization through caveolae. Cell Microbiol 2: 487 – 504.en_US
dc.identifier.citedreferenceComolli, J. C., Waite, L. L., Mostov, K. E., and Engel, J. N. ( 1999 ) Pili binding to asialo-GM 1 on epithelial cells can mediate cytotoxicity or bacterial internalization by Pseudomonas aeruginosa. Infect Immun 67: 3207 – 3214.en_US
dc.identifier.citedreferenceDean, P., and Kenny, B. ( 2004 ) Intestinal barrier dysfunction by enteropathogenic Escherichia coli is mediated by two effector molecules and a bacterial surface protein. Mol Microbiol 54: 665 – 675.en_US
dc.identifier.citedreferenceDidierlaurent, A., Sirard, J. -C., Kraehenbuhl, J. -P., and Neutra, M. R. ( 2002 ) How gut senses its content. Cell Microbiol 4: 61 – 72.en_US
dc.identifier.citedreferenceDiRita, V. J. ( 2001 ) Molecular basis of Vibrio cholerae pathogenesis. In: Principles of Bacterial Pathogenesis. Groisman, E. A. (ed.). New York: Academic Press, pp. 457 – 508.en_US
dc.identifier.citedreferenceEngle, M. -J., Goetz, G. S., and Alpers, D. H. ( 1998 ) Caco-2 cells express a combination of colonocyte and enterocyte phenotypes. J Cell Physiol 174: 362 – 369.en_US
dc.identifier.citedreferenceEricksson, K., and Holmgren, J. ( 2002 ) Recent advances in mucosal vaccines and adjuvants. Curr Opin Immunol 14: 666 – 672.en_US
dc.identifier.citedreferenceEricksson, K., Fredriksson, M., NordstrÖm, I., and Holmgren, J. ( 2003 ) Cholera toxin and its B subunit promote dendritic cell vaccination with different influences on Th1 and Th2 development. Infect Immun 71: 1740 – 1747.en_US
dc.identifier.citedreferenceFasano, A., Baudry, B., Pumplin, D. W., Wasserman, S. S., Tall, B. D., Ketley, J. M., and Kaper, J. B. ( 1991 ) Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci USA 88: 5242 – 5246.en_US
dc.identifier.citedreferenceField, J. F., Born, E., Murthy, S., and Mathur, S. ( 1998 ) Caveolin is present in intestinal cells: role in cholesterol trafficking? J Lipid Res 39: 1938 – 1950.en_US
dc.identifier.citedreferenceFrey, A., Giannasca, K. T., Weltzin, R., Giannasca, P. J., Reggio, H., Lencer, W. I., and Neutra, M. R. ( 1996 ) Role of the glycocalyx in regulating access of microparticles to apical plasma membrane of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med 184: 1045 – 1059.en_US
dc.identifier.citedreferenceFullner, K. J., Lencer, W. I., and Mekalanos, J. J. ( 2001 ) Vibrio cholerae -induced cellular responses of polarized T84 intestinal epithelial cells are dependent on production of cholera toxin and the RTX toxin. Infect Immun 69: 6310 – 6317.en_US
dc.identifier.citedreferenceGiannasca, P. J., Giannasca, K. T., Leichtner, A. M., and Neutra, M. R. ( 1999 ) Human intestinal M cells display the sialyl Lewis A antigen. Infect Immun 67: 946 – 953.en_US
dc.identifier.citedreferenceGilbert, J., and Benjamin, T. ( 2004 ) Uptake pathway of polyomavirus by GD1a. J Virol 78: 12259 – 12267.en_US
dc.identifier.citedreferencevan Ginkel, F. W., McGhee, J. R., Watt, J. M., Campos-Torres, A., Parish, L. A., and Briles, D. E. ( 2003 ) Pneumococcal carriage results in ganglioside-mediated olfactory tissue infection. Proc Natl Acad Sci USA 100: 14363 – 14367.en_US
dc.identifier.citedreferenceHansen, G. H., Immerdal, L., Thorsen, E., Niels-Christiansen, L. -L., NystrØm, B. T., Demant, E. J. F., and Danielsen, M. ( 2001 ) Lipid rafts exist as stable cholesterol-independent microdomains in the brush border membrane of enterocytes. J Biol Chem 276: 32338 – 32344.en_US
dc.identifier.citedreferenceHardy, S. J. S., Holmgren, J., Johansson, S., Sanchez, J., and Hirst, T. R. ( 1988 ) Coordinated assembly of multisubunit proteins: oligomerization of bacterial enterotoxins in vivo and in vitro. Proc Natl Acad Sci USA 85: 7109 – 7113.en_US
dc.identifier.citedreferenceHarokopakis, E., Hajishengallis, G., and Michalek, S. M. ( 1998 ) Effectiveness of liposomes possessing surface-linked recombinant B subunit of cholera toxin as an oral antigen delivery system. Infect Immun 66: 4299 – 4304.en_US
dc.identifier.citedreferenceHarris, J., Werling, D., Hope, J. C., Taylor, G., and Howard, C. J. ( 2002 ) Caveolae and caveolin in immune cells: distribution and functions. Trends Immunol 23: 158 – 164.en_US
dc.identifier.citedreferenceHeppner, F. L., Christ, A. D., Klein, M. A., Prinz, M., Fried, M., Kraehenbuhl, J. -P., and Aguzzi, A. ( 2001 ) Transepithelial prion transport by M cells. Nat Med 7: 976 – 977.en_US
dc.identifier.citedreferenceHerreros, J., Ng, T., and Schiavo, G. ( 2001 ) Lipid rafts act as specialized domains for tetanous toxin binding and internalization into neurons. Mol Biol Cell 12: 2947 – 2960.en_US
dc.identifier.citedreferenceHorstman, A. L., and Kuehn, M. J. ( 2002 ) Bacterial surface association of heat-labile enterotoxin through lipolysaccharide after secretion via general secretory pathway. J Biol Chem 277: 32538 – 32545.en_US
dc.identifier.citedreferenceHoshino, K., Yamasaki, S., Mukhopadhyay, A. K., Chakraborty, S., Basu, A., Bhattacharya, S. K., et al. ( 1998 ) Development and evaluation of a multiplex PCR assay for rapid detection of toxigenic Vibrio cholerae O1 and O139. FEMS Immunol Med Microbiol 20: 201 – 207.en_US
dc.identifier.citedreferenceIlver, D., Barone, S., Mercat, D., Lupetti, P., and Telford, J. D. ( 2004 ) Helicobacter pylori toxin VacA is transferred to host cells via a novel contact-dependent mechanism. Cell Microbiol 6: 167 – 174.en_US
dc.identifier.citedreferenceJang, M. H., Kweon, M. -N., Iwatani, K., Yamamoto, M., Terahara, K., Sasakawa, C., et al. ( 2004 ) Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc Natl Acad Sci USA 101: 6110 – 6115.en_US
dc.identifier.citedreferenceJones, B. D., Ghori, N., and Falkow, S. ( 1994 ) Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J Exp Med 180: 15 – 23.en_US
dc.identifier.citedreferenceKerneis, S., Bogdanova, A., Kraehenbuhl, J. -P., and Pringault, E. ( 1997 ) Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bateria. Science 277: 949 – 952.en_US
dc.identifier.citedreferenceKilleen, K. P., and DiRita, V. J. ( 2001 ) Live attenuated bacterial vaccines. In: New Vaccine Technologies. Ellis, R. W. (ed.). Texas: Landes Bioscience, pp. 152 – 171.en_US
dc.identifier.citedreferenceKovbasnjuk, O., Edidin, M., and Donowitz, M. ( 2001 ) Role of lipid rafts in shiga toxin 1 interaction with the apical surface of Caco-2 cells. J Cell Sci 114: 4025 – 4031.en_US
dc.identifier.citedreferenceKrukonis, E. S., Yu, R. R., and DiRita, V. J. ( 2000 ) The Vibrio cholerae ToxR/TcpP/ToxT virulence cascade: distinct roles for two membrane-localized transcriptional activators on a single promoter. Mol Microbiol 38: 67 – 84.en_US
dc.identifier.citedreferenceLelouard, H., Sahuquet, A., Reggio, H., and Montcourrier, P. ( 2001 ) Rabbit M cells and dome enterocytes are distinct cell lineages. J Cell Sci 114: 2077 – 2083.en_US
dc.identifier.citedreferenceLencer, W. I. ( 2001 ) Microbes and microbial toxins: paradigms for microbial–mucosal interactions V. cholerae: invasion of the intestinal epithelial barrier by a stably folded protein toxin. Am J Physiol Gastrointest Liver Physiol 280: G781 – G786.en_US
dc.identifier.citedreferenceLencer, W. I., Delp, C., Neutra, M. R., and Madara, J. L. ( 1992 ) Mechanism of cholera toxin action on a polarized human intestinal epithelial cell line: role of vesicular traffic. J Cell Biol 117: 1197 – 1209.en_US
dc.identifier.citedreferenceLycke, N. ( 1997 ) II. Immunity in the mucosal immune system. The mechanism of cholera toxin adjuvanticity. Res Immunol 148: 504 – 520.en_US
dc.identifier.citedreferenceMantis, N. J., Cheung, M. C., Chintalacharuvu, K. R., Rey, J., CorthÉsy, B., and Neutra, M. ( 2002 ) Selective adherence of IgA to murine Peyer’s patch M cells: evidence for a novel IgA receptor. J Immunol 169: 1844 – 1851.en_US
dc.identifier.citedreferenceMekalanos, J. J., Swartz, D. J., Pearson, G. D., Harford, N., Groyne, F., and de Wilde, M. ( 1983 ) Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature 306: 551 – 557.en_US
dc.identifier.citedreferenceNaroeni, A., and Porte, F. ( 2002 ) Role of cholesterol and the ganglioside GM 1 in entry and short-term survival of Brusella suis in murine macrophages. Infect Immun 70: 1640 – 1644.en_US
dc.identifier.citedreferenceNeutra, M. N., Mantis, N. J., and Kraehenbuhl, J. -P. ( 2001 ) Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol 2: 1004 – 1009.en_US
dc.identifier.citedreferenceNicoletti, C. ( 2000 ) Unsolved mysteries of intestinal M cells. Gut 47: 735 – 739.en_US
dc.identifier.citedreferenceNiedergang, F., and Kraehenbuhl, J. -P. ( 2000 ) Much ado about M cells. Trends Cell Biol 10: 137 – 141.en_US
dc.identifier.citedreferenceOrlandi, P., and Fishman, P. H. ( 1998 ) Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 141: 905 – 915.en_US
dc.identifier.citedreferenceOwen, R. L., Pierce, N. F., Apple, R. T., and Cray, W. C., Jr ( 1986 ) M cell transport of Vibrio cholerae from intestinal lumen into Peyer’s patches: a mechanism for antigen sampling and microbial transepithelial migration. J Infect Dis 153: 1108 – 1118.en_US
dc.identifier.citedreferenceOwen, R. L., Cray, W. C., Jr, Ermak, T. H., and Pierce, N. F. ( 1988 ) Bacterial characteristics and follicle surface structure: their roles in Peyer’s patch uptake and transport of Vibrio cholerae. Adv Exp Med Biol 237: 705 – 715.en_US
dc.identifier.citedreferenceParton, R. G. ( 1994 ) Ultrastructural localization of gangliosides; GM 1 is concentrated in caveolae. J Histochem Cytochem 42: 155 – 166.en_US
dc.identifier.citedreferencePierce, N. F., Kaper, J. B., Mekalanos, J. J., and Cray, W. C., Jr ( 1985 ) Role of cholera toxin in enteric colonization by Vibrio cholerae O1 in rabbits. Infect Immun 50: 813 – 816.en_US
dc.identifier.citedreferenceRimoldi, M., and Rescigno, M. ( 2005 ) Uptake and presentation of orally administered antigens. Vaccine 23: 1793 – 1796.en_US
dc.identifier.citedreferenceSandkvist, M. ( 2001 ) Type II secretion and pathogenesis. Infect Immun 69: 3523 – 3535.en_US
dc.identifier.citedreferenceSandvig, K., Olsnes, S., Brown, E. J., Petersen, O. W., and van Deurs, B. ( 1989 ) Endocytosis from coated pits of shiga toxin: a glycolipid-binding protein from Shigella dysenteriae 1. J Cell Biol 108: 1331 – 1343.en_US
dc.identifier.citedreferenceSavidge, T. C. ( 1996 ) The life and times of an intestinal M cell. Trends Microbiol 4: 301 – 306.en_US
dc.identifier.citedreferenceSchraw, W., Li, Y., McClain, M. S., Gisou van der Goot, F., and Cover, T. L. ( 2002 ) Association of Helicobacter pylori vacuolating toxin (VacA) with lipid rafts. J Biol Chem 277: 34642 – 34650.en_US
dc.identifier.citedreferenceShimada, Y., Maruya, M., Iwashita, S., and Ohno-Iwashita, Y. ( 2002 ) The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains. Eur J Biochem 269: 6195 – 6203.en_US
dc.identifier.citedreferenceShin, J. -S., and Abraham, S. N. ( 2001 ) Caveolae as portals of entry for microbes. Microbes Infect 3: 755 – 761.en_US
dc.identifier.citedreferenceShreedhar, V. K., Kelsall, B. L., and Neutra, M. R. ( 2003 ) Cholera toxin induces migration of dendritic cells from the subepithelial dome region to T- and B-cell areas of Peyer’s patches. Infect Immun 71: 504 – 509.en_US
dc.identifier.citedreferenceSimons, K., and Ehehalt, R. ( 2002 ) Cholesterol, lipid rafts, and disease. J Clin Invest 110: 597 – 603.en_US
dc.identifier.citedreferenceSuarez, A., Guttler, A., Stratz, M., Staendner, L. H., Timmis, K. N., and Guzman, C. A. ( 1997 ) Green fluorescent protein-based reporter systems for genetic analysis of bacteria including monocopy applications. Gene 196: 69 – 74.en_US
dc.identifier.citedreferenceSvennerholm, A. M., and Holmgren, J. ( 1978 ) Identification of the Escherichia coli heat-labile enterotoxin by means of a ganglioside immunosorbent assay (GM 1 -ELISA) procedure. Curr Microbiol 1: 19 – 23.en_US
dc.identifier.citedreferenceTorgersen, M. L., Skretting, G., van Deurs, B., and Sandvig, K. ( 2001 ) Internalization of cholera toxin by different endocytic mechanisms. J Cell Sci 114: 3737 – 3747.en_US
dc.identifier.citedreferenceTriantafilou, M., Miyake, K., Golenbock, D. T., and Triantafilou, K. ( 2002 ) Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 115: 2603 – 2611.en_US
dc.identifier.citedreferenceTsai, B., Gilbert, J. M., Stehle, T., Lencer, W., Benjamin, T. L., and Rapoport, T. A. ( 2003 ) Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 22: 4346 – 4355.en_US
dc.identifier.citedreferenceVanCott, J. L., Yamamoto, S., and McGhee, J. R. ( 2000 ) Mucosal Immunity. In: Effects of Microbes on the Immune System. Cunningham, M. W., and Fujinami, R. S. (eds). Philadelphia, PA: Lippincott Williams & Wilkins, pp. 233 – 236.en_US
dc.identifier.citedreferenceWimer-Mackin, S., Holmes, R. K., Wolf, A. A., Lencer, W. I., and Jobling, M. G. ( 2001 ) Characterization of receptor-mediated signal transduction by Escherichia coli type Ia heat-labile enterotoxin in the polarized human intestinal cell line T84. Infect Immun 69: 7205 – 7212.en_US
dc.identifier.citedreferenceWu, Z., Nybom, P., and Magnusson, K. E. ( 2000 ) Distinct effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction-associated proteins occluding and ZO-1. Cell Microbiol 2: 11 – 17.en_US
dc.identifier.citedreferenceZhou, F., and Neutra, M. R. ( 2002 ) Antigen delivery to mucosa-associated lymphoid tissues using liposomes as a carrier. Biosci Rep 22: 355 – 369.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.