Show simple item record

Mitf dosage as a primary determinant of melanocyte survival after ultraviolet irradiation

dc.contributor.authorHornyak, Thomas J.en_US
dc.contributor.authorJiang, Shunlinen_US
dc.contributor.authorGuzmán, Esther A.en_US
dc.contributor.authorScissors, Beth N.en_US
dc.contributor.authorTuchinda, Chinisadaen_US
dc.contributor.authorHe, Hongbinen_US
dc.contributor.authorNeville, James D.en_US
dc.contributor.authorStrickland, Faith M.en_US
dc.date.accessioned2010-06-01T21:58:39Z
dc.date.available2010-06-01T21:58:39Z
dc.date.issued2009-06en_US
dc.identifier.citationHornyak, Thomas J.; Jiang, Shunlin; GuzmÁn, Esther A.; Scissors, Beth N.; Tuchinda, Chinisada; He, Hongbin; Neville, James D.; Strickland, Faith M. (2009). "Mitf dosage as a primary determinant of melanocyte survival after ultraviolet irradiation." Pigment Cell & Melanoma Research 22(3): 307-318. <http://hdl.handle.net/2027.42/75008>en_US
dc.identifier.issn1755-1471en_US
dc.identifier.issn1755-148Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75008
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19192212&dopt=citationen_US
dc.format.extent524944 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 Blackwell Munksgaarden_US
dc.subject.otherApoptosisen_US
dc.subject.otherMelanocyteen_US
dc.subject.otherMelanomaen_US
dc.subject.otherMitfen_US
dc.subject.otherUltravioleten_US
dc.subject.otherFasen_US
dc.subject.otherMiceen_US
dc.titleMitf dosage as a primary determinant of melanocyte survival after ultraviolet irradiationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDermatologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum3  Present address: The University of Michigan, Department of Internal Medicine – Rheumatology Section, Ann Arbor, MI, USAen_US
dc.contributor.affiliationother1  Dermatology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USAen_US
dc.contributor.affiliationother2  Department of Dermatology, Henry Ford Health System, Detroit, MI, USAen_US
dc.identifier.pmid19192212en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75008/1/j.1755-148X.2009.00551.x.pdf
dc.identifier.doi10.1111/j.1755-148X.2009.00551.xen_US
dc.identifier.sourcePigment Cell & Melanoma Researchen_US
dc.identifier.citedreferenceAbdel-Malek, Z.A., Scott, M.C., Furumura, M., Lamoreux, M.L., Ollmann, M., Barsh, G.S., and Hearing, V.J. ( 2001 ). The melanocortin 1 receptor is the principal mediator of the effects of agouti signaling protein on mammalian melanocytes. J. Cell Sci. 114, 1019 – 1024.en_US
dc.identifier.citedreferenceAragane, Y., Kulms, D., Metze, D., Wilkes, G., Poppelmann, B., Luger, T.A., and Schwarz, T. ( 1998 ). Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J. Cell Biol. 140, 171 – 182.en_US
dc.identifier.citedreferenceBentley, N.J., Eisen, T., and Goding, C.R. ( 1994 ). Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol. Cell. Biol. 14, 7996 – 8006.en_US
dc.identifier.citedreferenceBismuth, K., Skuntz, S., Hallsson, J.H., Pak, E., Dutra, A.S., Steingrimsson, E., and Arnheiter, H. ( 2008 ). An unstable targeted allele of the mouse Mitf gene with a high somatic and germline reversion rate. Genetics 178, 259 – 272.en_US
dc.identifier.citedreferenceBivik, C.A., Andersson, E.B., and Rosdahl, I.K. ( 2005 ). Wavelength-specific effects on UVB-induced apoptosis in melanocytes. A study of Bcl-2/Bax expression and keratinocyte rescue effects. Melanoma Res. 15, 7 – 13.en_US
dc.identifier.citedreferenceBlume-Jensen, P., Jiang, G., Hyman, R., Lee, K.F., O’gorman, S., and Hunter, T. ( 2000 ). Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3′-kinase is essential for male fertility. Nat. Genet. 24, 157 – 162.en_US
dc.identifier.citedreferenceBohm, M., Wolff, I., Scholzen, T.E., Robinson, S.J., Healy, E., Luger, T.A., Schwarz, T., and Schwarz, A. ( 2005 ). alpha-Melanocyte-stimulating hormone protects from ultraviolet radiation-induced apoptosis and DNA damage. J. Biol. Chem. 280, 5795 – 5802.en_US
dc.identifier.citedreferenceBusca, R., Berra, E., Gaggioli, C., Khaled, M., Bille, K., Marchetti, B., Thyss, R., Fitsialos, G., Larribere, L., Virolle, T., Barbry, P., Pouyssegur, J., Ponzio, G., and Ballotti, R. ( 2005 ). Hypoxia-inducible factor 1a is a new target of microphthalmia-associated transcription factor (MITF) in melanoma cells. J. Cell Biol. 170, 49 – 59.en_US
dc.identifier.citedreferenceCarreira, S., Goodall, J., Aksan, I., La Rocca, S.A., Galibert, M.D., Denat, L., Larue, L., and Goding, C.R. ( 2005 ). Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature 433, 764 – 769.en_US
dc.identifier.citedreferenceCorre, S., Primot, A., Sviderskaya, E., Bennett, D.C., Vaulont, S., Goding, C.R., and Galibert, M.D. ( 2004 ). UV-induced expression of key component of the tanning process, the POMC and MC1R genes, is dependent on the p-38-activated upstream stimulating factor-1 (USF-1). J. Biol. Chem. 279, 51226 – 51233.en_US
dc.identifier.citedreferenceDe Leeuw, S.M., Smit, N.P., Van Veldhoven, M., Pennings, E.M., Pavel, S., Simons, J.W., and Schothorst, A.A. ( 2001 ). Melanin content of cultured human melanocytes and UV-induced cytotoxicity. J. Photochem. Photobiol. B 61, 106 – 113.en_US
dc.identifier.citedreferenceDu, J., Miller, A.J., Widlund, H.R., Horstmann, M.A., Ramaswamy, S., and Fisher, D.E. ( 2003 ). MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am. J. Pathol. 163, 333 – 343.en_US
dc.identifier.citedreferenceDu, J., Widlund, H.R., Horstmann, M.A., Ramaswamy, S., Ross, K., Huber, W.E., Nishimura, E.K., Golub, T.R., and Fisher, D.E. ( 2004 ). Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 6, 565 – 576.en_US
dc.identifier.citedreferenceGalibert, M.D., Carreira, S., and Goding, C.R. ( 2001 ). The Usf-1 transcription factor is a novel target for the stress-responsive p38 kinase and mediates UV-induced Tyrosinase expression. EMBO J. 20, 5022 – 5031.en_US
dc.identifier.citedreferenceGarraway, L.A., Widlund, H.R., Rubin, M.A. et al. ( 2005 ). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117 – 122.en_US
dc.identifier.citedreferenceGillardon, F., Moll, I., Meyer, M., and Michaelidis, T.M. ( 1999 ). Alterations in cell death and cell cycle progression in the UV-irradiated epidermis of bcl-2-deficient mice. Cell Death Differ. 6, 55 – 60.en_US
dc.identifier.citedreferenceGoding, C.R. ( 2000 ). Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 14, 1712 – 1728.en_US
dc.identifier.citedreferenceHalaban, R., and Alfano, F.D. ( 1984 ). Selective elimination of fibroblasts from cultures of normal human melanocytes. In Vitro 20, 447 – 450.en_US
dc.identifier.citedreferenceHemesath, T.J., SteingrÍmsson, E., Mcgill, G., Hansen, M.J., Vaught, J., Hodgkinson, C.A., Arnheiter, H., Copeland, N.G., Jenkins, N.A., and Fisher, D.E. ( 1994 ). Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 8, 2770 – 2780.en_US
dc.identifier.citedreferenceHemesath, T.J., Price, E.R., Takemoto, C., Badalian, T., and Fisher, D.E. ( 1998 ). MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391, 298 – 301.en_US
dc.identifier.citedreferenceHill, H.Z., Hill, G.J., Cieszka, K., Plonka, P.M., Mitchell, D.L., Meyenhofer, M.F., Xin, P., and Boissy, R.E. ( 1997 ). Comparative action spectrum for ultraviolet light killing of mouse melanocytes from different genetic coat color backgrounds. Photochem. Photobiol. 65, 983 – 989.en_US
dc.identifier.citedreferenceHodgkinson, C.A., Moore, K.J., Nakayama, A., SteingrÍmsson, E., Copeland, N.G., Jenkins, N.A., and Arnheiter, H. ( 1993 ). Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74, 395 – 404.en_US
dc.identifier.citedreferenceHoogduijn, M.J., Cemeli, E., Ross, K., Anderson, D., Thody, A.J., and Wood, J.M. ( 2004 ). Melanin protects melanocytes and keratinocytes against H2O2-induced DNA strand breaks through its ability to bind Ca2+. Exp. Cell Res. 294, 60 – 67.en_US
dc.identifier.citedreferenceHornyak, T.J., Hayes, D.H., Chiu, L.-Y., and Ziff, E.B. ( 2001 ). Transcription factors in melanocyte development: distinct roles for Pax-3 and Mitf. Mech. Dev. 101, 47 – 59.en_US
dc.identifier.citedreferenceJiao, Z., Mollaaghababa, R., Pavan, W.J., Antonellis, A., Green, E.D., and Hornyak, T.J. ( 2004 ). Direct interaction of Sox10 with the promoter of murine Dopachrome Tautomerase (Dct) and synergistic activation of Dct expression with Mitf. Pigment Cell Res. 17, 352 – 362.en_US
dc.identifier.citedreferenceKadekaro, A.L., Kavanagh, R.J., Wakamatsu, K., Ito, S., Pipitone, M.A., and Abdel-Malek, Z.A. ( 2003 ). Cutaneous photobiology. The melanocyte vs. the sun: who will win the final round? Pigment Cell Res. 16, 434 – 447.en_US
dc.identifier.citedreferenceKadekaro, A.L., Kavanagh, R., Kanto, H. et al. ( 2005 ). alpha-Melanocortin and endothelin-1 activate antiapoptotic pathways and reduce DNA damage in human melanocytes. Cancer Res. 65, 4292 – 4299.en_US
dc.identifier.citedreferenceKarlsson, R., Engstrom, M., Jonsson, M., Karlberg, P., Pronk, C.J., Richter, J., and Jonsson, J.I. ( 2003 ). Phosphatidylinositol 3-kinase is essential for kit ligand-mediated survival, whereas interleukin-3 and flt3 ligand induce expression of antiapoptotic Bcl-2 family genes. J. Leukoc. Biol. 74, 923 – 931.en_US
dc.identifier.citedreferenceKim, T.J., Cho, M.K., Lee, J.S., Whang, K.U., Jin, S.Y., and Hoshino, T. ( 2003 ). The expression of melanogenic proteins in Korean skin after ultraviolet irradiation. J. Dermatol. 30, 665 – 672.en_US
dc.identifier.citedreferenceKimura, S., Kawakami, T., Kawa, Y., Soma, Y., Kushimoto, T., Nakamura, M., Watabe, H., Ooka, S., and Mizoguchi, M. ( 2005 ). Bcl-2 reduced and fas activated by the inhibition of stem cell factor/KIT signaling in murine melanocyte precursors. J. Invest. Dermatol. 124, 229 – 234.en_US
dc.identifier.citedreferenceKorsmeyer, S.J. ( 1999 ). BCL-2 gene family and the regulation of programmed cell death. Cancer Res. 59, 1693s – 1700s.en_US
dc.identifier.citedreferenceLarribere, L., Hilmi, C., Khaled, M., Gaggioli, C., Bille, K., Auberger, P., Ortonne, J.P., Ballotti, R., and Bertolotto, C. ( 2005 ). The cleavage of microphthalmia-associated transcription factor, MITF, by caspases plays an essential role in melanocyte and melanoma cell apoptosis. Genes Dev. 19, 1980 – 1985.en_US
dc.identifier.citedreferenceLin, C.B., Babiarz, L., Liebel, F., Roydon Price, E., Kizoulis, M., Gendimenico, G.J., Fisher, D.E., and Seiberg, M. ( 2002 ). Modulation of microphthalmia-associated transcription factor gene expression alters skin pigmentation. J. Invest. Dermatol. 119, 1330 – 1340.en_US
dc.identifier.citedreferenceLindholm, C., Andersson, R., Dufmats, M., Hansson, J., Ingvar, C., Moller, T., Sjodin, H., Stierner, U., and Wagenius, G. ( 2004 ). Invasive cutaneous malignant melanoma in Sweden, 1990–1999. A prospective, population-based study of survival and prognostic factors. Cancer 101, 2067 – 2078.en_US
dc.identifier.citedreferenceLudwig, A., Rehberg, S., and Wegner, M. ( 2004 ). Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Lett. 556, 236 – 244.en_US
dc.identifier.citedreferenceMcGill, G.G., Horstmann, M., Widlund, H.R. et al. ( 2002 ). Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109, 707 – 718.en_US
dc.identifier.citedreferenceMurphy, M., Mabruk, M.J., Lenane, P., Liew, A., Mccann, P., Buckley, A., Billet, P., Leader, M., Kay, E., and Murphy, G.M. ( 2002 ). The expression of p53, p21, Bax and induction of apoptosis in normal volunteers in response to different doses of ultraviolet radiation. Br. J. Dermatol. 147, 110 – 117.en_US
dc.identifier.citedreferenceNishimura, E.K., Jordan, S.A., Oshima, H., Yoshida, H., Osawa, M., Moriyama, M., Jackson, I.J., Barrandon, Y., Miyachi, Y., and Nishikawa, S. ( 2002 ). Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416, 854 – 860.en_US
dc.identifier.citedreferenceNishimura, E.K., Granter, S.R., and Fisher, D.E. ( 2005 ). Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307, 720 – 724.en_US
dc.identifier.citedreferenceOno, K., and Han, J. ( 2000 ). The p38 signal transduction pathway: activation and function. Cell. Signal. 12, 1 – 13.en_US
dc.identifier.citedreferencePlettenberg, A., Ballaun, C., Pammer, J., Mildner, M., Strunk, D., Weninger, W., and Tschachler, E. ( 1995 ). Human melanocytes and melanoma cells constitutively express the Bcl-2 proto-oncogene in situ and in cell culture. Am. J. Pathol. 146, 651 – 659.en_US
dc.identifier.citedreferencePrice, E.R., and Fisher, D.E. ( 2001 ). Sensorineural deafness and pigmentation genes: melanocytes and the Mitf transcriptional network. Neuron 30, 15 – 18.en_US
dc.identifier.citedreferenceReinke, V., and Lozano, G. ( 1997 ). Differential activation of p53 targets in cells treated with ultraviolet radiation that undergo both apoptosis and growth arrest. Radiat. Res. 148, 115 – 122.en_US
dc.identifier.citedreferenceRosette, C., and Karin, M. ( 1996 ). Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science 274, 1194 – 1197.en_US
dc.identifier.citedreferenceSakata, S., Sakamaki, K., Watanabe, K., Nakamura, N., Toyokuni, S., Nishimune, Y., Mori, C., and Yonehara, S. ( 2003 ). Involvement of death receptor Fas in germ cell degeneration in gonads of Kit-deficient Wv/Wv mutant mice. Cell Death Differ. 10, 676 – 686.en_US
dc.identifier.citedreferenceSchwahn, D.J., Timchenko, N.A., Shibahara, S., and Medrano, E.E. ( 2005 ). Dynamic regulation of the human dopachrome tautomerase promoter by MITF, ER-alpha and chromatin remodelers during proliferation and senescence of human melanocytes. Pigment Cell Res. 18, 203 – 213.en_US
dc.identifier.citedreferenceSmit, N.P., Vink, A.A., Kolb, R.M., Steenwinkel, M.J., Van Den Berg, P.T., Van Nieuwpoort, F., Roza, L., and Pavel, S. ( 2001 ). Melanin offers protection against induction of cyclobutane pyrimidine dimers and 6-4 photoproducts by UVB in cultured human melanocytes. Photochem. Photobiol. 74, 424 – 430.en_US
dc.identifier.citedreferenceSteingrimsson, E., Copeland, N.G., and Jenkins, N.A. ( 2004 ). Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet. 38, 365 – 411.en_US
dc.identifier.citedreferenceTachibana, M., Hara, Y., Vyas, D., Hodgkinson, C., Fex, J., Grundfast, K., and Arnheiter, H. ( 1992 ). Cochlear disorder associated with melanocyte anomaly in mice with a transgenic insertional mutation. Mol. Cell. Neurosci. 3, 433 – 445.en_US
dc.identifier.citedreferenceTadokoro, T., Kobayashi, N., Zmudzka, B.Z., Ito, S., Wakamatsu, K., Yamaguchi, Y., Korossy, K.S., Miller, S.A., Beer, J.Z., and Hearing, V.J. ( 2003 ). UV-induced DNA damage and melanin content in human skin differing in racial/ethnic origin. FASEB J. 17, 1177 – 1179.en_US
dc.identifier.citedreferenceTadokoro, T., Yamaguchi, Y., Batzer, J., Coelho, S.G., Zmudzka, B.Z., Miller, S.A., Wolber, R., Beer, J.Z., and Hearing, V.J. ( 2005a ). Mechanisms of skin tanning in different racial//ethnic groups in response to ultraviolet radiation. J. Investig. Dermatol. 124, 1326 – 1332.en_US
dc.identifier.citedreferenceTadokoro, T., Yamaguchi, Y., Batzer, J., Coelho, S.G., Zmudzka, B.Z., Miller, S.A., Wolber, R., Beer, J.Z., and Hearing, V.J. ( 2005b ). Mechanisms of skin tanning in different racial/ethnic groups in response to ultraviolet radiation. J. Invest. Dermatol. 124, 1326 – 1332.en_US
dc.identifier.citedreferenceTassabehji, M., Newton, V.E., and Read, A.P. ( 1994 ). Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat. Genet. 8, 251 – 255.en_US
dc.identifier.citedreferenceTomita, Y., Takeda, A., Okinaga, S., Tagami, H., and Shibahara, S. ( 1989 ). Human oculocutaneous albinism caused by single base insertion in the tyrosinase gene. Biochem. Biophys. Res. Commun. 164, 990 – 996.en_US
dc.identifier.citedreferenceUrzua, U., Roby, K.F., Gangi, L.M., Cherry, J.M., Powell, J.I., and Munroe, D.J. ( 2006 ). Transcriptomic analysis of an in vitro murine model of ovarian carcinoma: functional similarity to the human disease and identification of prospective tumoral markers and targets. J. Cell. Physiol. 206, 594 – 602.en_US
dc.identifier.citedreferenceWidlund, H.R., and Fisher, D.E. ( 2003 ). Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene 22, 3035 – 3041.en_US
dc.identifier.citedreferenceWillis, S.N., Fletcher, J.I., Kaufmann, T. et al. ( 2007 ). Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315, 856 – 859.en_US
dc.identifier.citedreferenceYamazaki, F., Okamoto, H., Miyauchi-Hashimoto, H., Matsumura, Y., Itoh, T., Tanaka, K., Kunisada, T., and Horio, T. ( 2004 ). XPA gene-deficient, SCF-transgenic mice with epidermal melanin are resistant to UV-induced carcinogenesis. J. Invest. Dermatol. 123, 220 – 228.en_US
dc.identifier.citedreferenceYasumoto, K.-I., Yokoyama, K., Takahashi, K., Tomita, Y., and Shibahara, S. ( 1997 ). Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J. Biol. Chem. 272, 503 – 509.en_US
dc.identifier.citedreferenceYavuzer, U., and Goding, C.R. ( 1994 ). Melanocyte-specific gene expression: role of repression and identification of a melanocyte-specific factor, MSF. Mol. Cell. Biol. 14, 3494 – 3503.en_US
dc.identifier.citedreferenceYoule, R.J., and Strasser, A. ( 2008 ). The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9, 47 – 59.en_US
dc.identifier.citedreferenceYoung, A.R. ( 2004 ). Tanning devices–fast track to skin cancer? Pigment Cell Res. 17, 2 – 9.en_US
dc.identifier.citedreferenceZhai, S., Yaar, M., Doyle, S.M., and Gilchrest, B.A. ( 1996 ). Nerve growth factor rescues pigment cells from ultraviolet-induced apoptosis by upregulating BCL-2 levels. Exp. Cell Res. 224, 335 – 343.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.