Show simple item record

Stomatal and non-stomatal fluxes of ozone to a northern mixed hardwood forest

dc.contributor.authorHogg, Alanen_US
dc.contributor.authorUddling, Johanen_US
dc.contributor.authorEllsworth, Daviden_US
dc.contributor.authorCarroll, Mary Anneen_US
dc.contributor.authorPressley, Shelleyen_US
dc.contributor.authorLamb, Brianen_US
dc.contributor.authorVogel, Christoph S.en_US
dc.date.accessioned2010-06-01T21:59:10Z
dc.date.available2010-06-01T21:59:10Z
dc.date.issued2007-07en_US
dc.identifier.citationHOGG, ALAN; UDDLING, JOHAN; ELLSWORTH, DAVID; CARROLL, MARY ANNE; PRESSLEY, SHELLEY; LAMB, BRIAN; VOGEL, CHRISTOPH (2007). "Stomatal and non-stomatal fluxes of ozone to a northern mixed hardwood forest." Tellus B 59(3): 514-525. <http://hdl.handle.net/2027.42/75016>en_US
dc.identifier.issn0280-6509en_US
dc.identifier.issn1600-0889en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75016
dc.description.abstractMeasurements of ozone, sensible heat, and latent heat fluxes and plant physiological parameters were made at a northern mixed hardwood forest located at the University of Michigan Biological Station in northern Michigan from June 27 to September 28, 2002. These measurements were used to calculate total ozone flux and partitioning between stomatal and non-stomatal sinks. Total ozone flux varied diurnally with maximum values reaching 100 Μmol m −2 h −1 at midday and minimums at or near zero at night. Mean daytime canopy conductance was 0.5 mol m −2 s −1 . During daytime, non-stomatal ozone conductance accounted for as much as 66% of canopy conductance, with the non-stomatal sink representing 63% of the ozone flux. Stomatal conductance showed expected patterns of behaviour with respect to photosynthetic photon flux density (PPFD) and vapour pressure defecit (VPD). Non-stomatal conductance for ozone increased monotonically with increasing PPFD, increased with temperature ( T ) before falling off again at high T , and behaved similarly for VPD. Day-time non-stomatal ozone sinks are large and vary with time and environmental drivers, particularly PPFD and T . This information is crucial to deriving mechanistic models that can simulate ozone uptake by different vegetation types.en_US
dc.format.extent209955 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2007 The Authors Journal compilation © 2007 Blackwell Munksgaarden_US
dc.titleStomatal and non-stomatal fluxes of ozone to a northern mixed hardwood foresten_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelAtmospheric, Oceanic and Space Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumSchool of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumUniversity of Michigan Biological Station, University of Michigan, Pellston, MI 49769, USAen_US
dc.contributor.affiliationotherDepartment of Civil and Environmental Engineering, Washington State University, Pullman, WA 99164, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75016/1/j.1600-0889.2007.00269.x.pdf
dc.identifier.doi10.1111/j.1600-0889.2007.00269.xen_US
dc.identifier.sourceTellus Ben_US
dc.identifier.citedreferenceAltimir, N., Kolari, P., Tuovinen, J. P., Vesala, T., BÄck, J., and co-authors. 2005. Foliage surface ozone deposition: a role for surface moisture?. Biogeosciences Discussions 2, 1739 – 1793.en_US
dc.identifier.citedreferenceAltimir, N., Tuovinen, J. P., Vesala, T., Kulmala, M. and Hari, P. 2004. Measurements of ozone removal by Scots pine shoots: calibration of a stomatal uptake model including the non-stomatal component. Atmos. Environ. 38, 2387 – 2398.en_US
dc.identifier.citedreferenceAuble, D. L. and Meyers, T. P. 1992. an open path, fast response infrared-absorption gas analyzer for H 2 O and CO 2. Boundary-Layer Meteorol. 59, 243 – 256.en_US
dc.identifier.citedreferenceBaldocchi, D. D., Fuentes, J. D., Bowling, D. R., Turnipseed, A. A. and Monson, R. K. 1999. Scaling isoprene fluxes from leaves to canopies: test cases over a boreal aspen and a mixed species temperate forest. J. Appl. Meteorol. 38, 885 – 898.en_US
dc.identifier.citedreferenceBauer, M. R., Hultman, N. E., Panek, J. A. and Goldstein, A. H. 2000. Ozone deposition to a ponderosa pine plantation in the Sierra Nevada Mountains (CA): a comparison of two different climatic years. J. Geophys. Res.-Atmos. 105, 22123 – 22136.en_US
dc.identifier.citedreferenceBovard, B. D., Curtis, P. S., Vogel, C. S., Su, H. B. and Schmid, H. P. 2005. Environmental controls on sap flow in a northern hardwood forest. Tree Physiol. 25, 31 – 38.en_US
dc.identifier.citedreferenceCampbell, G. S. and Norman, J. M. 1998. Introduction to Environmental Biophysics, Springer, New York.en_US
dc.identifier.citedreferenceCarroll, M. A., Bertman, S. B. and Shepson, P. B. 2001. Overview of the program for research on oxidants: photochemistry, emissions, and transport (PROPHET) summer 1998 measurements intensive. J Geophys. Res.-Atmos. 106, 24275 – 24288.en_US
dc.identifier.citedreferenceChoudhury, B. J. and Monteith, J. L. 1988. A 4-layer model for the heat-budget of homogeneous land surfaces. Quart. J. R. Met. Soc. 114, 373 – 398.en_US
dc.identifier.citedreferenceCieslik, S. A. 2004. Ozone uptake by various surface types: a comparison between dose and exposure. Atmos. Environ. 38, 2409 – 2420.en_US
dc.identifier.citedreferenceClough, P. N. and Thrush, B. A. 1967. Mechanism of chemiluminescent reaction between nitric oxide and ozone. Trans. Faraday Soc. 63, 915 – 925.en_US
dc.identifier.citedreferenceClyne, M. A. A. and Stedman, D. H. 1967. rate of recombination of nitrogen atoms. J. Phys. Chem. 71, 3071 – 3073.en_US
dc.identifier.citedreferenceCoe, H., Gallagher, M. W., Choularton, T. W. and Dore, C. 1995. Canopy scale measurements of stomatal and cuticular O-3 uptake by sitka spruce. Atmos. Environ. 29, 1413 – 1423.en_US
dc.identifier.citedreferenceCurtis, P. S., Vogel, C. S., Gough, C. M., Schmid, H. P., Su, H. B. and Bovard, B. D. 2005. Respiratory carbon losses and the carbon-use efficiency of a northern hardwood forest, 1999–2003. New Phytologist 167, 437 – 455.en_US
dc.identifier.citedreferenceEmberson, L., Simpson, D., Tuovinen, J. P., Ashmore, M. R. and Cambridge, H. M. 2000, Towards a modell of ozone deposition and stomatal uptake over Europe. (EMEP/MSC-W, Note 6/00), Research Note no. 42, DNMI, Oslo, Norway.en_US
dc.identifier.citedreferenceFelzer, B., Kicklighter, D., Melillo, J., Wang, C., Zhuang, Q., and co-authors. 2004. Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus 56B, 230 – 248.en_US
dc.identifier.citedreferenceFinkelstein, P. L., Ellestad, T. G., Clarke, J. F., Meyers, T. P., Schwede, D. B., and co-authors. 2000. Ozone and sulfur dioxide dry deposition to forests: observations and model evaluation. J. Geophys. Res.-Atmos. 105, 15365 – 15377.en_US
dc.identifier.citedreferenceFowler, D., Cape, J. N., Coyle, M., Smith, R. I., Hjellbrekke, A. G., and co-authors. 1999. Modelling photochemical oxidant formation, transport, deposition and exposure of terrestrial ecosystems. Environ. Pollut. 100, 43 – 55.en_US
dc.identifier.citedreferenceFowler, D., Flechard, C., Cape, J. N., Storeton-West, R. L. and Coyle, M. 2001. Measurements of ozone deposition to vegetation quantifying the flux, the stomatal and non-stomatal components. Water, Air, Soil Pollut. 130, 63 – 74.en_US
dc.identifier.citedreferenceGerosa, G., Vitale, M., Finco, A., Manes, F., Denti, A. B., and co-authors 2005. Ozone uptake by an evergreen Mediterranean Forest (Quercus ilex) in Italy. Part I: micrometeorological flux measurements and flux partitioning. Atmos. Environ. 39, 3255 – 3266.en_US
dc.identifier.citedreferenceGoldstein, A. H., McKay, M., Kurpius, M. R., Schade, G. W., Lee, A. and co-authors. 2004. Forest thinning experiment confirms ozone deposition to forest canopy is dominated by reaction with biogenic VOCs. Geophys. Res. Lett. 31, Art. No. L22106.en_US
dc.identifier.citedreferenceGoulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C. and Wofsy, S. C. 1996. Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy. Global Change Biol. 2, 169 – 182.en_US
dc.identifier.citedreferenceGranat, L. and Richter, A. 1995. Dry deposition to pine of sulfur-dioxide and ozone at low concentration. Atmos. Environ. 29, 1677 – 1683.en_US
dc.identifier.citedreferenceGrantz, D. A., Zhang, X. J., Massman, W. J., Denhartog, G., Neumann, H. H., and co-authors. 1995. Effects of stomatal conductance and surface wetness on ozone deposition in field-grown. Atmos. Environ. 29, 3189 – 3198.en_US
dc.identifier.citedreferenceJones, H. G. 1992. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology 2nd Edition., Cambridge University Press, Cambridge, 428 pp.en_US
dc.identifier.citedreferenceKaimal, J. C. and Finnigan, J. J. 1994. Atmospheric Boundary Layer Flows: Their Structure And Measurement, Vol. XIII, Oxford University Press, New York 289 pp.en_US
dc.identifier.citedreferenceKarlsson, P. E., Uddling, J., Braun, S., Broadmeadow, M., Elvira, S., and co-authors. 2004. New critical levels for ozone effects on young trees based on AOT40 and simulated cumulative leaf uptake of ozone. Atmos. Environ. 38, 2283 – 2294.en_US
dc.identifier.citedreferenceKarnosky, D. F., Mankovska, B., Percy, K., Dickson, R. E., Podila, G. K., and co-authors. 1999. Effects of tropospheric O-3 on trembling aspen and interaction with CO-2: results from an O-3-gradient and a face experiment. Water Air Soil Pollut. 116, 311 – 322.en_US
dc.identifier.citedreferenceKarnosky, D. F., Percy, K. E., Xiang, B. X., Callan, B., Noormets, A. and co-authors. 2002. Interacting elevated CO-2 and tropospheric O-3 predisposes aspen ( Populus tremuloides Michx.) to infection by rust ( Melampsora medusae f. sp tremuloidae ). Global Change Biol. 8, 329 – 338.en_US
dc.identifier.citedreferenceKarnosky, D. F., Zak, D. R., Pregitzer, K. S., Awmack, C. S., Bockheim, J. G., and co-authors. 2003. Tropospheric O-3 moderates responses of temperate hardwood forests to elevated CO-2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Funct. Ecol. 17, 289 – 304.en_US
dc.identifier.citedreferenceKelliher, F. M., Kostner, B. M. M., Hollinger, D. Y., Byers, J. N., Hunt, J. E., and co-authors. 1992. Evaporation, xylem sap flow, and tree transpiration in a new-zealand broad-leaved forest. Agric. Forest Meteorol. 62, 53 – 73.en_US
dc.identifier.citedreferenceKÖrner, C. 1994. Leaf diffusive conductances in the major vegetation types of the globe., In: Ecophysiology of Photosynthesis. Ecological studies 100, ( ed. E. D. Schulze and M. M. Caldwell ). Springer-Verlag, Berlin, 463 – 490.en_US
dc.identifier.citedreferenceKurpius, M. R. and Goldstein, A. H. 2003. Gas-phase chemistry dominates O-3 loss to a forest, implying a source of aerosols and hydroxyl radicals to the atmosphere. Geophys. Res. Lett. 30, Art. No. 1371.en_US
dc.identifier.citedreferenceKurpius, M. R., McKay, M. and Goldstein, A. H. 2002. Annual ozone deposition to a Sierra Nevada ponderosa pine plantation. Atmos. Environ. 36, 4503 – 4515.en_US
dc.identifier.citedreferenceKuzma, J. and Fall, R. 1993. Leaf isoprene emission rate is dependent on leaf development and the level of isoprene synthase. Plant Physiol. 101, 435 – 440.en_US
dc.identifier.citedreferenceLamaud, E., Carrara, A., Brunet, Y., Lopez, A. and Druilhet, A. 2002. Ozone fluxes above and within a pine forest canopy in dry and wet conditions. Atmos. Environ. 36, 77 – 88.en_US
dc.identifier.citedreferenceLarcher, W. 2003. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups, Springer, Berlin, New York, 513 pp.en_US
dc.identifier.citedreferenceLloyd, J., Grace, J., Miranda, A. C., Meir, P., Wong, S. C., and co-authors. 1995. A Simple calibrated model of amazon rain-forest productivity based on leaf biochemical-properties. Plant Cell Environ. 18, 1129 – 1145.en_US
dc.identifier.citedreferenceMassman, W. J. 2004. Toward an ozone standard to protect vegetation based on effective dose: a review of deposition resistances and a possible metric. Atmos. Environ. 38, 2323 – 2337.en_US
dc.identifier.citedreferenceMatyssek, R. and Sandermann, H. 2003. Impact of ozone on trees: an ecophysiological perspective., In: Progress in Botany, ( ed. K. Esser, et al. ). Springer Verlag Heidelberg, 349 – 404.en_US
dc.identifier.citedreferenceMikkelsen, T. N. and Ro-Poulsen, H. 2002. In situ autumn ozone fumigation of mature Norway spruce - Effects on net photosynthesis. Phyton-Annales Rei Botanicae 42, 97 – 104.en_US
dc.identifier.citedreferenceMikkelsen, T. N., Ro-Poulsen, H., Hovmand, M. F., Jensen, N. O., Pilegaard, K., and co-authors. 2004. Five-year measurements of ozone fluxes to a Danish Norway spruce canopy. Atmos. Environ. 38, 2361 – 2371.en_US
dc.identifier.citedreferenceMikkelsen, T. N., Ro-Poulsen, H., Pilegaard, K., Hovmand, M. F., Jensen, N. O., and co-authors. 2000. Ozone uptake by an evergreen forest canopy: temporal variation and possible mechanisms. Environ. Pollut. 109, 423 – 429.en_US
dc.identifier.citedreferenceMonson, R. K., Jaeger, C. H., Adams, W. W., Driggers, E. M., Silver, G. M., and co-authors. 1992. Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol. 98, 1175 – 1180.en_US
dc.identifier.citedreferenceMonteith, J. L. and Unsworth, M. H. 1990. Principles of Environmental Physics, Edward Arnold, London, 291 pp.en_US
dc.identifier.citedreferenceMoody, J. L. and Samson, P. J. 1989. The influence of atmospheric transport on precipitation chemistry at 2 sites in the midwestern United-States. Atmos. Environ. 23, 2117 – 2132.en_US
dc.identifier.citedreferenceMoore, K. E., Fitzjarrald, D. R., Sakai, R. K., Goulden, M. L., Munger, J. W., and co-authors. 1996. Seasonal variation in radiative and turbulent exchange at a deciduous forest in central Massachusetts. J. Appl. Meteorol. 35, 122 – 134.en_US
dc.identifier.citedreferenceMunger, J. W., Wofsy, S. C., Bakwin, P. S., Fan, S. M., Goulden, M. L., and co-authors. 1996. Atmospheric deposition of reactive nitrogen oxides and ozone in a temperate deciduous forest and a subarctic Woodland.1. Measurements and mechanisms. J. Geophys. Res.-Atmos. 101, 12639 – 12657.en_US
dc.identifier.citedreferenceNiinemets, U., Loreto, F. and Reichstein, M. 2004. Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends Plant Sci. 9, 180 – 186.en_US
dc.identifier.citedreferencePaulson, S. E., Flagan, R. C. and Seinfeld, J. H. 1992a. Atmospheric photooxidation of isoprene.1. The hydroxyl radical and ground-state atomic oxygen reactions. Int. J. Chem. Kinetics 24, 79 – 101.en_US
dc.identifier.citedreferencePaulson, S. E., Flagan, R. C. and Seinfeld, J. H. 1992b. Atmospheric Photooxidation of isoprene.2. The ozone-isoprene reaction. Int. J. Chem. Kinetics 24, 103 – 125.en_US
dc.identifier.citedreferencePercy, K. E., Awmack, C. S., Lindroth, R. L., Kubiske, M. E., Kopper, B. J., and co-authors. 2002. Altered performance of forest pests under atmospheres enriched by CO 2 and O-3. Nature 420, 403 – 407.en_US
dc.identifier.citedreferencePercy, K. E., Legge, A. H. and Krupa, S. V. 2003. Tropospheric ozone: a continuing threat to global forests?., In: Air Pollution, Global Change and Forests in the New Millenium ( ed. D. F. Karnosky, et al. ). Elsevier Ltd., Oxford, 85 – 118.en_US
dc.identifier.citedreferencePleijel, H., Karlsson, G. P., Danielsson, H. and Sellden, G. 1995. Surface wetness enhances ozone deposition to a pasture canopy. Atmos. Environ. 29, 3391 – 3393.en_US
dc.identifier.citedreferencePressley, S., Lamb, B., Westberg, H., Flaherty, J., Chen, J., and co-authors. 2005. Long-term isoprene flux measurements above a northern hardwood forest. J. Geophys. Res.-Atmos. 110, Art. No. D07301.en_US
dc.identifier.citedreferenceReich, P. B., Schoettle, A. W., Stroo, H. F., Troiano, J. and Amundson, R. G. 1987. Effects of ozone and acid-rain on white-pine (Pinus-Strobus) seedlings grown in 5 soils.1. Net photosynthesis and growth. Can. J. Bot.-Revue Canadienne De Botanique 65, 977 – 987.en_US
dc.identifier.citedreferenceRidley, B. A., Grahek, F. E. and Walega, J. G. 1992. A small, high-sensitivity, medium-response ozone detector suitable for measurements from light aircraft. J. Atmos. Ocean. Technol. 9, 142 – 148.en_US
dc.identifier.citedreferenceRondÓn, A. 1993. Atmosphere-surface exchange of nitrogen oxides and ozone, Dissertation thesis, University of Stockholm, Stockholm, 115 pp.en_US
dc.identifier.citedreferenceRondÓn, A., Johansson, C. and Granat, L. 1993. Dry deposition of nitrogen-dioxide and ozone to Coniferous forests. J. Geophys. Res.-Atmos. 98, 5159 – 5172.en_US
dc.identifier.citedreferenceSchmid, H. P., Su, H. B., Vogel, C. S. and Curtis, P. S. 2003. Ecosystem-atmosphere exchange of carbon dioxide over a mixed hardwood forest in northern lower Michigan. J. Geophys. Res.-Atmos. 108, Art. No. 4417.en_US
dc.identifier.citedreferenceSharkey, T. D., Loreto, F. and Delwiche, C. F. 1991. High-carbon dioxide and sun shade effects on isoprene emission from Oak and Aspen tree leaves. Plant Cell Environ. 14, 333 – 338.en_US
dc.identifier.citedreferenceSkÄrby, L., Ro-Poulsen, H., Wellburn, F. A. M. and Sheppard, L. J. 1998. Impacts of ozone on forests: a European perspective. New Phytologist 139, 109 – 122.en_US
dc.identifier.citedreferenceStatistics Canada 2002. 2001 Community Profiles. Statistics Canada Catalogue no. 93F0053XIE., Statistics Canada, Ottawa, Ontario.en_US
dc.identifier.citedreferenceStull, R. B. 1988. An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 670 pp.en_US
dc.identifier.citedreferenceThornberry, T., Carroll, M. A., Keeler, G. J., Sillman, S., Bertman, S. B., and co-authors. 2001. Observations of reactive oxidized nitrogen and speciation of NOy during the PROPHET summer 1998 intensive. J. Geophys. Res.-Atmos. 106, 24359 – 24386.en_US
dc.identifier.citedreferenceU. S. Census Bureau 2001. Census 2000 redistricting data (Public Law 94-171). Summary file 2000 Census of population and housing, U.S. Dept. of Commerce, Economics and Statistics Administration, U.S. Census Bureau, Washington, D.C.en_US
dc.identifier.citedreferenceUddling, J., Gunthardt-Goerg, M. S., Matyssek, R., Oksanen, E., Pleijel, H., and co-authors. 2004. Biomass reduction of juvenile birch is more strongly related to stomatal uptake of ozone than to indices based on external exposure. Atmos. Environ. 38, 4709 – 4719.en_US
dc.identifier.citedreferenceUSDA Forest Service 2001, Forest Inventory Analysis (FIA), USDA Forest Service, Washington, DC, USA.en_US
dc.identifier.citedreferenceWilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D. and Wullschleger, S. D. 2001. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. Forest Meteorol. 106, 153 – 168.en_US
dc.identifier.citedreferenceZeller, K. F. and Nikolov, N. T. 2000. Quantifying simultaneous fluxes of ozone, carbon dioxide and water vapour above a subalpine forest ecosystem. Environ. Pollut. 107, 1 – 20.en_US
dc.identifier.citedreferenceZhang, L. M., Brook, J. R. and Vet, R. 2002a. On ozone dry deposition - with emphasis on non-stomatal uptake and wet canopies. Atmos. Environ. 36, 4787 – 4799.en_US
dc.identifier.citedreferenceZhang, L. M., Moran, M. D., Makar, P. A., Brook, J. R. and Gong, S. L. 2002b. Modelling gaseous dry deposition in AURAMS: a unified regional air-quality modelling system. Atmos. Environ. 36, 537 – 560.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.