Show simple item record

Sorting Ourselves Out: Seeking Consensus on Trafficking in the Beta-Cell

dc.contributor.authorArvan, Peteren_US
dc.contributor.authorHalban, Philippe A.en_US
dc.date.accessioned2010-06-01T21:56:03Z
dc.date.available2010-06-01T21:56:03Z
dc.date.issued2004-01en_US
dc.identifier.citationArvan, Peter; Halban, Philippe A. (2004). "Sorting Ourselves Out: Seeking Consensus on Trafficking in the Beta-Cell." Traffic 5(1): 53-61. <http://hdl.handle.net/2027.42/74967>en_US
dc.identifier.issn1398-9219en_US
dc.identifier.issn1600-0854en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74967
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=14675425&dopt=citationen_US
dc.format.extent225395 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherMunksgaard International Publishersen_US
dc.publisherBlackwell Publishing Ltden_US
dc.rightsBlackwell Munksgaard, 2004en_US
dc.subject.otherC-peptideen_US
dc.subject.otherInsulinen_US
dc.subject.otherLarge Dense-core Vesiclesen_US
dc.subject.otherProhormone Conversionen_US
dc.subject.otherProinsulinen_US
dc.subject.otherSecretory Pathwaysen_US
dc.subject.otherVesicular Traffickingen_US
dc.titleSorting Ourselves Out: Seeking Consensus on Trafficking in the Beta-Cellen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationother Research Laboratories, University Medical Center, 1211 Geneva 4, Switzerlanden_US
dc.identifier.pmid14675425en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74967/1/j.1600-0854.2004.00152.x.pdf
dc.identifier.doi10.1111/j.1600-0854.2004.00152.xen_US
dc.identifier.sourceTrafficen_US
dc.identifier.citedreferencePalade G. Intracellular aspects of the process of protein synthesis. Science 1975; 189: 347 – 358.en_US
dc.identifier.citedreferenceFarquhar MG, Palade GE. The Golgi apparatus (complex) – (1954–81) – from artifact to center stage. J Cell Biol 1981; 91: 77s – 103s.en_US
dc.identifier.citedreferenceKelly RB. Pathways of protein secretion in eukaryotes. Science 1985; 230: 25 – 32.en_US
dc.identifier.citedreferenceOrci L. Macro and micro-domains in the endocrine pancreas. Diabetes 1982; 31: 538 – 565.en_US
dc.identifier.citedreferenceOrci L. The insulin factory. a tour of the plant surroundings and a visit to the assembly line. Diabetologia 1985; 28: 528 – 546.en_US
dc.identifier.citedreferenceRothman J, Orci L. Molecular dissection of the secretory pathway. Nature 1992; 355: 409 – 415.en_US
dc.identifier.citedreferenceRothman JE, Orci L. Budding vesicles in living cells. Sci Am 1996; 274: 50 – 55.en_US
dc.identifier.citedreferenceArvan P, Castle D. Protein sorting and secretion granule formation in regulated secretory cells. Trends Cell Biol 1992; 2: 327 – 331.en_US
dc.identifier.citedreferenceArvan P, Castle D. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J 1998; 332: 593 – 610.en_US
dc.identifier.citedreferenceOrci L, Ravazzola M, Perrelet A. Proinsulin associates with Golgi membranes of pancreatic B cells. Proc Natl Acad Sci USA 1984; 81: 6743 – 6746.en_US
dc.identifier.citedreferenceOrci L, Halban P, Amherdt M, Ravazzola M, Vassalli J-D, Perrelet A. A clathrin-coated, Golgi-related compartment of the insulin secreting cell accumulates proinsulin in the presence of monensin. Cell 1984; 39: 39 – 47.en_US
dc.identifier.citedreferenceOrci L, Ravazzola M, Amherdt M, Madsen O, Perrelet A, Vassalli JD, Anderson RGW. Conversion of proinsulin to insulin occurs coordinately with acidification of maturing secretory vesicles. J Cell Biol 1986; 103: 2273 – 2281.en_US
dc.identifier.citedreferenceCool DR, Normant E, Shen F, Chen HC, Pannell L, Zhang Y, Loh YP. Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe (fat) mice. Cell 1997; 88: 73 – 83.en_US
dc.identifier.citedreferenceThiele C, Gerdes HH, Huttner WB. Protein secretion: puzzling receptors. Curr Biol 1997; 7: R496 – R500.en_US
dc.identifier.citedreferenceIrminger JC, Verchere CB, Meyer K, Halban PA. Proinsulin targeting to the regulated pathway is not impaired in carboxypeptidase E-deficient Cpefat/Cpefat mice. J Biol Chem 1997; 272: 27532 – 27534.en_US
dc.identifier.citedreferenceVarlamov O, Fricker LD, Furukawa H, Steiner DF, Langley SH, Leiter EH. Beta-cell lines derived from transgenic Cpe (fat) /Cpe (fat) mice are defective in carboxypeptidase E and proinsulin processing. Endocrinology 1997; 138: 4883 – 4892.en_US
dc.identifier.citedreferenceCawley NX, Rodriguez YM, Maldonado A, Loh YP. Trafficking of mutant carboxypeptidase E to secretory granules in a {beta}-cell line derived from Cpefat/Cpefat Mice. Endocrinology 2003; 144: 292 – 298.en_US
dc.identifier.citedreferenceDhanvantari S, Shen FS, Adams T, Snell CR, Zhang C, Mackin RB, Morris SJ, Loh YP. Disruption of a receptor-mediated mechanism for intracellular sorting of proinsulin in familial hyperproinsulinemia. Mol Endocrinol 2003; 17: 1856 – 1867.en_US
dc.identifier.citedreferenceYoo SH. pH- and Ca(2+)-dependent aggregation property of secretory vesicle matrix proteins and the potential role of chromogranins A and B in secretory vesicle biogenesis. J Biol Chem 1996; 271: 1558 – 1565.en_US
dc.identifier.citedreferenceNatori S, Huttner WB. Chromogranin B (secretogranin I) promotes sorting to the regulated secretory pathway of processing intermediates derived from a peptide hormone precursor. Proc Natl Acad Sci USA 1996; 93: 4431 – 4436.en_US
dc.identifier.citedreferenceKim T, Tao-Cheng J, Eiden LE, Loh YP. Chromogranin A, an ‘on/off’ switch controlling dense-core secretory granule biogenesis. Cell 2001; 106: 499 – 509.en_US
dc.identifier.citedreferenceHosaka M, Watanabe T, Sakai Y, Uchiyama Y, Takeuchi T. Identification of a chromogranin A domain that mediates binding to secretogranin III and targeting to secretory granules in pituitary cells and pancreatic beta-cells. Mol Biol Cell 2002; 13: 3388 – 3399.en_US
dc.identifier.citedreferenceDhanvantari S, Loh YP. Lipid raft association of carboxypeptidase E is necessary for its function as a regulated secretory pathway sorting receptor. J Biol Chem 2000; 275: 29887 – 29893.en_US
dc.identifier.citedreferenceWang Y, Thiele C, Huttner WB. Cholesterol is required for the formation of regulated and constitutive secretory vesicles from the trans -Golgi network. Traffic 2000; 1: 952 – 962.en_US
dc.identifier.citedreferenceBlazquez M, Thiele C, Huttner WB, Docherty K, Shennan KIJ. Involvement of the membrane lipid bilayer in sorting prohormone convertase 2 into the regulated secretory pathway. Biochem J 2000; 349: 843 – 852.en_US
dc.identifier.citedreferenceTooze SA, Martens GJ, Huttner WB. Secretory granule biogenesis: rafting to the SNARE. Trends Cell Biol 2001; 11: 116 – 122.en_US
dc.identifier.citedreferenceRhodes CJ, Halban PA. Newly synthesized proinsulin/insulin and stored insulin are released from pancreatic B cells predominantly via a regulated, rather than constitutive, pathway. J Cell Biol 1987; 105: 145 – 153.en_US
dc.identifier.citedreferenceMolinete M, Dupuis S, Brodsky FM, Halban PA. Role of clathrin in the regulated secretory pathway of pancreatic beta-cells. J Cell Sci 2001; 114: 3059 – 3066.en_US
dc.identifier.citedreferenceMolinete M, Lilla V, Jain R, Joyce PBM, Gorr SU, Ravazzola M, Halban PA. Trafficking of non-regulated secretory proteins in insulin secreting (INS-1) cells. Diabetologia 2000; 43: 1157 – 1164.en_US
dc.identifier.citedreferenceJain RK, Joyce PB, Molinete M, Halban PA, Gorr SU. Oligomerization of green fluorescent protein in the secretory pathway of endocrine cells. Biochem J 2001; 360: 645 – 649.en_US
dc.identifier.citedreferenceBuschard K, Josefsen K, Hansen SV, Horn T, Marshall MO, Persson H, Mansson JE, Fredman P. Sulphatide in islets of Langerhans and in organs affected in diabetic late complications: a study in human and animal tissue. Diabetologia 1994; 37: 1000 – 1006.en_US
dc.identifier.citedreferenceFredman P, Mansson JE, Rynmark BM, Josefsen K, Ekblond A, Halldner L, Osterbye T, Horn T, Buschard K. The glycosphingolipid sulfatide in the islets of Langerhans in rat pancreas is processed through recycling: possible involvement in insulin trafficking. Glycobiology 2000; 10: 39 – 50.en_US
dc.identifier.citedreferenceOsterbye T, Jorgensen KH, Fredman P, Tranum-Jensen J, Kaas A, Brange J, Whittingham JL, Buschard K. Sulfatide promotes the folding of proinsulin, preserves insulin crystals, and mediates its monomerization. Glycobiology 2001; 11: 473 – 479.en_US
dc.identifier.citedreferenceHuang XF, Arvan P. Intracellular transport of proinsulin in pancreatic beta-cells. Structural maturation probed by disulfide accessibility. J Biol Chem 1995; 270: 20417 – 20423.en_US
dc.identifier.citedreferenceGlombik MM, Gerdes HH. Signal-mediated sorting of neuropeptides and prohormones: secretory granule biogenesis revisited. Biochimie 2000; 82: 315 – 326.en_US
dc.identifier.citedreferenceOrci L, Ravazzola M, Storch MJ, Anderson RGW, Vassalli JD, Perrelet A. Proteolytic maturation of insulin is a post-Golgi event which occurs in acidifying clathrin-coated secretory vesicles. Cell 1987; 49: 865 – 868.en_US
dc.identifier.citedreferenceHalban PA. Inhibition of proinsulin to insulin conversion in rat islets using arginine and lysine analogs. J Biol Chem 1982; 257: 13177 – 13180.en_US
dc.identifier.citedreferenceKuliawat R, Arvan P. Protein targeting via the ‘constitutive-like’ secretory pathway in isolated pancreatic islets: passive sorting in the immature granule compartment. J Cell Biol 1992; 118: 521 – 529.en_US
dc.identifier.citedreferenceOrci L, Halban P, Amherdt M, Ravazzola M, Vassalli JD, Perrelet A. Nonconverted, amino acid analog-modified proinsulin stays in a Golgi-derived clathrin-coated membrane compartment. J Cell Biol 1984; 99: 2187 – 2192.en_US
dc.identifier.citedreferenceBendayan M, Roth J, Perrelet A, Orci L. Quantitative immunocytochemical localization of pancreatic secretory proteins in subcellular compartments of the rat acinar cell. J Histochem Cytochem 1980; 28: 149 – 160.en_US
dc.identifier.citedreferenceOprins A, Rabouille C, Posthuma G, Klumperman J, Geuze HJ, Slot JW. The ER to Golgi interface is the major concentration site of secretory proteins in the exocrine pancreatic cell. Traffic 2001; 2: 831 – 838.en_US
dc.identifier.citedreferenceArvan P, Zhang B, Feng L, Liu M, Kuliawat R. Lumenal protein multimerization in the distal secretory pathway/secretory granules. Curr Opin Cell Biol 2002; 14: 448 – 453.en_US
dc.identifier.citedreferenceOrci L, Ravazzola M, Amherdt M, Madsen O, Vassalli JD, Perrelet A. Direct identification of prohormone conversion site in insulin-secreting cells. Cell 1985; 42: 671 – 681.en_US
dc.identifier.citedreferenceUrbe S, Page LJ, Tooze SA. Homotypic fusion of immature secretory granules during maturation in a cell-free assay. J Cell Biol 1998; 143: 1831 – 1844.en_US
dc.identifier.citedreferenceWendler F, Page L, Urbe S, Tooze SA. Homotypic fusion of immature secretory granules during maturation requires syntaxin 6. Mol Biol Cell 2001; 12: 1699 – 1709.en_US
dc.identifier.citedreferencevon Zastrow M, Castle JD. Protein sorting among two distinct export pathways occurs from the content of maturing exocrine storage granules. J Cell Biol 1987; 105: 2675 – 2684.en_US
dc.identifier.citedreferenceKuliawat R, Arvan P. Distinct molecular mechanisms for protein sorting within immature secretory granules of pancreatic beta-cells. J Cell Biol 1994; 126: 77 – 86.en_US
dc.identifier.citedreferenceDamke H, Baba T, van der Bliek AM, Schmid SL. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J Cell Biol 1995; 131: 69 – 80.en_US
dc.identifier.citedreferenceCarroll RJ, Hammer RE, Chan SJ, Swift HH, Rubenstein AH, Steiner DF. A mutant human proinsulin is secreted from islets of Langerhans in increased amounts via an unregulated pathway. Proc Natl Acad Sci USA 1988; 85: 8943 – 8947.en_US
dc.identifier.citedreferenceGross DJ, Halban PA, Kahn CR, Weir GC, Villa-Komaroff L. Partial diversion of a mutant proinsulin (B10 aspartic acid) from the regulated to the constitutive secretory pathway in transfected AtT-20 cells. Proc Natl Acad Sci USA 1989; 86: 4107 – 4111.en_US
dc.identifier.citedreferencePaganetti P, Scheller RH. Proteolytic processing of the aplysia A peptide precursor in AtT-20 cells. Brain Res 1994; 633: 53 – 62.en_US
dc.identifier.citedreferenceBrechler V, Chu WN, Baxter JD, Thibault G, Reudelhuber TL. A protease processing site is essential for prorenin sorting to the regulated secretory pathway. J Biol Chem 1996; 271: 20636 – 20640.en_US
dc.identifier.citedreferenceKuliawat R, Prabakaran D, Arvan P. Proinsulin endoproteolysis confers enhanced targeting of processed insulin to the regulated secretory pathway. Mol Biol Cell 2000; 11: 1959 – 1972.en_US
dc.identifier.citedreferenceLiu M, Ramos-Castaneda J, Arvan P. Role of the connecting peptide in insulin biosynthesis. J Biol Chem 2003; 278: 14798 – 14805.en_US
dc.identifier.citedreferenceZhang B, Chang A, Kjeldsen TB, Arvan P. Intracellular retention of newly synthesized insulin in yeast is caused by endoproteolytic processing in the Golgi complex. J Cell Biol 2001; 153: 1187 – 1198.en_US
dc.identifier.citedreferencePowell SK, Orci L, Craik CS, Moore HPH. Efficient targeting to storage granules of human proinsulins with altered propeptide domain. J Cell Biol 1988; 106: 1843 – 1851.en_US
dc.identifier.citedreferenceHalban PA, Irminger JC. Mutant proinsulin that cannot be converted is secreted efficiently from primary rat beta-cells via the regulated pathway. Mol Biol Cell 2003; 14: 1195 – 1203.en_US
dc.identifier.citedreferenceNewgard CB, Clark S, Beltrande, I, Rio H, Hohmeier HE, Quaade C, Normington K. Engineered cell lines for insulin replacement in diabetes. current status and future prospects. Diabetologia 1997; 40 ( Suppl. 2 ): S42 – S47.en_US
dc.identifier.citedreferenceArvan P, Kuliawat R, Prabakharan D, Zavacki A-M, Elahi D, Wang S, Pilkey D. Protein discharge from immature secretory granules displays both regulated and constitutive characteristics. J Biol Chem 1991; 266: 14171 – 14174.en_US
dc.identifier.citedreferenceFeng L, Arvan P. The trafficking of alpha1-antitrypsin, a post-Golgi secretory pathway marker, in INS-1 pancreatic beta cells. J Biol Chem 2003: 278: 31486 – 31494.en_US
dc.identifier.citedreferenceNeerman-Arbez M & Halban PA. Novel, non-crinophagic, degradation of connecting peptide in transformed pancreatic beta cells. J Biol Chem 1993; 268: 16248 – 16252.en_US
dc.identifier.citedreferenceMillar CA, Meerloo T, Martin S, Hickson GR, Shimwell NJ, Wakelam MJ, James DE, Gould GW. Adipsin and the glucose transporter GLUT4 traffic to the cell surface via independent pathways in adipocytes. Traffic 2000; 1: 141 – 151.en_US
dc.identifier.citedreferenceHarsay E, Schekman R. A subset of yeast vacuolar protein sorting mutants is blocked in one branch of the exocytic pathway. J Cell Biol 2002; 156: 271 – 285.en_US
dc.identifier.citedreferenceHuang AY, Castle AM, Hinton BT, Castle JD. Resting (basal) secretion of proteins is provided by the minor regulated and constitutive-like pathways and not granule exocytosis in parotid acinar cells. J Biol Chem 2001; 276: 22296 – 22306.en_US
dc.identifier.citedreferenceCastle AM, Huang AY, Castle JD. The minor regulated pathway, a rapid component of salivary secretion, may provide docking/fusion sites for granule exocytosis at the apical surface of acinar cells. J Cell Sci 2002; 115: 2963 – 2973.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.