Single amino acid substitutions in either YhjD or MsbA confer viability to 3-deoxy-d- manno -oct-2-ulosonic acid-depleted Escherichia coli
dc.contributor.author | Mamat, Uwe | en_US |
dc.contributor.author | Meredith, Timothy C. | en_US |
dc.contributor.author | Aggarwal, Parag | en_US |
dc.contributor.author | Kühl, Annika | en_US |
dc.contributor.author | Kirchhoff, Paul | en_US |
dc.contributor.author | Lindner, Buko | en_US |
dc.contributor.author | Hanuszkiewicz, Anna | en_US |
dc.contributor.author | Sun, Jennifer | en_US |
dc.contributor.author | Holst, Otto | en_US |
dc.contributor.author | Woodard, Ronald W. | en_US |
dc.date.accessioned | 2010-06-01T22:06:10Z | |
dc.date.available | 2010-06-01T22:06:10Z | |
dc.date.issued | 2008-02 | en_US |
dc.identifier.citation | Mamat, Uwe; Meredith, Timothy C.; Aggarwal, Parag; KÜhl, Annika; Kirchhoff, Paul; Lindner, Buko; Hanuszkiewicz, Anna; Sun, Jennifer; Holst, Otto; Woodard, Ronald W. (2008). "Single amino acid substitutions in either YhjD or MsbA confer viability to 3-deoxy-d- manno -oct-2-ulosonic acid-depleted Escherichia coli ." Molecular Microbiology 67(3): 633-648. <http://hdl.handle.net/2027.42/75126> | en_US |
dc.identifier.issn | 0950-382X | en_US |
dc.identifier.issn | 1365-2958 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/75126 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18093093&dopt=citation | en_US |
dc.description.abstract | The Escherichia coli K-12 strain KPM22, defective in synthesis of 3-deoxy-d- manno -oct-2-ulosonic acid (Kdo), is viable with an outer membrane (OM) composed predominantly of lipid IV A , a precursor of lipopolysaccharide (LPS) biosynthesis that lacks any glycosylation. To sustain viability, the presence of a second-site suppressor was proposed for transport of lipid IV A from the inner membrane (IM), thus relieving toxic side-effects of lipid IV A accumulation and providing sufficient amounts of LPS precursors to support OM biogenesis. We now report the identification of an arginine to cysteine substitution at position 134 of the conserved IM protein YhjD in KPM22 that acts as a compensatory suppressor mutation of the lethal δKdo phenotype. Further, the yhjD400 suppressor allele renders the LPS transporter MsbA dispensable for lipid IV A transmembrane trafficking. The independent derivation of a series of non-conditional KPM22-like mutants from the Kdo-dependent parent strain TCM15 revealed a second class of suppressor mutations localized to MsbA. Proline to serine substitutions at either residue 18 or 50 of MsbA relieved the Kdo growth dependence observed in the isogenic wild-type strain. The possible impact of these suppressor mutations on structure and function are discussed by means of a computationally derived threading model of MsbA. | en_US |
dc.format.extent | 576744 bytes | |
dc.format.extent | 577900 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.rights | © 2007 The Authors; Journal compilation © 2007 Blackwell Publishing Ltd | en_US |
dc.title | Single amino acid substitutions in either YhjD or MsbA confer viability to 3-deoxy-d- manno -oct-2-ulosonic acid-depleted Escherichia coli | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Microbiology and Immunology | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. | en_US |
dc.contributor.affiliationother | Divisions of Structural Biochemistry and | en_US |
dc.contributor.affiliationother | Immunochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, D-23845 Borstel, Germany. | en_US |
dc.identifier.pmid | 18093093 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/75126/1/MMI_6074_sm_Figure_S1.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/75126/2/j.1365-2958.2007.06074.x.pdf | |
dc.identifier.doi | 10.1111/j.1365-2958.2007.06074.x | en_US |
dc.identifier.source | Molecular Microbiology | en_US |
dc.identifier.citedreference | Armandola, E.A., Momburg, F., Nijenhuis, M., Bulbuc, N., Fruh, K., and HÄmmerling, G.J. ( 1996 ) A point mutation in the human transporter associated with antigen processing (TAP2) alters the peptide transport specificity. Eur J Immunol 26: 1748 – 1755. | en_US |
dc.identifier.citedreference | Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., et al. ( 2006 ) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 1 – 11. | en_US |
dc.identifier.citedreference | Belunis, C.J., Clementz, T., Carty, S.M., and Raetz, C.R. ( 1995 ) Inhibition of lipopolysaccharide biosynthesis and cell growth following inactivation of the kdtA gene in Escherichia coli. J Biol Chem 270: 27646 – 27652. | en_US |
dc.identifier.citedreference | Bishop, R.E., Gibbons, H.S., Guina, T., Trent, M.S., Miller, S.I., and Raetz, C.R. ( 2000 ) Transfer of palmitate from phospholipids to lipid A in outer membranes of Gram-negative bacteria. EMBO J 19: 5071 – 5080. | en_US |
dc.identifier.citedreference | Borges-Walmsley, M.I., and Walmsley, A.R. ( 2001 ) The structure and function of drug pumps. Trends Microbiol 9: 71 – 79. | en_US |
dc.identifier.citedreference | Brozek, K.A., and Raetz, C.R. ( 1990 ) Biosynthesis of lipid A in Escherichia coli. Acyl carrier protein-dependent incorporation of laurate and myristate. J Biol Chem 265: 15410 – 15417. | en_US |
dc.identifier.citedreference | Burnett, W.V. ( 1997 ) Northern blotting of RNA denatured in glyoxal without buffer recirculation. Biotechniques 22: 668 – 671. | en_US |
dc.identifier.citedreference | Callahan, C., and Deutscher, M.P. ( 1996 ) Identification and characterization of the Escherichia coli rbn gene encoding the tRNA processing enzyme RNase BN. J Bacteriol 178: 7329 – 7332. | en_US |
dc.identifier.citedreference | Chang, G., Roth, C.B., Reyes, C.L., Pornillos, O., Chen, Y.J., and Chen, A.P. ( 2006 ) Retraction. Science 314: 1875. | en_US |
dc.identifier.citedreference | Cordes, F.S., Bright, J.N., and Sansom, M.S. ( 2002 ) Proline-induced distortions of transmembrane helices. J Mol Biol 323: 951 – 960. | en_US |
dc.identifier.citedreference | Daley, D.O., Rapp, M., Granseth, E., Melen, K., Drew, D., and von Heijne, G. ( 2005 ) Global topology analysis of the Escherichia coli inner membrane proteome. Science 308: 1321 – 1323. | en_US |
dc.identifier.citedreference | Datsenko, K.A., and Wanner, B.L. ( 2000 ) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640 – 6645. | en_US |
dc.identifier.citedreference | Dawson, R.J., and Locher, K.P. ( 2006 ) Structure of a bacterial multidrug ABC transporter. Nature 443: 180 – 185. | en_US |
dc.identifier.citedreference | Dawson, R.J., and Locher, K.P. ( 2007 ) Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581: 935 – 938. | en_US |
dc.identifier.citedreference | Dawson, R.J., Hollenstein, K., and Locher, K.P. ( 2007 ) Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism. Mol Microbiol 65: 250 – 257. | en_US |
dc.identifier.citedreference | Doerrler, W.T., and Raetz, C.R. ( 2002 ) ATPase activity of the MsbA lipid flippase of Escherichia coli. J Biol Chem 277: 36697 – 36705. | en_US |
dc.identifier.citedreference | Doerrler, W.T., Reedy, M.C., and Raetz, C.R. ( 2001 ) An Escherichia coli mutant defective in lipid export. J Biol Chem 276: 11461 – 11464. | en_US |
dc.identifier.citedreference | Doerrler, W.T., Gibbons, H.S., and Raetz, C.R. ( 2004 ) MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J Biol Chem 279: 45102 – 45109. | en_US |
dc.identifier.citedreference | Eidels, L., Rick, P.D., Stimler, N.P., and Osborn, M.J. ( 1974 ) Transport of d-arabinose-5-phosphate and d-sedoheptulose-7-phosphate by the hexose phosphate transport system of Salmonella typhimurium. J Bacteriol 119: 138 – 143. | en_US |
dc.identifier.citedreference | Ezraty, B., Dahlgren, B., and Deutscher, M.P. ( 2005 ) The RNase Z homologue encoded by Escherichia coli elaC gene is RNase BN. J Biol Chem 280: 16542 – 16545. | en_US |
dc.identifier.citedreference | Federici, L., Woebking, B., Velamakanni, S., Shilling, R.A., Luisi, B., and van Veen, H.W. ( 2007 ) New structure model for the ATP-binding cassette multidrug transporter LmrA. Biochem Pharmacol 74: 672 – 678. | en_US |
dc.identifier.citedreference | Galanos, C., LÜderitz, O., and Westphal, O. ( 1969 ) A new method for the extraction of R lipopolysaccharides. Eur J Biochem 9: 245 – 249. | en_US |
dc.identifier.citedreference | Garrett, T.A., Que, N.L., and Raetz, C.R. ( 1998 ) Accumulation of a lipid A precursor lacking the 4′-phosphate following inactivation of the Escherichia coli lpxK gene. J Biol Chem 273: 12457 – 12465. | en_US |
dc.identifier.citedreference | Gibbons, H.S., Kalb, S.R., Cotter, R.J., and Raetz, C.R. ( 2005 ) Role of Mg 2+ and pH in the modification of Salmonella lipid A after endocytosis by macrophage tumour cells. Mol Microbiol 55: 425 – 440. | en_US |
dc.identifier.citedreference | Goldman, R., Kohlbrenner, W., Lartey, P., and Pernet, A. ( 1987 ) Antibacterial agents specifically inhibiting lipopolysaccharide synthesis. Nature 329: 162 – 164. | en_US |
dc.identifier.citedreference | Goldman, R.C., Doran, C.C., and Capobianco, J.O. ( 1988 ) Analysis of lipopolysaccharide biosynthesis in Salmonella typhimurium and Escherichia coli by using agents which specifically block incorporation of 3-deoxy-d- manno -octulosonate. J Bacteriol 170: 2185 – 2191. | en_US |
dc.identifier.citedreference | Gronow, S., and Brade, H. ( 2001 ) Lipopolysaccharide biosynthesis: which steps do bacteria need to survive? J Endotoxin Res 7: 3 – 23. | en_US |
dc.identifier.citedreference | Higgins, C.F., and Linton, K.J. ( 2004 ) The ATP switch model for ABC transporters. Nat Struct Mol Biol 11: 918 – 926. | en_US |
dc.identifier.citedreference | Hollenstein, K., Dawson, R.J., and Locher, K.P. ( 2007 ) Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 17: 412 – 418. | en_US |
dc.identifier.citedreference | Holst, O. ( 2007 ) The structures of core regions from enterobacterial lipopolysaccharides – an update. FEMS Microbiol Lett 271: 3 – 11. | en_US |
dc.identifier.citedreference | Jia, W., El Zoeiby, A., Petruzziello, T.N., Jayabalasingham, B., Seyedirashti, S., and Bishop, R.E. ( 2004 ) Lipid trafficking controls endotoxin acylation in outer membranes of Escherichia coli. J Biol Chem 279: 44966 – 44975. | en_US |
dc.identifier.citedreference | Karow, M., and Georgopoulos, C. ( 1993 ) The essential Escherichia coli msbA gene, a multicopy suppressor of null mutations in the htrB gene, is related to the universally conserved family of ATP-dependent translocators. Mol Microbiol 7: 69 – 79. | en_US |
dc.identifier.citedreference | Kleckner, N., Bender, J., and Gottesman, S. ( 1991 ) Uses of transposons with emphasis on Tn 10. Methods Enzymol 204: 139 – 180. | en_US |
dc.identifier.citedreference | Kol, M.A., de Kroon, A.I., Killian, J.A., and de Kruijff, B. ( 2004 ) Transbilayer movement of phospholipids in biogenic membranes. Biochemistry 43: 2673 – 2681. | en_US |
dc.identifier.citedreference | Kol, M.A., van Dalen, A., de Kroon, A.I., and de Kruijff, B. ( 2003 ) Translocation of phospholipids is facilitated by a subset of membrane-spanning proteins of the bacterial cytoplasmic membrane. J Biol Chem 278: 24586 – 24593. | en_US |
dc.identifier.citedreference | Kondakova, A., and Lindner, B. ( 2005 ) Structural characterization of complex bacterial glycolipids by Fourier transform mass spectrometry. Eur J Mass Spectrom 11: 535 – 546. | en_US |
dc.identifier.citedreference | Mamat, U., Seydel, U., Grimmecke, D., Holst, O., and Rietschel, E.Th. ( 1999 ) Lipopolysaccharides. In Comprehensive Natural Products Chemistry. Barton, D., Nakanishi, K., and Pinto, B.M. (eds). Oxford: Elsevier Science, pp. 179 – 239. | en_US |
dc.identifier.citedreference | Meredith, T.C., and Woodard, R.W. ( 2005 ) Identification of GutQ from Escherichia coli as a d-arabinose 5-phosphate isomerase. J Bacteriol 187: 6936 – 6942. | en_US |
dc.identifier.citedreference | Meredith, T.C., Aggarwal, P., Mamat, U., Lindner, B., and Woodard, R.W. ( 2006 ) Redefining the requisite lipopolysaccharide structure in Escherichia coli. ACS Chem Biol 1: 33 – 42. | en_US |
dc.identifier.citedreference | Meredith, T.C., Mamat, U., Kaczynski, Z., Lindner, B., Holst, O., and Woodard, R.W. ( 2007 ) Modification of lipopolysaccharide with colanic acid (M-antigen) repeats in Escherichia coli. J Biol Chem 282: 7790 – 7798. | en_US |
dc.identifier.citedreference | Miller, J.H. ( 1992 ) A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. | en_US |
dc.identifier.citedreference | Mohri, Y., Goto, S., Nakahigashi, K., and Inokuchi, H. ( 2003 ) complements temperature sensitivity caused by null mutations in the htrB gene in Escherichia coli. J Bacteriol 185: 1726 – 1729. | en_US |
dc.identifier.citedreference | Muda, M., Worby, C.A., Simonson-Leff, N., Clemens, J.C., and Dixon, J.E. ( 2002 ) Use of double-stranded RNA-mediated interference to determine the substrates of protein tyrosine kinases and phosphatases. Biochem J 366: 73 – 77. | en_US |
dc.identifier.citedreference | Nishijima, M., and Raetz, C.R. ( 1981 ) Characterization of two membrane-associated glycolipids from an Escherichia coli mutant deficient in phosphatidylglycerol. J Biol Chem 256: 10690 – 10696. | en_US |
dc.identifier.citedreference | Nummila, K., Kilpelainen, I., ZÄhringer, U., Vaara, M., and Helander, I.M. ( 1995 ) Lipopolysaccharides of polymyxin B-resistant mutants of Escherichia coli are extensively substituted by 2-aminoethyl pyrophosphate and contain aminoarabinose in lipid A. Mol Microbiol 16: 271 – 278. | en_US |
dc.identifier.citedreference | Osborn, M.J., Rick, P.D., and Rasmussen, N.S. ( 1980 ) Mechanism of assembly of the outer membrane of Salmonella typhimurium. Translocation and integration of an incomplete mutant lipid A into the outer membrane. J Biol Chem 255: 4246 – 4251. | en_US |
dc.identifier.citedreference | Ozvegy, C., Varadi, A., and Sarkadi, B. ( 2002 ) Characterization of drug transport, ATP hydrolysis, and nucleotide trapping by the human ABCG2 multidrug transporter. Modulation of substrate specificity by a point mutation. J Biol Chem 277: 47980 – 47990. | en_US |
dc.identifier.citedreference | Pao, S.S., Paulsen, I.T., and Saier, M.H., Jr ( 1998 ) Major facilitator superfamily. Microbiol Mol Biol Rev 62: 1 – 34. | en_US |
dc.identifier.citedreference | Polissi, A., and Georgopoulos, C. ( 1996 ) Mutational analysis and properties of the msbA gene of Escherichia coli, coding for an essential ABC family transporter. Mol Microbiol 20: 1221 – 1233. | en_US |
dc.identifier.citedreference | Ponder, J.W., and Case, D.A. ( 2003 ) Force fields for protein simulations. Adv Protein Chem 66: 27 – 85. | en_US |
dc.identifier.citedreference | Raetz, C.R., and Whitfield, C. ( 2002 ) Lipopolysaccharide endotoxins. Annu Rev Biochem 71: 635 – 700. | en_US |
dc.identifier.citedreference | Raetz, C.R., Purcell, S., Meyer, M.V., Qureshi, N., and Takayama, K. ( 1985 ) Isolation and characterization of eight lipid A precursors from a 3-deoxy-d- manno -octulosonic acid-deficient mutant of Salmonella typhimurium. J Biol Chem 260: 16080 – 16088. | en_US |
dc.identifier.citedreference | Raetz, C.R., Reynolds, C.M., Trent, M.S., and Bishop, R.E. ( 2007 ) Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem 76: 295 – 329. | en_US |
dc.identifier.citedreference | Rick, P.D., and Osborn, M.J. ( 1977 ) Lipid A mutants of Salmonella typhimurium. Characterization of a conditional lethal mutant in 3-deoxy-d- manno -octulosonate-8-phosphate synthetase. J Biol Chem 252: 4895 – 4903. | en_US |
dc.identifier.citedreference | Rick, P.D., and Young, D.A. ( 1982 ) Isolation and characterization of a temperature-sensitive lethal mutant of Salmonella typhimurium that is conditionally defective in 3-deoxy-d- manno -octulosonate-8-phosphate synthesis. J Bacteriol 150: 447 – 455. | en_US |
dc.identifier.citedreference | Sambrook, J., and Russell, D.W. ( 2001 ) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. | en_US |
dc.identifier.citedreference | Strain, S.M., Armitage, I.M., Anderson, L., Takayama, K., Qureshi, N., and Raetz, C.R. ( 1985 ) Location of polar substituents and fatty acyl chains on lipid A precursors from a 3-deoxy-d- manno -octulosonic acid-deficient mutant of Salmonella typhimurium. Studies by 1 H, 13 C, and 31 P nuclear magnetic resonance. J Biol Chem 260: 16089 – 16098. | en_US |
dc.identifier.citedreference | Tefsen, B., Bos, M.P., Beckers, F., Tommassen, J., and de Cock, H. ( 2005 ) MsbA is not required for phospholipid transport in Neisseria meningitidis. J Biol Chem 280: 35961 – 35966. | en_US |
dc.identifier.citedreference | van Veen, H.W., Venema, K., Bolhuis, H., Oussenko, I., Kok, J., Poolman, B., et al. ( 1996 ) Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc Natl Acad Sci USA 93: 10668 – 10672. | en_US |
dc.identifier.citedreference | Wu, T., McCandlish, A.C., Gronenberg, L.S., Chng, S.S., Silhavy, T.J., and Kahne, D. ( 2006 ) Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proc Natl Acad Sci USA 103: 11754 – 11759. | en_US |
dc.identifier.citedreference | Yu, D., Ellis, H.M., Lee, E.C., Jenkins, N.A., Copeland, N.G., and Court, D.L. ( 2000 ) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97: 5978 – 5983. | en_US |
dc.identifier.citedreference | Zhou, Z., White, K.A., Polissi, A., Georgopoulos, C., and Raetz, C.R. ( 1998 ) Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J Biol Chem 273: 12466 – 12475. | en_US |
dc.identifier.citedreference | Zhou, Z., Lin, S., Cotter, R.J., and Raetz, C.R. ( 1999 ) Lipid A modifications characteristic of Salmonella typhimurium are induced by NH 4 VO 3 in Escherichia coli K12. Detection of 4-amino-4-deoxy-l-arabinose, phosphoethanolamine and palmitate. J Biol Chem 274: 18503 – 18514. | en_US |
dc.identifier.citedreference | Zhou, Z., Ribeiro, A.A., Lin, S., Cotter, R.J., Miller, S.I., and Raetz, C.R. ( 2001 ) Lipid A modifications in polymyxin-resistant Salmonella typhimurium: PmrA-dependent 4-amino-4-deoxy-l-arabinose, and phosphoethanolamine incorporation. J Biol Chem 276: 43111 – 43121. | en_US |
dc.identifier.citedreference | Zhou, Z., Ribeiro, A.A., and Raetz, C.R. ( 2000 ) High-resolution NMR spectroscopy of lipid A molecules containing 4-amino-4-deoxy-l-arabinose and phosphoethanolamine substituents. Different attachment sites on lipid A molecules from NH 4 VO 3 -treated Escherichia coli versus kdsA mutants of Salmonella typhimurium. J Biol Chem 275: 13542 – 13551. | en_US |
dc.identifier.citedreference | Zimmermann, K., and Mannhalter, J.W. ( 1996 ) Technical aspects of quantitative competitive PCR. Biotechniques 21: 268 – 269. | en_US |
dc.identifier.citedreference | Zuo, Y., and Deutscher, M.P. ( 2001 ) Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 29: 1017 – 1026. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.