Show simple item record

Self-consistent thermodynamic description of silicate liquids, with application to shock melting of MgO periclase and MgSiO 3 perovskite

dc.contributor.authorde Koker, Nico Pieter Janen_US
dc.contributor.authorStixrude, Larsen_US
dc.date.accessioned2010-06-01T22:04:43Z
dc.date.available2010-06-01T22:04:43Z
dc.date.issued2009-07en_US
dc.identifier.citationde Koker, Nico; Stixrude, Lars (2009). "Self-consistent thermodynamic description of silicate liquids, with application to shock melting of MgO periclase and MgSiO 3 perovskite." Geophysical Journal International 178(1): 162-179. <http://hdl.handle.net/2027.42/75103>en_US
dc.identifier.issn0956-540Xen_US
dc.identifier.issn1365-246Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75103
dc.description.abstractWe develop a self-consistent thermodynamic description of silicate liquids applicable across the entire mantle pressure and temperature regime. The description combines the finite strain free energy expansion with an account of the temperature dependence of liquid properties into a single fundamental relation, while honouring the expected limiting behaviour at large volume and high temperature. We find that the fundamental relation describes well previous experimental and theoretical results for liquid MgO, MgSiO 3 , Mg 2 SiO 4 and SiO 2 . We apply the description to calculate melting curves and Hugoniots of solid and liquid MgO and MgSiO 3 . For periclase, we find a melting temperature at the core–mantle boundary (CMB) of 7810 ± 160 K , with the solid Hugoniot crossing the melting curve at 375 GPa, 9580 K , and the liquid Hugoniot crossing at 470 GPa, 9870 K . For complete shock melting of periclase we predict a density increase of 0.14 g cm −3 and a sound speed decrease of 2.2 km s −1 . For perovskite, we find a melting temperature at the CMB of 5100 ± 100 K with the perovskite section of the enstatite Hugoniot crossing the melting curve at 150 GPa, 5190 K , and the liquid Hugoniot crossing at 220 GPa, 5520 K . For complete shock melting of perovskite along the enstatite principal Hugoniot, we predict a density increase of 0.10 g cm −3 , with a sound speed decrease of 2.6 km s −1 .en_US
dc.format.extent902138 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 RASen_US
dc.subject.otherMantle Processesen_US
dc.subject.otherEquations of Stateen_US
dc.subject.otherHigh-pressure Behaviouren_US
dc.subject.otherPhase Transitionsen_US
dc.subject.otherPlanetary Interiorsen_US
dc.subject.otherPhysics of Magma and Magma Bodiesen_US
dc.titleSelf-consistent thermodynamic description of silicate liquids, with application to shock melting of MgO periclase and MgSiO 3 perovskiteen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences, University of Michigan, Ann Arbor, Michigan, USA. E-mail: nico.dekoker@uni-bayreuth.deen_US
dc.contributor.affiliationotherDepartment of Earth Sciences, University College London, UKen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75103/1/j.1365-246X.2009.04142.x.pdf
dc.identifier.doi10.1111/j.1365-246X.2009.04142.xen_US
dc.identifier.sourceGeophysical Journal Internationalen_US
dc.identifier.citedreferenceAgee, C.B. & Walker, D., 1988. Static compression and olivine flotation in ultrabasic silicate liquid, J. geophys. Res., 93, 3437 – 3449.en_US
dc.identifier.citedreferenceAgee, C.B. & Walker, D., 1993. Olivine flotation in mantle melt, Earth planet. Sci. Lett., 114, 315 – 324.en_US
dc.identifier.citedreferenceAguado, A. & Madden, P.A., 2005. New insights into the melting behaviour of MgO from molecular dynamics simulations: the importance of premelting effects, Phys. Rev. Lett., 94, 068501.en_US
dc.identifier.citedreferenceAi, Y. & Lange, R.A., 2008. New acoustic velocity measurements on CaO-MgO-Al 2 O 3 -SiO 2 liquids: Reevaluation of the volume and compressibility of CaMgSi 2 O 6 -CaAl 2 Si 2 O 8 liquids to 25 GPa, J. geophys. Res., 113, B04203, doi :.en_US
dc.identifier.citedreferenceAkins, J.A., Luo, S.N., Asimow, P.D. & Ahrens, T.J., 2004. Shock-induced melting of MgSiO 3 perovskite and implications for melts in Earth's lowermost mantle, Geophys. Res. Lett., 31, L14612.en_US
dc.identifier.citedreferenceAlfe, D., 2005. Melting curve of MgO from first-principles simulations, Phys. Rev. Lett., 94, 235701.en_US
dc.identifier.citedreferenceAllen, M.P. & Tildesley, D.J., 1987. Computer Simulation of Liquids, 1st edn, Oxford University Press, Oxford.en_US
dc.identifier.citedreferenceAl'tshuler, L.V., Trunin, R.F. & Simakov, G.V., 1965. Shock wave compression of periclase and quartz and the composition of the Earth's lower mantle, Fizika zemli, 10, 1 – 6.en_US
dc.identifier.citedreferenceAnderson, O.L., 1995. Equations of State of Solids for Geophysics and Ceramic Science, Oxford University Press, New York.en_US
dc.identifier.citedreferenceAsimow, P.D., Hirschmann, M.M., Ghiorso, M.S., O'Hara, M.J. & Stolper, E.M., 1995. The effect of pressure-induced solid-solid transitions on decompression melting of the mantle, Geochim. Cosmochim. Acta, 59 ( 21 ), 4489 – 4506.en_US
dc.identifier.citedreferenceAtlas, L., 1952. The polymorphism of MgSiO 3 and solid-state equilibria of the system MgSiO 3 − CaMgSi 2 O 6, J. Geol., 60, 125 – 147.en_US
dc.identifier.citedreferenceBacon, J.F., Hasapis, A.A. & Wholley, J.W., 1960. Viscosity and density of molten silica and high silica content glasses, Phys. Chem. Glass., 1, 90 – 98.en_US
dc.identifier.citedreferenceBelonoshko, A.B. & Dubrovinsky, L.S., 1996. Molecular dynamics of NaCl (B1 and B2) and MgO (B1) melting: two-phase simulation, Am. Mineral., 81, 303 – 316.en_US
dc.identifier.citedreferenceBelonoshko, A.B. & Saxena, S.K., 1992. A unified equation of state for fluids of C − H − O − N − S − Ar composition and their mixtures up to very high temperatures and pressures, Geochim. Cosmochim. Acta, 56, 3611 – 3626.en_US
dc.identifier.citedreferenceBenz, W., Cameron, A.G.W. & Melosh, H.J., 1989. The origin of the moon and the single-impact hypothesis III, Icarus, 81, 113 – 131.en_US
dc.identifier.citedreferenceBirch, F., 1952. Elasticity and constitution of the Earth's interior, J. geophys. Res., 57 ( 2 ), 227 – 286.en_US
dc.identifier.citedreferenceBirch, F., 1978. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K, J. geophys. Res., 83 ( B3 ), 1257 – 1268.en_US
dc.identifier.citedreferenceBottinga, Y., 1985. On the isothermal compressibility of silicate liquids at high-pressure, Earth planet. Sci. Lett., 74, 350 – 360.en_US
dc.identifier.citedreferenceBowen, N.L. & Andersen, O., 1914. The binary system MgO-SiO 2, Am. J. Sci., 37, 487 – 500.en_US
dc.identifier.citedreferenceBoyle, R., 1662. New Experiments Physico-Mechanical, Touching the Spring and Weight of the Air, and its Effects, H. Hall, Oxford.en_US
dc.identifier.citedreferenceBrodholt, J. & Wood, B., 1993. Simulations of the structure and thermodynamic proprieties of water at high pressures and temperatures, J. geophys. Res., 98 ( B1 ), 519 – 536.en_US
dc.identifier.citedreferenceBukowinski, M.S.T., 1977. Theoretical equation of state for the inner core, Phys. Earth planet. Inter., 14 ( 4 ), 333 – 344.en_US
dc.identifier.citedreferenceCallen, H.B., 1985. Thermodynamics and an Introduction to Thermostatistics, 2nd edn, John Wiley & Sons, New York.en_US
dc.identifier.citedreferenceCanup, R.M., 2004. Simulations of a late lunar-forming impact, Icarus, 168, 433 – 456.en_US
dc.identifier.citedreferenceCeperley, D.M. & Alder, B.J., 1980. Ground-state of the electron-gas by a stochastic method, Phys. Rev. Lett., 45, 566 – 569.en_US
dc.identifier.citedreferenceChandrasekhar, S., 1939. An Introduction to the Study of Stellar Structure, University of Chicago Press, Chicago.en_US
dc.identifier.citedreferenceChen, G.Q., Ahrens, T.J. & Stolper, E.M., 2002. Shock-wave equation of state of molten and solid fayalite, Phys. Earth planet. Inter., 134, 35 – 52.en_US
dc.identifier.citedreferenceClapeyron, B.P.E., 1834. MÉmoire sur la puissance motrice de la chaleur, Journal de l'ecole polytechnique Paris, 14, 153 – 190.en_US
dc.identifier.citedreferenceCohen, R.E. & Gong, Z., 1994. Melting and melt structure of MgO at high pressures, Phys. Rev. B, 50 ( 17 ), 12 301 – 12 311.en_US
dc.identifier.citedreferenceCohen, R.E. & Weitz, J.S., 1998. The melting curve and premelting of MgO, in Properties of Earth and Planetary Materials at High Pressure and Temperature, Geophysical Monograph, Vol. 101, pp. 185 – 196, eds Manghnani, M.H. & Yagi, T., American Geophysical Union, Washington, DC.en_US
dc.identifier.citedreferenceCohen, R., GÜlseren, O. & Hemley, R., 2000. Accuracy of equation-of-state formulations, Am. Mineral., 85, 338 – 344.en_US
dc.identifier.citedreferenceCourtial, P., Ohtani, E. & Dingwell, D.B., 1997. High-temperature densities of some mantle melts, Geochim. Cosmochim. Acta, 61 ( 15 ), 3111 – 3119.en_US
dc.identifier.citedreferenceDe Koker, N.P., Stixrude, L. & Karki, B.B., 2008. Thermodynamics, structure, dynamics, and freezing of Mg 2 SiO 4 liquid at high pressure, Geochim. Cosmochim. Acta, 72, 1427 – 1441, doi :.en_US
dc.identifier.citedreferenceDingwell, D.B., Knoche, R. & Webb, S.L., 1993. A volume temperature relationship for liquid GeO 2 and some geophysically relevant derived parameters for network liquids, Phys. Chem. Miner., 19, 445 – 453.en_US
dc.identifier.citedreferenceDorogokupets, P.I., 2000. Thermodynamic functions at zero pressure and their relation to equations of state of minerals, Am. Mineral., 85, 329 – 337.en_US
dc.identifier.citedreferenceDubrovinsky, L.S. & Saxena, S.K., 1997. Thermal expansion of periclase (MgO) and tungsten (W) to melting temperatures, Phys. Chem. Miner., 24, 547 – 550.en_US
dc.identifier.citedreferenceDuffy, T.S. & Ahrens, T.J., 1995. Compressional sound velocity, equation of state, and constitutive response of shock-compressed magnesium oxide., J. geophys. Res., 100 ( B1 ), 529 – 542.en_US
dc.identifier.citedreferenceFeynman, R.P., Metropolis, N. & Teller, E., 1949. Equations of state of elements based on the generalized Fermi-Thomas theory, Phys. Rev., 75, 1561 – 1572.en_US
dc.identifier.citedreferenceFlyvberg, H. & Petersen, H.G., 1989. Error-estimates on averages of correlated data, J. Chem. Phys., 91, 461 – 466.en_US
dc.identifier.citedreferenceFrancis, G.P. & Payne, M.C., 1990. Finite basis set corrections to total energy pseudopotential calculations, J. Phys.-Conden. Matter, 2 ( 19 ), 4395 – 4404.en_US
dc.identifier.citedreferenceFrenkel, D. & Smit, B., 1996. Understanding Molecular Simulation: From Algorithms to Applications, 1st edn, Academic Press, San Diego.en_US
dc.identifier.citedreferenceGaetani, G.A., Asimow, P.D. & Stolper, E.M., 1998. Determination of the partial molar volume of SiO 2 in silicate liquids at elevated pressures and temperatures: a new experimental approach, Geochim. Cosmochim. Acta, 62 ( 14 ), 2499 – 2508.en_US
dc.identifier.citedreferenceGarnero, E.J. & Helmberger, D.V., 1995. A very slow basal layer underlying large-scale low-velocity anomalies in the lower mantle beneath the pacific: evidence from core phases, Phys. Earth planet. Inter., 91, 161 – 176.en_US
dc.identifier.citedreferenceGhiorso, M.S., 2004. An equation of state for silicate melts. I. Formulation of a general model, Am. J. Sci., 304, 637 – 678.en_US
dc.identifier.citedreferenceGhiorso, M.S. & Sack, R.O., 1995. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures., Contrib. Mineral. Petrol., 119, 197 – 212.en_US
dc.identifier.citedreferenceGhiorso, M.S., Hirschmann, M.M., Reiners, P.W. & Kress, V.C., 2002. The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa, Geochem. Geophys. Geosyst., 3 ( 5 ), doi :.en_US
dc.identifier.citedreferenceGhiorso, M.S., Nevins, D. & Spera, F.J., 2006. Molecular dynamics studies of MgSiO 3 liquid to 150 GPa: an equation of state (EOS), tracer diffusivities, and a detailed analysis of changes in atomic coordination statistics as a function of temperature and pressure, EOS, Trans. Am. geophys. Un., 87 ( 52 ), Fall Meeting Supplement, Abstract MR43B–1079.en_US
dc.identifier.citedreferenceGomes Dacosta, P., Nielsen, O.H. & Kunc, K., 1986. Stress theorem in the determination of static equilibrium by the density functional method, J. Phys. C-Solid State Phys., 19 ( 17 ), 3163 – 3172.en_US
dc.identifier.citedreferenceHalbach, H. & Chatterjee, N.D., 1982. An empirical Redlich-Kwong-type equation of state for water to and 100 Kbar, Contrib. Mineral. Petrol., 79, 337 – 345.en_US
dc.identifier.citedreferenceHeinz, D.L. & Jeanloz, R., 1987. Measurement of the melting curve of Mg 0.9 Fe 0.1 SiO 3 at lower mantle conditions and its geophysical implications, J. geophys. Res., 92 ( B11 ), 11 437 – 11 444.en_US
dc.identifier.citedreferenceHicks, D.G., Boehly, T.R., Eggert, J.H., Miller, J.E., Celliers, P.M. & Collins, G.W., 2006. Dissociation of liquid silica at high pressures and temperatures, Phys. Rev. Lett., 97, doi :.en_US
dc.identifier.citedreferenceHofmeister, A.M., 1993. Interatomic potentials calculated from equations of state: limitation of finite strain to moderate, Geophys. Res. Lett., 20 ( 7 ), 635 – 638.en_US
dc.identifier.citedreferenceHohenberg, P. & Kohn, W., 1964. Inhomogeneous electron gas, Phys. Rev. B., 136, B864.en_US
dc.identifier.citedreferenceHolland, T. & Powell, R., 1991. A compensated-Redlich–Kwong (CORK) equation for volumes and fugacities of CO 2 and H 2 O in the range 1 bar to 50 kbar and 100–, Contrib. Mineral. Petrol., 109, 265 – 273.en_US
dc.identifier.citedreferenceHudon, P., Jung, I.-H. & Baker, D.R., 2002. Melting of Β-quartz up to 2.0 GPa and thermodynamic optimization of the silica liquidus up to 6.0 GPa, Phys. Earth planet. Inter., 130, 159 – 174.en_US
dc.identifier.citedreferenceIsaak, D.G., Anderson, O.L. & Goto, T., 1989. Measured elastic moduli of single-crystal MgO up to 1800 K, Phys. Chem. Miner., 16, 704 – 713.en_US
dc.identifier.citedreferenceJeanloz, R., 1989. Shock wave equation of state and finite strain theory, J. geophys. Res., 94 ( B5 ), 5873 – 5886.en_US
dc.identifier.citedreferenceKarki, B.B., Wentzcovitch, R.M., De Gironcoli, S. & Baroni, S., 2000. High-pressure lattice dynamics and thermoelasticity of MgO, Phys. Rev. B, 61 ( 13 ), 8793 – 8800.en_US
dc.identifier.citedreferenceKarki, B.B., Wentzcovitch, R.M., de Gironcoli, S. & Baroni, S., 2000. Ab initio lattice dynamics of MgSiO 3 perovskite at high pressure, Phys. Rev. B, 62 ( 22 ), 14750 – 14756.en_US
dc.identifier.citedreferenceKarki, B.B., Stixrude, L. & Wentzcovitch, R.M., 2001. High-pressure elastic properties of major materials of Earth's mantle from first principles, Rev. Geophys., 39, 507 – 534.en_US
dc.identifier.citedreferenceKarki, B.B., Bhattarai, D. & Stixrude, L., 2006. First principles calculations of the structural, dynamical and electronic properties of liquid MgO, Phys. Rev. B, 73, 174208.en_US
dc.identifier.citedreferenceKarki, B.B., Bhattarai, D. & Stixrude, L., 2007. First-principles simulations of liquid silica: structural and dynamical behaviour at high pressure, Physical Review B, 76, 104205.en_US
dc.identifier.citedreferenceKirkwood, J.G., 1933. Quantum statistics of almost classical assemblies, Phys. Rev., 44, 31 – 37.en_US
dc.identifier.citedreferenceKnittle, E. & Jeanloz, R., 1989. Melting curve of (Mg, Fe)SiO 3 perovskite to 96 GPa, evidence for a structural transition in lower mantle melts, Geophys. Res. Lett., 16 ( 5 ), 421 – 424.en_US
dc.identifier.citedreferenceKnopoff, L. & Uffen, R.J., 1954. The densities of compounds at high pressures and the state of the Earth's interior, J. geophys. Res., 59, 471 – 484.en_US
dc.identifier.citedreferenceKohn, W. & Sham, L.J., 1965. Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, 1133.en_US
dc.identifier.citedreferenceKresse, G. & FurthmÜller, J., 1996. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computat. Mater. Sci., 6, 15 – 50.en_US
dc.identifier.citedreferenceKresse, G. & Hafner, J., 1994. Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements, J. Phys.-Conden. Matter, 6, 8245 – 8257.en_US
dc.identifier.citedreferenceLange, R.A., 1997. A revised model for the density and thermal expansivity of K 2 O − Na 2 O − CaO − MgO − Al 2 O 3 − SiO 2 liquids from 700 to 1900 K: extension to crustal magmatic temperatures, Contrib. Mineral. Petrol., 130, 1 – 11.en_US
dc.identifier.citedreferenceLange, R.A., 2003. The fusion curve of albite revisited and the compressibility of NaAlSi 3 O 8 liquid with pressure, Am. Mineral., 88, 109 – 120.en_US
dc.identifier.citedreferenceLange, R.A., 2007. The density and compressibility of KAlSi 3 O 8 liquid to 6.5 GPa, Am. Mineral., 92, 114 – 123.en_US
dc.identifier.citedreferenceLange, R.A. & Carmichael, I.S.E., 1987. Densities of Na 2 O − K 2 O − CaO − MgO − FeO − Fe 2 O 3 − Al 2 O 3 -TiO 2 − SiO 2 liquids—new measurements and derived partial molar properties, Geochim. Cosmochim. Acta, 51, 2931 – 2946.en_US
dc.identifier.citedreferenceLange, R.A. & Navrotsky, A., 1992. Heat capacities of Fe 2 O 3 -bearing silicate liquids, Contrib. Mineral. Petrol., 110, 311 – 320.en_US
dc.identifier.citedreferenceLaudernet, Y., ClÉrouin, J. & Mazevet, S., 2004. Ab initio simulations of the electrical and optical properties of shock-compressed SiO 2, Phys. Rev. B, 70, 165108.en_US
dc.identifier.citedreferenceLuo, S.-N., Ahrens, T.J., Çaǧin, T., Strachan, A., Goddard, III, W.A. & Swift, D.C., 2003. Maximum superheating and undercooling: systematics, molecular dynamics simulations, and dynamic experiments, Phys. Rev. B, 68 ( 13 ), 134206.en_US
dc.identifier.citedreferenceLuo, S.N., Akins, J.A., Ahrens, T.J. & Asimow, P.D., 2004. Shock-compressed MgSiO 3 glass, enstatite, olivine, and quartz: optical emission, temperatures, and melting, J. geophys. Res., 109, B05205.en_US
dc.identifier.citedreferenceLupis, C.H.P., 1983. Chemical Thermodynamics of Materials, Prentice-Hall Inc., New York.en_US
dc.identifier.citedreferenceMarsh, S.P., 1980. LASL Shock Hugoniot Data, University of California Press, Berkeley, CA.en_US
dc.identifier.citedreferenceMarshak, R.E. & Bethe, H.A., 1940. The generalized Thomas–Fermi method as applied to stars, Astrophys. J., 91, 239 – 243.en_US
dc.identifier.citedreferenceMartin, B., Spera, F.J. & Nevins, D., 2006. Thermodynamic and structural properties of liquid Mg 2 SiO 4 at high temperatures and pressure in the range 0–150 GPa from molecular dynamics simulation, EOS, Trans. Am. geophys. Un., 87 ( 52 ), Fall Meeting Supplement, Abstract MR43B–1080.en_US
dc.identifier.citedreferenceMatsui, M., 1989. Molecular dynamics study of the structural and thermodynamic properties of MgO crystal with quantum correction, J. Chem. Phys., 91, 489 – 494.en_US
dc.identifier.citedreferenceMatsukage, K.N., Jing, Z. & Karato, S., 2005. Density of hydrous silicate melt at the conditions of Earth's deep upper mantle, Nature, 438, 488 – 491.en_US
dc.identifier.citedreferenceMcKenzie, D. & Bickle, M.J., 1988. The volume and composition of melt generated by extension of the lithosphere, J. Petrol., 29 ( 3 ), 625 – 679.en_US
dc.identifier.citedreferenceMcQuarrie, D.A., 1984. Statistical Mechanics, University Science Books, Sausalito, CA.en_US
dc.identifier.citedreferenceMermin, N.D., 1965. Thermal properties of inhomogeneous electron gas, Phys. Rev., 137, 1441.en_US
dc.identifier.citedreferenceMiller, G.H., Stolper, E.M. & Ahrens, T.J., 1991a. The equation of state of a molten komatiite. 1. Shock wave compression to 36 GPa, J. geophys. Res., 96 ( B7 ), 11 849 – 11 864.en_US
dc.identifier.citedreferenceMiller, G.H., Stolper, E.M. & Ahrens, T.J., 1991b. The equation of state of a molten komatiite. 2. Application to komatiite petrogenesis and the hadean mantle, J. geophys. Res., 96 ( B7 ), 11 849 – 11 864.en_US
dc.identifier.citedreferenceMore, R.M., Warren, K.H., Young, D.A. & Zimmerman, G.B., 1988. A new quitidian equation of state (QEOS) for hot dense matter, Phys. Fluids, 31 ( 10 ), 3059 – 3078.en_US
dc.identifier.citedreferenceMosenfelder, J.L., Asimow, P.D. & Ahrens, T.J., 2007. Thermodynamic properties of Mg 2 SiO 4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite, J. geophys. Res., 112 ( B06208 ), doi :.en_US
dc.identifier.citedreferenceMosenfelder, J.L., Asimow, P.D., Frost, D.J., Rubie, D.C. & Ahrens, T.J., 2009. The MgSiO 3 system at high pressure: Thermodynamic properties of perovskite, post-perovskite, and melt from global inversion of shock and static compression data, J. geophys. Res., 114, B01203, doi :.en_US
dc.identifier.citedreferenceNavrotsky, A., Ziegler, D., Oestrike, R. & Maniar, P., 1989. Calorimetry of silicate melts at 1773 K—measurement of enthalpies of fusion and of mixing in the systems diopside-anorthite-albite and anorthite-forsterite, Contrib. Mineral. Petrol., 101, 122 – 130.en_US
dc.identifier.citedreferenceNosÉ, S., 1984. A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 81, 511 – 519.en_US
dc.identifier.citedreferenceOganov, A.R. & Dorogokupets, P.I., 2003. All-electron and pseudopotential study of MgO: equation of state, anharmonicity, and stability, Phys. Rev. B, 67, doi :.en_US
dc.identifier.citedreferenceOganov, A.R., Brodholt, J.P. & Price, G.D., 2001. The elastic constants of MgSiO 3 perovskite at pressures and temperatures of the Earth's mantle., Nature, 411, 934 – 937.en_US
dc.identifier.citedreferenceOhtani, E., 1988. Chemical stratification of the mantle formed by melting in the early stage of the terrestrial evolution, Tectonophysics, 154, 201 – 210.en_US
dc.identifier.citedreferenceOhtani, E. & Sawamoto, H., 1987. Melting experiment on a model chondritic mantle composition at 25 GPa, Geophys. Res. Lett., 14 ( 7 ), 733 – 736.en_US
dc.identifier.citedreferencePanero, W.R. & Stixrude, L., 2004. Hydrogen incorporation in stishovite at high pressure and symmetric hydrogen bonding in Δ−AlOOH, Earth planet. Sci. Lett., 221, 421 – 431.en_US
dc.identifier.citedreferencePavese, A., 2002. Pressure-volume-temperature equations of state: a comparative study based on numerical simulations, Phys. Chem. Miner., 29, 43 – 51.en_US
dc.identifier.citedreferencePhillips, A.C., 1994. The Physics of Stars, John Wiley & Sons, Chichester.en_US
dc.identifier.citedreferencePitzer, K.S. & Sterner, S.M., 1994. Equations of state valid continuously from zero to extreme pressures for H 2 O and CO 2, J. Chem. Phys., 101 ( 4 ), 3111 – 3116.en_US
dc.identifier.citedreferenceRedlich, O. & Kwong, J.N.S., 1949. On the thermodynamics of solutions. 5. An equation of state—fugacities of gaseous solutions., Chemical Reviews, 44 ( 1 ), 233 – 244.en_US
dc.identifier.citedreferenceRevenaugh, J. & Meyer, R., 1997. Seismic evidence of partial melt within a possibly ubiquitous low-velocity layer at the base of the mantle, Science, 277, 670 – 673.en_US
dc.identifier.citedreferenceRevenaugh, J. & Sipkin, S.A., 1994. Seismic evidence for silicate melt atop the 410 km mantle discontinuity, Nature, 369 ( 6480 ), 474 – 476.en_US
dc.identifier.citedreferenceRichet, P. & Bottinga, Y., 1986. Thermochemical properties of silicate glasses and liquids: a review, Rev. Geophys., 24 ( 1 ), 1 – 25.en_US
dc.identifier.citedreferenceRigden, S.M., Ahrens, T.J. & Stolper, E.M., 1984. Densities of liquid silicates at high pressures, Science, 226 ( 4678 ), 1071 – 1074.en_US
dc.identifier.citedreferenceRigden, S.M., Ahrens, T.J. & Stolper, E.M., 1988. Shock compression of molten silicate: results for a model basaltic composition, J. geophys. Res., 93 ( B1 ), 367 – 382.en_US
dc.identifier.citedreferenceRigden, S.M., Ahrens, T.J. & Stolper, E.M., 1989. High-pressure equation of state of molten anorthite and diopside, J. geophys. Res., 94 ( B7 ), 9508 – 9522.en_US
dc.identifier.citedreferenceRiley, B., 1966. The determination of melting points at temperatures above 2000° celcius, Revue International des hautes Temperatures et des Refractaires, 3 ( 3 ), 327 – 336.en_US
dc.identifier.citedreferenceRivers, M.L. & Carmichael, I.S.E., 1987. Ultrasonic studies of silicate melts, J. geophys. Res., 92, 9247 – 9270.en_US
dc.identifier.citedreferenceRosenfeld, Y. & Tarazona, P., 1998. Density functional theory and the asymptotic high density expansion of the free energy of classical solids and fluids, Mol. Phys., 95 ( 2 ), 141 – 150.en_US
dc.identifier.citedreferenceSaika-Voivod, I., Sciortino, F. & Poole, P.H., 2001. Computer simulations of liquid silica: equation of state and liquid–liquid phase transition, Phys. Rev. E, 63, doi :.en_US
dc.identifier.citedreferenceSakamaki, T., Suzuki, A. & Ohtani, E., 2006. Stability of hydrous melt at the base of the Earth's upper mantle, Nature, 439, 192 – 194.en_US
dc.identifier.citedreferenceShen, G. & Lazor, P., 1995. Measurement of melting temperatures of some minerals under lower mantle pressures, J. geophys. Res., 100 ( B9 ), 17 699 – 17 713.en_US
dc.identifier.citedreferenceSlater, J.C. & Krutter, H.M., 1935. Thomas-Fermi method for metals, Phys. Rev., 47, 559 – 568.en_US
dc.identifier.citedreferenceSolomatov, V.S. & Stevenson, D.J., 1993. Nonfractional crystallization of a terrestrial magma ocean, J. geophys. Res., 98 ( E3 ), 5391 – 5406.en_US
dc.identifier.citedreferenceSong, T.R.A., Helmberger, D.V. & Grand, S.P., 1994. Low-velocity zone atop the 410 km seismic discontinuity in the northwestern United States, Nature, 427 ( 6974 ), 530 – 533.en_US
dc.identifier.citedreferenceSpan, R. & Wagner, W., 1997. On the extrapolation behaviour of empirical equations of state, Int. J. Thermophys., 18 ( 6 ), 1415 – 1443.en_US
dc.identifier.citedreferenceStebbins, J.F., Carmichael, I.S.E. & Moret, L.K., 1984. Heat-capacities and entropies of silicate liquids and glasses, Contrib. Mineral. Petrol., 86, 131 – 148.en_US
dc.identifier.citedreferenceStixrude, L. & Bukowinski, M.S.T., 1990a. Fundamental thermodynamic relations and silicate melting with implications for the constitution of the D′, J. geophys. Res., 95 ( B12 ), 19 311 – 19 325.en_US
dc.identifier.citedreferenceStixrude, L. & Bukowinski, M.S.T., 1990b. A novel topological compression mechanism in a covalent liquid, Science, 250, 541 – 543.en_US
dc.identifier.citedreferenceStixrude, L. & Karki, B.B., 2005. Structure and freezing of MgSiO 3 liquid in the Earth's lower mantle, Science, 310, 297 – 299.en_US
dc.identifier.citedreferenceStixrude, L. & Lithgow-Bertelloni, C., 2005. Thermodynamics of mantle minerals — I. Physical properties., Geophys. J. Int., 162, 610 – 632.en_US
dc.identifier.citedreferenceStolper, E.M., Walker, D., Hager, B.H. & Hays, J.F., 1981. Melt segregation from partially molten source regions—the importance of melt density and source region size, J. geophys. Res., 86, 6261 – 6271.en_US
dc.identifier.citedreferenceStrachan, A., Çaǧin, T. & Goddard III, W.A., 2001. Reply to comment on ‘phase diagram of MgO from density-functional theory and molecular-dynamics simulations’, Phys. Rev. B, 63, doi :.en_US
dc.identifier.citedreferenceSun, N., 2008. Magma in earth's lower mantle: first principle molecular dynamics simulations of silicate liquids, PhD thesis, University of Michigan.en_US
dc.identifier.citedreferenceSuzuki, A. & Ohtani, E., 2003. Density of peridotite melts at high pressure, Phys. Chem. Miner., 30, 449 – 456.en_US
dc.identifier.citedreferenceSvendsen, B. & Ahrens, T.J., 1987. Shock-induced temperatures of MgO, Geophys. J. R. astr. Soc., 91, 667 – 691.en_US
dc.identifier.citedreferenceSweeney, J.S. & Heinz, D.L., 1998. Laser-heating through a diamond-anvil cell: melting at high pressures, in Properties of Earth and Planetary Materials at High Pressure and Temperature, Geophysical Monograph, Vol. 101, pp. 197 – 213, eds Manghnani, M.H. & Yagi, T., American Geophysical Union, Washington, DC.en_US
dc.identifier.citedreferenceTangeman, J.A., Phillips, B.L., Navrotsky, A., Weber, J.K.R., Hixson, A.D. & Key, T.S., 2001. Vitreous forsterite (Mg 2 SiO 4 ): synthesis, structure, and thermochemistry, Geophys. Res. Lett., 28, 2517 – 2520.en_US
dc.identifier.citedreferenceTomlinson, J.W., Heynes, M.S.R. & Bockris, J.O., 1958. The structure of liquid silicates. Part 2. Molar volumes and expansivities, Trans. Faraday Soc., 54, 1822 – 1833.en_US
dc.identifier.citedreferenceTouloukian, Y.S., Kirby, R.K., Taylor, E.R. & Lee, T.Y.R., 1977. Thermophysical Properties of Matter—The TPRC Data Series, Vol. 13: Thermal Expansion—Nonmetallic Solids., IFI/Plenum, New York.en_US
dc.identifier.citedreferenceTrave, A., Tangney, P., Scandolo, S., Pasquarello, A. & Car, R., 2002. Pressure-induced structural changes in liquid SiO 2 from ab initio simulations, Phys. Rev. Lett., 89 ( 24 ), 245504.en_US
dc.identifier.citedreferenceTsuchiya, T., Tsuchiya, J., Umemoto, K. & Wentzcovitch, R.M., 2004. Phase transition in MgSiO 3 in Earth's lower mantle, Earth planet. Sci. Lett., 224, 241 – 248.en_US
dc.identifier.citedreferencevan der Waals, J.D., 1873. Over de Continuiteit van den Gas- en Vloeistoftoestand, A.W. Sijthoff, Leiden.en_US
dc.identifier.citedreferenceVassiliou, M.S. & Ahrens, T.J., 1981. Hugoniot equation of state of periclase to 200 GPa, Geophys. Res. Lett., 8 ( 7 ), 729 – 732.en_US
dc.identifier.citedreferenceVočadlo, L. & Price, G.D., 1996. The melting of MgO - computer calculations via molecular dynamics, Phys. Chem. Miner., 23, 42 – 49.en_US
dc.identifier.citedreferenceWan, J.T.K., Duffy, T.S., Scandolo, S. & Car, R., 2007. First-principles study of density, viscosity, and diffusion coefficients of liquid MgSiO 3 at conditions of the Earth's deep mantle, J. geophys. Res., 112, B03208.en_US
dc.identifier.citedreferenceWatt, J.P., Davies, G.F. & O'Connel, R.J., 1976. The elastic properties of composite materials, Rev. Geophyis. Space Phys., 14 ( 4 ), 541 – 563.en_US
dc.identifier.citedreferenceWigner, E., 1932. On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40, 749 – 759.en_US
dc.identifier.citedreferenceWilliams, Q. & Garnero, E.J., 1996. Seismic evidence for partial melt at the base of Earth's mantle, Science, 273, 1528 – 1530.en_US
dc.identifier.citedreferenceWilliams, Q. & Jeanloz, R., 1988. Spectroscopic evidence for pressure-induced coordination changes in silicate glasses and melts, Science, 239, 902 – 905.en_US
dc.identifier.citedreferenceWolf, G.H. & Jeanloz, R., 1984. Lindemann melting law - anharmonic correction and test of its validity for minerals, J. geophys. Res., 89, 7821 – 7835.en_US
dc.identifier.citedreferenceYoung, D.A. & Corey, E.M., 1995. A new global equation of state model for hot, dense matter, J. Appl. Phys., 78 ( 6 ), 3748 – 3755.en_US
dc.identifier.citedreferenceZerr, A. & Boehler, R., 1993. Melting of (Mg,Fe)SiO 3 -perovskite to 625 Kilobars: Indication of a high melting temperature in the lower mantle, Science, 262, 553 – 555.en_US
dc.identifier.citedreferenceZerr, A. & Boehler, R., 1994. Constraints on the melting temperature of the lower mantle from high-pressure experiments on MgO and magnesiowÜstite, Nature, 371, 506 – 508.en_US
dc.identifier.citedreferenceZhang, L. & Fei, Y., 2008. Melting behaviour of (Mg,Fe)O solid solutions at high pressure, Geophys. Res. Lett., 35, doi :.en_US
dc.identifier.citedreferenceZhang, J., Liebermann, R.C., Gasparik, T. & Herzberg, C.T., 1993. Melting and subsolidus relations of SiO 2 at 9 − 14 GPa, J. geophys. Res., 98 ( B11 ), 19 785 – 19 793.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.