Show simple item record

Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers

dc.contributor.authorZvi, Michal Moyal Benen_US
dc.contributor.authorNegre-Zakharov, Florenceen_US
dc.contributor.authorMasci, Taniaen_US
dc.contributor.authorOvadis, Mariannaen_US
dc.contributor.authorShklarman, Elenaen_US
dc.contributor.authorBen-Meir, Hagiten_US
dc.contributor.authorTzfira, Tzvien_US
dc.contributor.authorDudareva, Nataliaen_US
dc.contributor.authorVainstein, Alexanderen_US
dc.date.accessioned2010-06-01T22:00:42Z
dc.date.available2010-06-01T22:00:42Z
dc.date.issued2008-05en_US
dc.identifier.citationZvi, Michal Moyal Ben; Negre-Zakharov, Florence; Masci, Tania; Ovadis, Marianna; Shklarman, Elena; Ben-Meir, Hagit; Tzfira, Tzvi; Dudareva, Natalia; Vainstein, Alexander (2008). "Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers." Plant Biotechnology Journal 6(4): 403-415. <http://hdl.handle.net/2027.42/75040>en_US
dc.identifier.issn1467-7644en_US
dc.identifier.issn1467-7652en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75040
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18346094&dopt=citationen_US
dc.description.abstractThe phenylpropanoid pathway gives rise to metabolites that determine floral colour and fragrance. These metabolites are one of the main means used by plants to attract pollinators, thereby ensuring plant survival. A lack of knowledge about factors regulating scent production has prevented the successful enhancement of volatile phenylpropanoid production in flowers. In this study, the Production of Anthocyanin Pigment1 ( Pap1 ) Myb transcription factor from Arabidopsis thaliana , known to regulate the production of non-volatile phenylpropanoids, including anthocyanins, was stably introduced into Petunia hybrida . In addition to an increase in pigmentation, Pap1 -transgenic petunia flowers demonstrated an increase of up to tenfold in the production of volatile phenylpropanoid/benzenoid compounds. The dramatic increase in volatile production corresponded to the native nocturnal rhythms of volatile production in petunia. The application of phenylalanine to Pap1 -transgenic flowers led to an increase in the otherwise negligible levels of volatiles emitted during the day to nocturnal levels. On the basis of gene expression profiling and the levels of pathway intermediates, it is proposed that both increased metabolic flux and transcriptional activation of scent and colour genes underlie the enhancement of petunia flower colour and scent production by Pap1 . The co-ordinated regulation of metabolic steps within or between pathways involved in vital plant functions, as shown here for two showy traits determining plant–pollinator interactions, provides a clear advantage for plant survival. The use of a regulatory factor that activates scent production creates a new biotechnological strategy for the metabolic architecture of fragrance, leading to the creation of novel genetic variability for breeding purposes.en_US
dc.format.extent386287 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 Blackwell Publishing Ltden_US
dc.subject.otherFlavonoidsen_US
dc.subject.otherFragranceen_US
dc.subject.otherPetuniaen_US
dc.subject.otherPhenylpropanoidsen_US
dc.subject.otherProduction of Anthocyanin Pigment1 ( Pap1 )en_US
dc.subject.otherVolatilesen_US
dc.titleInterlinking showy traits: co-engineering of scent and colour biosynthesis in flowersen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherThe Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israelen_US
dc.contributor.affiliationotherDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USAen_US
dc.identifier.pmid18346094en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75040/1/j.1467-7652.2008.00329.x.pdf
dc.identifier.doi10.1111/j.1467-7652.2008.00329.xen_US
dc.identifier.sourcePlant Biotechnology Journalen_US
dc.identifier.citedreferenceAharoni, A., Giri, A.P., Deuerlein, S., Griepink, F., de Kogel, W.-J., Verstappen, F.W.A., Verhoeven, H.A., Jongsma, M.A., Schwab, W. and Bouwmeester, H.J. ( 2003 ) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell, 15, 2866 – 2884.en_US
dc.identifier.citedreferenceBen-Meir, H., Zuker, A., Weiss, D. and Vainstein, A. ( 2002 ) Molecular control of floral pigmentation: anthocyanins. In: Breeding for Ornamentals: Classical and Molecular Approaches ( Vainstein, A., ed.), pp. 155 – 196. Dordrecht: Kluwer Academic Publishers.en_US
dc.identifier.citedreferenceBlount, J.W., Korth, K.L., Masoud, S.A., Rasmussen, S., Lamb, C. and Dixon, R.A. ( 2000 ) Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol. 122, 107 – 116.en_US
dc.identifier.citedreferenceBoatright, J., Negre, F., Chen, X., Kish, C.M., Wood, B., Pel, G., Orlova, I., Gang, D., Rhodes, D. and Dudareva, N. ( 2004 ) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol. 135, 1993 – 2011.en_US
dc.identifier.citedreferenceBorevitz, J.O., Xia, Y., Blount, J., Dixon, R.A. and Lamb, C. ( 2000 ) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell, 12, 2383 – 2393.en_US
dc.identifier.citedreferenceBorovsky, Y., Oren-Shamir, M., Ovadia, R., De Jong, W. and Paran, I. ( 2004 ) The A locus that controls anthocyanin accumulation in pepper encodes a MYB transcription factor homologous to Anthocyanin2 of petunia. Theor. Appl. Genet. 109, 23 – 29.en_US
dc.identifier.citedreferenceChandler, S. and Tanaka, Y. ( 2007 ) Genetic modification in floriculture. Crit. Rev. Plant Sci. 26, 169 – 197.en_US
dc.identifier.citedreferenceChappell, J. and Jones, R.L. ( 1995 ) Biochemistry and Molecular-Biology of the Isoprenoid Biosynthetic-Pathway in Plants. Palo Alto, CA: Annual Reviews Inc.en_US
dc.identifier.citedreferenceChen, F., Tholl, D., D’Auria, J.C., Farooq, A., Pichersky, E. and Gershenzon, J. ( 2003 ) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell, 15, 481 – 494.en_US
dc.identifier.citedreferenceCroteau, R. and Karp, F. ( 1991 ) Origin of natural odorants. In: Perfume: Art, Science and Technology ( Lamparsky, D. and MÜller, M., eds), pp. 101 – 126. New York: Elsevier Applied Sciences.en_US
dc.identifier.citedreferenceDavidovich-Rikanati, R., Sitrit, Y., Tadmor, Y., Iijima, Y., Bilenko, N., Bar, E., Carmona, B., Fallik, E., Dudai, N., Simon, J.E., Pichersky, E. and Lewinsohn, E. ( 2007 ) Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. Nature, 25, 899 – 901.en_US
dc.identifier.citedreferenceDavies, K.M., Schwinn, K.E., Deroles, S.C., Manson, D.G., Lewis, D.H., Bloor, S.J. and Bradley, J.M. ( 2003 ) Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase. Euphytica, 131, 259 – 268.en_US
dc.identifier.citedreferenceDavuluri, G.R., van Tuinen, A., Fraser, P.D., Manfredonia, A., Newman, R., Burgess, D., Brummell, D.A., King, S.R., Palys, J., Uhlig, J., Bramley, P.M., Pennings, H.M.J. and Bowler, C. ( 2005 ) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat. Biotechnol. 23, 890 – 895.en_US
dc.identifier.citedreferenceDexter, R., Qualley, A., Kish, C.M., Ma, C.J., Koeduka, T., Nagegowda, D.A., Dudareva, N., Pichersky, E. and Clark, D. ( 2007 ) Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol. Plant J. 49, 265 – 275.en_US
dc.identifier.citedreferenceDudareva, N., Pichersky, E. and Gershenzon, J. ( 2004 ) Biochemistry of plant volatiles. Plant Physiol. 135, 1893 – 1902.en_US
dc.identifier.citedreferenceGuterman, I., Masci., T., Chen, X.L., Negre, F., Pichersky, E., Dudareva, N., Weiss, D. and Vainstein, A. ( 2006 ) Generation of phenylpropanoid pathway-derived volatiles in transgenic plants: rose alcohol acetyltransferase produces phenylethyl acetate and benzyl acetate in petunia flowers. Plant Mol. Biol. 60, 555 – 563.en_US
dc.identifier.citedreferenceHarmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.-S., Han, B., Zhu, T., Wang, X., Kreps, J.A. and Kay, S.A. ( 2000 ) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science, 290, 2110 – 2113.en_US
dc.identifier.citedreferenceHoballah, M.E., Gubitz, T., Stuurman, J., Broger, L., Barone, M., Mandel, T., Dell’Olivo, A., Arnold, M. and Kuhlemeier, C. ( 2007 ) Single gene-mediated shift in pollinator attraction in Petunia. Plant Cell, 19, 779 – 790.en_US
dc.identifier.citedreferenceKaminaga, Y., Schnepp, J., Peel, G., Kish, C.M., Ben-Nissan, G., Weiss, D., Orlova, I., Lavie, O., Rhodes, D., Wood, K., Porterfield, D.M., Cooper, A.J.L., Schloss, J.V., Pichersky, E., Vainstein, A. and Dudareva, N. ( 2006 ) Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J. Biol. Chem. 281, 23 357 – 23 366.en_US
dc.identifier.citedreferenceKoes, R., Verweij, W. and Quattrocchio, F. ( 2005 ) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 10, 236 – 242.en_US
dc.identifier.citedreferenceLewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Ibdah, M., Meir, A., Yosef, E., Zamir, D. and Tadmor, Y. ( 2005 ) Not just colors – carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends Food Sci. Technol. 16, 407 – 415.en_US
dc.identifier.citedreferenceLi, J., Ou-Lee, T.M., Raba, R., Amundson, R.G. and Last, R.L. ( 1993 ) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell, 5, 171 – 179.en_US
dc.identifier.citedreferenceLucker, J., Verhoeven, H.A., Van der Plas, L.H.W. and Bouwmeester, H.J. ( 2006 ) Molecular engineering of floral scent. In: Biology of Floral Scent ( Dudareva, N. and Pichersky, E., eds), pp. 321 – 338. Boca Raton, FL: CRC Press.en_US
dc.identifier.citedreferenceMahmoud, S.S. and Croteau, R.B. ( 2002 ) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci. 7, 366 – 373.en_US
dc.identifier.citedreferenceMathews, H., Clendennen, S.K., Caldwell, C.G., Liu, X.L., Connors, K., Matheis, N., Schuster, D.K., Menasco, D.J., Wagoner, W., Lightner, J. and Wagner, D.R. ( 2003 ) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell, 15, 1689 – 1703.en_US
dc.identifier.citedreferenceMatousek, J., Vrba, L., Skopek, J., Orctova, L., Pesina, K., Heyerick, A., Baulcombe, D. and De Keukeleire, D. ( 2006 ) Sequence analysis of a ‘true’ chalcone synthase (chs_H1) oligofamily from hop ( Humulus lupulus L.) and PAP1 activation of chs_H1 in heterologous systems. J. Agric. Food Chem. 54, 7606 – 7615.en_US
dc.identifier.citedreferenceMontiel, G., Breton, C., Thiersault, M., Burlat, V., Jay-Allemand, C. and Gantet, P. ( 2007 ) Transcription factor Agamous-like 12 from Arabidopsis promotes tissue-like organization and alkaloid biosynthesis in Catharanthus roseus suspension cells. Metab. Eng. 9, 125 – 132.en_US
dc.identifier.citedreferencePichersky, E. and Dudareva, N. ( 2007 ) Scent engineering: toward the goal of controlling how flowers smell. Trends Biotechnol. 25, 105 – 110.en_US
dc.identifier.citedreferencePodstolski, A., Havkin-Frenkel, D., Malinowski, J., Blount, J.W., Kourteva, G. and Dixon, R.A. ( 2002 ) Unusual 4-hydroxybenzaldehyde synthase activity from tissue cultures of the vanilla orchid Vanilla planifolia. Phytochemistry, 61, 611 – 620.en_US
dc.identifier.citedreferenceQuattrocchio, F., Wing, J., van der Woude, K., Souer, E., De Vetten, N., Mol, J. and Koes, R. ( 1999 ) Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell, 11, 1433 – 1444.en_US
dc.identifier.citedreferenceRo, D.K. and Douglas, C.J. ( 2004 ) Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast ( Saccharomyces cerevisiae ) – Implications for control of metabolic flux into the phenylpropanoid pathway. J. Biol. Chem. 279, 2600 – 2607.en_US
dc.identifier.citedreferencevan Schie, C.C.N., Haring, M.A. and Schuurink, R.C. ( 2006 ) Regulation of terpenoid and benzenoid production in flowers. Curr. Opin. Plant Biol. 9, 203 – 208.en_US
dc.identifier.citedreferenceSchuurink, R.C., Haring, M.A. and Clark, D.G. ( 2006 ) Regulation of volatile benzenoid biosynthesis in petunia flowers. Trends Plant Sci. 11, 20 – 25.en_US
dc.identifier.citedreferenceSchwab, W. ( 2003 ) Metabolome diversity: too few genes, too many metabolites? Phytochemistry, 62, 837 – 849.en_US
dc.identifier.citedreferenceSharma, S.B. and Dixon, R.A. ( 2005 ) Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. Plant J. 44, 62 – 75.en_US
dc.identifier.citedreferenceSpitzer, B., Moyal Ben Zvi, M., Ovadis, M., Marhevka, E., Barkai, O., Edelbaum, O., Marton, I., Masci., T., Alon, M., Morin, S., Rogachev, I., Aharoni, A. and Vainstein, A. ( 2007 ) Reverse genetics of floral scent: application of TRV-based gene silencing in petunia. Plant Physiol. 145, 1241 – 1250.en_US
dc.identifier.citedreferenceTieman, D., Taylor, M., Schauer, N., Fernie, A.R., Hanson, A.D. and Klee, H.J. ( 2006 ) Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc. Natl. Acad. Sci. USA, 103, 8287 – 8292.en_US
dc.identifier.citedreferenceTohge, T., Nishiyama, Y., Hirai, M.Y., Yano, M., Nakajima, J., Awazuhara, M., Inoue, E., Takahashi, H., Goodenowe, D.B., Kitayama, M., Noji, M., Yamazaki, M. and Saito, K. ( 2005 ) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 42, 218 – 235.en_US
dc.identifier.citedreferenceUnderwood, B.A., Tieman, D.M., Shibuya, K., Dexter, R.J., Loucas, H.M., Simkin, A.J., Sims, C.A., Schmelz, E.A., Klee, H.J. and Clark, D.G. ( 2005 ) Ethylene-regulated floral volatile synthesis in petunia corollas. Plant Physiol. 138, 255 – 266.en_US
dc.identifier.citedreferenceVerdonk, J.C., Haring, M.A., van Tunen, A.J. and Schuurink, R.C. ( 2005 ) ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell, 17, 1612 – 1624.en_US
dc.identifier.citedreferenceWinkel-Shirley, B. ( 2001 ) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126, 485 – 493.en_US
dc.identifier.citedreferenceXie, D.Y., Sharma, S.B., Wright, E., Wang, Z.Y. and Dixon, R.A. ( 2006 ) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J. 45, 895 – 907.en_US
dc.identifier.citedreferenceZimmermann, I.M., Heim, M.A., Weisshaar, B. and Uhrig, J.F. ( 2004 ) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J. 40, 22 – 34.en_US
dc.identifier.citedreferenceZuker, A., Tzfira, T., Ben-Meir, H., Ovadis, M., Shklarman, E., Itzhaki, H., Forkmann, G., Martens, S., Neta-Sharir, I., Weiss, D. and Vainstein, A. ( 2002 ) Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol. Breed. 9, 33 – 41.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.