Show simple item record

Single amino acid substitutions in either YhjD or MsbA confer viability to 3-deoxy-d- manno -oct-2-ulosonic acid-depleted Escherichia coli

dc.contributor.authorMamat, Uween_US
dc.contributor.authorMeredith, Timothy C.en_US
dc.contributor.authorAggarwal, Paragen_US
dc.contributor.authorKühl, Annikaen_US
dc.contributor.authorKirchhoff, Paulen_US
dc.contributor.authorLindner, Bukoen_US
dc.contributor.authorHanuszkiewicz, Annaen_US
dc.contributor.authorSun, Jenniferen_US
dc.contributor.authorHolst, Ottoen_US
dc.contributor.authorWoodard, Ronald W.en_US
dc.date.accessioned2010-06-01T22:06:10Z
dc.date.available2010-06-01T22:06:10Z
dc.date.issued2008-02en_US
dc.identifier.citationMamat, Uwe; Meredith, Timothy C.; Aggarwal, Parag; KÜhl, Annika; Kirchhoff, Paul; Lindner, Buko; Hanuszkiewicz, Anna; Sun, Jennifer; Holst, Otto; Woodard, Ronald W. (2008). "Single amino acid substitutions in either YhjD or MsbA confer viability to 3-deoxy-d- manno -oct-2-ulosonic acid-depleted Escherichia coli ." Molecular Microbiology 67(3): 633-648. <http://hdl.handle.net/2027.42/75126>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75126
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18093093&dopt=citationen_US
dc.description.abstractThe Escherichia coli K-12 strain KPM22, defective in synthesis of 3-deoxy-d- manno -oct-2-ulosonic acid (Kdo), is viable with an outer membrane (OM) composed predominantly of lipid IV A , a precursor of lipopolysaccharide (LPS) biosynthesis that lacks any glycosylation. To sustain viability, the presence of a second-site suppressor was proposed for transport of lipid IV A from the inner membrane (IM), thus relieving toxic side-effects of lipid IV A accumulation and providing sufficient amounts of LPS precursors to support OM biogenesis. We now report the identification of an arginine to cysteine substitution at position 134 of the conserved IM protein YhjD in KPM22 that acts as a compensatory suppressor mutation of the lethal δKdo phenotype. Further, the yhjD400 suppressor allele renders the LPS transporter MsbA dispensable for lipid IV A transmembrane trafficking. The independent derivation of a series of non-conditional KPM22-like mutants from the Kdo-dependent parent strain TCM15 revealed a second class of suppressor mutations localized to MsbA. Proline to serine substitutions at either residue 18 or 50 of MsbA relieved the Kdo growth dependence observed in the isogenic wild-type strain. The possible impact of these suppressor mutations on structure and function are discussed by means of a computationally derived threading model of MsbA.en_US
dc.format.extent576744 bytes
dc.format.extent577900 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2007 The Authors; Journal compilation © 2007 Blackwell Publishing Ltden_US
dc.titleSingle amino acid substitutions in either YhjD or MsbA confer viability to 3-deoxy-d- manno -oct-2-ulosonic acid-depleted Escherichia colien_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.en_US
dc.contributor.affiliationotherDivisions of Structural Biochemistry anden_US
dc.contributor.affiliationotherImmunochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, D-23845 Borstel, Germany.en_US
dc.identifier.pmid18093093en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75126/1/MMI_6074_sm_Figure_S1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75126/2/j.1365-2958.2007.06074.x.pdf
dc.identifier.doi10.1111/j.1365-2958.2007.06074.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceArmandola, E.A., Momburg, F., Nijenhuis, M., Bulbuc, N., Fruh, K., and HÄmmerling, G.J. ( 1996 ) A point mutation in the human transporter associated with antigen processing (TAP2) alters the peptide transport specificity. Eur J Immunol 26: 1748 – 1755.en_US
dc.identifier.citedreferenceBaba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., et al. ( 2006 ) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 1 – 11.en_US
dc.identifier.citedreferenceBelunis, C.J., Clementz, T., Carty, S.M., and Raetz, C.R. ( 1995 ) Inhibition of lipopolysaccharide biosynthesis and cell growth following inactivation of the kdtA gene in Escherichia coli. J Biol Chem 270: 27646 – 27652.en_US
dc.identifier.citedreferenceBishop, R.E., Gibbons, H.S., Guina, T., Trent, M.S., Miller, S.I., and Raetz, C.R. ( 2000 ) Transfer of palmitate from phospholipids to lipid A in outer membranes of Gram-negative bacteria. EMBO J 19: 5071 – 5080.en_US
dc.identifier.citedreferenceBorges-Walmsley, M.I., and Walmsley, A.R. ( 2001 ) The structure and function of drug pumps. Trends Microbiol 9: 71 – 79.en_US
dc.identifier.citedreferenceBrozek, K.A., and Raetz, C.R. ( 1990 ) Biosynthesis of lipid A in Escherichia coli. Acyl carrier protein-dependent incorporation of laurate and myristate. J Biol Chem 265: 15410 – 15417.en_US
dc.identifier.citedreferenceBurnett, W.V. ( 1997 ) Northern blotting of RNA denatured in glyoxal without buffer recirculation. Biotechniques 22: 668 – 671.en_US
dc.identifier.citedreferenceCallahan, C., and Deutscher, M.P. ( 1996 ) Identification and characterization of the Escherichia coli rbn gene encoding the tRNA processing enzyme RNase BN. J Bacteriol 178: 7329 – 7332.en_US
dc.identifier.citedreferenceChang, G., Roth, C.B., Reyes, C.L., Pornillos, O., Chen, Y.J., and Chen, A.P. ( 2006 ) Retraction. Science 314: 1875.en_US
dc.identifier.citedreferenceCordes, F.S., Bright, J.N., and Sansom, M.S. ( 2002 ) Proline-induced distortions of transmembrane helices. J Mol Biol 323: 951 – 960.en_US
dc.identifier.citedreferenceDaley, D.O., Rapp, M., Granseth, E., Melen, K., Drew, D., and von Heijne, G. ( 2005 ) Global topology analysis of the Escherichia coli inner membrane proteome. Science 308: 1321 – 1323.en_US
dc.identifier.citedreferenceDatsenko, K.A., and Wanner, B.L. ( 2000 ) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640 – 6645.en_US
dc.identifier.citedreferenceDawson, R.J., and Locher, K.P. ( 2006 ) Structure of a bacterial multidrug ABC transporter. Nature 443: 180 – 185.en_US
dc.identifier.citedreferenceDawson, R.J., and Locher, K.P. ( 2007 ) Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581: 935 – 938.en_US
dc.identifier.citedreferenceDawson, R.J., Hollenstein, K., and Locher, K.P. ( 2007 ) Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism. Mol Microbiol 65: 250 – 257.en_US
dc.identifier.citedreferenceDoerrler, W.T., and Raetz, C.R. ( 2002 ) ATPase activity of the MsbA lipid flippase of Escherichia coli. J Biol Chem 277: 36697 – 36705.en_US
dc.identifier.citedreferenceDoerrler, W.T., Reedy, M.C., and Raetz, C.R. ( 2001 ) An Escherichia coli mutant defective in lipid export. J Biol Chem 276: 11461 – 11464.en_US
dc.identifier.citedreferenceDoerrler, W.T., Gibbons, H.S., and Raetz, C.R. ( 2004 ) MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J Biol Chem 279: 45102 – 45109.en_US
dc.identifier.citedreferenceEidels, L., Rick, P.D., Stimler, N.P., and Osborn, M.J. ( 1974 ) Transport of d-arabinose-5-phosphate and d-sedoheptulose-7-phosphate by the hexose phosphate transport system of Salmonella typhimurium. J Bacteriol 119: 138 – 143.en_US
dc.identifier.citedreferenceEzraty, B., Dahlgren, B., and Deutscher, M.P. ( 2005 ) The RNase Z homologue encoded by Escherichia coli elaC gene is RNase BN. J Biol Chem 280: 16542 – 16545.en_US
dc.identifier.citedreferenceFederici, L., Woebking, B., Velamakanni, S., Shilling, R.A., Luisi, B., and van Veen, H.W. ( 2007 ) New structure model for the ATP-binding cassette multidrug transporter LmrA. Biochem Pharmacol 74: 672 – 678.en_US
dc.identifier.citedreferenceGalanos, C., LÜderitz, O., and Westphal, O. ( 1969 ) A new method for the extraction of R lipopolysaccharides. Eur J Biochem 9: 245 – 249.en_US
dc.identifier.citedreferenceGarrett, T.A., Que, N.L., and Raetz, C.R. ( 1998 ) Accumulation of a lipid A precursor lacking the 4′-phosphate following inactivation of the Escherichia coli lpxK gene. J Biol Chem 273: 12457 – 12465.en_US
dc.identifier.citedreferenceGibbons, H.S., Kalb, S.R., Cotter, R.J., and Raetz, C.R. ( 2005 ) Role of Mg 2+ and pH in the modification of Salmonella lipid A after endocytosis by macrophage tumour cells. Mol Microbiol 55: 425 – 440.en_US
dc.identifier.citedreferenceGoldman, R., Kohlbrenner, W., Lartey, P., and Pernet, A. ( 1987 ) Antibacterial agents specifically inhibiting lipopolysaccharide synthesis. Nature 329: 162 – 164.en_US
dc.identifier.citedreferenceGoldman, R.C., Doran, C.C., and Capobianco, J.O. ( 1988 ) Analysis of lipopolysaccharide biosynthesis in Salmonella typhimurium and Escherichia coli by using agents which specifically block incorporation of 3-deoxy-d- manno -octulosonate. J Bacteriol 170: 2185 – 2191.en_US
dc.identifier.citedreferenceGronow, S., and Brade, H. ( 2001 ) Lipopolysaccharide biosynthesis: which steps do bacteria need to survive? J Endotoxin Res 7: 3 – 23.en_US
dc.identifier.citedreferenceHiggins, C.F., and Linton, K.J. ( 2004 ) The ATP switch model for ABC transporters. Nat Struct Mol Biol 11: 918 – 926.en_US
dc.identifier.citedreferenceHollenstein, K., Dawson, R.J., and Locher, K.P. ( 2007 ) Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 17: 412 – 418.en_US
dc.identifier.citedreferenceHolst, O. ( 2007 ) The structures of core regions from enterobacterial lipopolysaccharides – an update. FEMS Microbiol Lett 271: 3 – 11.en_US
dc.identifier.citedreferenceJia, W., El Zoeiby, A., Petruzziello, T.N., Jayabalasingham, B., Seyedirashti, S., and Bishop, R.E. ( 2004 ) Lipid trafficking controls endotoxin acylation in outer membranes of Escherichia coli. J Biol Chem 279: 44966 – 44975.en_US
dc.identifier.citedreferenceKarow, M., and Georgopoulos, C. ( 1993 ) The essential Escherichia coli msbA gene, a multicopy suppressor of null mutations in the htrB gene, is related to the universally conserved family of ATP-dependent translocators. Mol Microbiol 7: 69 – 79.en_US
dc.identifier.citedreferenceKleckner, N., Bender, J., and Gottesman, S. ( 1991 ) Uses of transposons with emphasis on Tn 10. Methods Enzymol 204: 139 – 180.en_US
dc.identifier.citedreferenceKol, M.A., de Kroon, A.I., Killian, J.A., and de Kruijff, B. ( 2004 ) Transbilayer movement of phospholipids in biogenic membranes. Biochemistry 43: 2673 – 2681.en_US
dc.identifier.citedreferenceKol, M.A., van Dalen, A., de Kroon, A.I., and de Kruijff, B. ( 2003 ) Translocation of phospholipids is facilitated by a subset of membrane-spanning proteins of the bacterial cytoplasmic membrane. J Biol Chem 278: 24586 – 24593.en_US
dc.identifier.citedreferenceKondakova, A., and Lindner, B. ( 2005 ) Structural characterization of complex bacterial glycolipids by Fourier transform mass spectrometry. Eur J Mass Spectrom 11: 535 – 546.en_US
dc.identifier.citedreferenceMamat, U., Seydel, U., Grimmecke, D., Holst, O., and Rietschel, E.Th. ( 1999 ) Lipopolysaccharides. In Comprehensive Natural Products Chemistry. Barton, D., Nakanishi, K., and Pinto, B.M. (eds). Oxford: Elsevier Science, pp. 179 – 239.en_US
dc.identifier.citedreferenceMeredith, T.C., and Woodard, R.W. ( 2005 ) Identification of GutQ from Escherichia coli as a d-arabinose 5-phosphate isomerase. J Bacteriol 187: 6936 – 6942.en_US
dc.identifier.citedreferenceMeredith, T.C., Aggarwal, P., Mamat, U., Lindner, B., and Woodard, R.W. ( 2006 ) Redefining the requisite lipopolysaccharide structure in Escherichia coli. ACS Chem Biol 1: 33 – 42.en_US
dc.identifier.citedreferenceMeredith, T.C., Mamat, U., Kaczynski, Z., Lindner, B., Holst, O., and Woodard, R.W. ( 2007 ) Modification of lipopolysaccharide with colanic acid (M-antigen) repeats in Escherichia coli. J Biol Chem 282: 7790 – 7798.en_US
dc.identifier.citedreferenceMiller, J.H. ( 1992 ) A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.en_US
dc.identifier.citedreferenceMohri, Y., Goto, S., Nakahigashi, K., and Inokuchi, H. ( 2003 ) complements temperature sensitivity caused by null mutations in the htrB gene in Escherichia coli. J Bacteriol 185: 1726 – 1729.en_US
dc.identifier.citedreferenceMuda, M., Worby, C.A., Simonson-Leff, N., Clemens, J.C., and Dixon, J.E. ( 2002 ) Use of double-stranded RNA-mediated interference to determine the substrates of protein tyrosine kinases and phosphatases. Biochem J 366: 73 – 77.en_US
dc.identifier.citedreferenceNishijima, M., and Raetz, C.R. ( 1981 ) Characterization of two membrane-associated glycolipids from an Escherichia coli mutant deficient in phosphatidylglycerol. J Biol Chem 256: 10690 – 10696.en_US
dc.identifier.citedreferenceNummila, K., Kilpelainen, I., ZÄhringer, U., Vaara, M., and Helander, I.M. ( 1995 ) Lipopolysaccharides of polymyxin B-resistant mutants of Escherichia coli are extensively substituted by 2-aminoethyl pyrophosphate and contain aminoarabinose in lipid A. Mol Microbiol 16: 271 – 278.en_US
dc.identifier.citedreferenceOsborn, M.J., Rick, P.D., and Rasmussen, N.S. ( 1980 ) Mechanism of assembly of the outer membrane of Salmonella typhimurium. Translocation and integration of an incomplete mutant lipid A into the outer membrane. J Biol Chem 255: 4246 – 4251.en_US
dc.identifier.citedreferenceOzvegy, C., Varadi, A., and Sarkadi, B. ( 2002 ) Characterization of drug transport, ATP hydrolysis, and nucleotide trapping by the human ABCG2 multidrug transporter. Modulation of substrate specificity by a point mutation. J Biol Chem 277: 47980 – 47990.en_US
dc.identifier.citedreferencePao, S.S., Paulsen, I.T., and Saier, M.H., Jr ( 1998 ) Major facilitator superfamily. Microbiol Mol Biol Rev 62: 1 – 34.en_US
dc.identifier.citedreferencePolissi, A., and Georgopoulos, C. ( 1996 ) Mutational analysis and properties of the msbA gene of Escherichia coli, coding for an essential ABC family transporter. Mol Microbiol 20: 1221 – 1233.en_US
dc.identifier.citedreferencePonder, J.W., and Case, D.A. ( 2003 ) Force fields for protein simulations. Adv Protein Chem 66: 27 – 85.en_US
dc.identifier.citedreferenceRaetz, C.R., and Whitfield, C. ( 2002 ) Lipopolysaccharide endotoxins. Annu Rev Biochem 71: 635 – 700.en_US
dc.identifier.citedreferenceRaetz, C.R., Purcell, S., Meyer, M.V., Qureshi, N., and Takayama, K. ( 1985 ) Isolation and characterization of eight lipid A precursors from a 3-deoxy-d- manno -octulosonic acid-deficient mutant of Salmonella typhimurium. J Biol Chem 260: 16080 – 16088.en_US
dc.identifier.citedreferenceRaetz, C.R., Reynolds, C.M., Trent, M.S., and Bishop, R.E. ( 2007 ) Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem 76: 295 – 329.en_US
dc.identifier.citedreferenceRick, P.D., and Osborn, M.J. ( 1977 ) Lipid A mutants of Salmonella typhimurium. Characterization of a conditional lethal mutant in 3-deoxy-d- manno -octulosonate-8-phosphate synthetase. J Biol Chem 252: 4895 – 4903.en_US
dc.identifier.citedreferenceRick, P.D., and Young, D.A. ( 1982 ) Isolation and characterization of a temperature-sensitive lethal mutant of Salmonella typhimurium that is conditionally defective in 3-deoxy-d- manno -octulosonate-8-phosphate synthesis. J Bacteriol 150: 447 – 455.en_US
dc.identifier.citedreferenceSambrook, J., and Russell, D.W. ( 2001 ) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.en_US
dc.identifier.citedreferenceStrain, S.M., Armitage, I.M., Anderson, L., Takayama, K., Qureshi, N., and Raetz, C.R. ( 1985 ) Location of polar substituents and fatty acyl chains on lipid A precursors from a 3-deoxy-d- manno -octulosonic acid-deficient mutant of Salmonella typhimurium. Studies by 1 H, 13 C, and 31 P nuclear magnetic resonance. J Biol Chem 260: 16089 – 16098.en_US
dc.identifier.citedreferenceTefsen, B., Bos, M.P., Beckers, F., Tommassen, J., and de Cock, H. ( 2005 ) MsbA is not required for phospholipid transport in Neisseria meningitidis. J Biol Chem 280: 35961 – 35966.en_US
dc.identifier.citedreferencevan Veen, H.W., Venema, K., Bolhuis, H., Oussenko, I., Kok, J., Poolman, B., et al. ( 1996 ) Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc Natl Acad Sci USA 93: 10668 – 10672.en_US
dc.identifier.citedreferenceWu, T., McCandlish, A.C., Gronenberg, L.S., Chng, S.S., Silhavy, T.J., and Kahne, D. ( 2006 ) Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proc Natl Acad Sci USA 103: 11754 – 11759.en_US
dc.identifier.citedreferenceYu, D., Ellis, H.M., Lee, E.C., Jenkins, N.A., Copeland, N.G., and Court, D.L. ( 2000 ) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97: 5978 – 5983.en_US
dc.identifier.citedreferenceZhou, Z., White, K.A., Polissi, A., Georgopoulos, C., and Raetz, C.R. ( 1998 ) Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J Biol Chem 273: 12466 – 12475.en_US
dc.identifier.citedreferenceZhou, Z., Lin, S., Cotter, R.J., and Raetz, C.R. ( 1999 ) Lipid A modifications characteristic of Salmonella typhimurium are induced by NH 4 VO 3 in Escherichia coli K12. Detection of 4-amino-4-deoxy-l-arabinose, phosphoethanolamine and palmitate. J Biol Chem 274: 18503 – 18514.en_US
dc.identifier.citedreferenceZhou, Z., Ribeiro, A.A., Lin, S., Cotter, R.J., Miller, S.I., and Raetz, C.R. ( 2001 ) Lipid A modifications in polymyxin-resistant Salmonella typhimurium: PmrA-dependent 4-amino-4-deoxy-l-arabinose, and phosphoethanolamine incorporation. J Biol Chem 276: 43111 – 43121.en_US
dc.identifier.citedreferenceZhou, Z., Ribeiro, A.A., and Raetz, C.R. ( 2000 ) High-resolution NMR spectroscopy of lipid A molecules containing 4-amino-4-deoxy-l-arabinose and phosphoethanolamine substituents. Different attachment sites on lipid A molecules from NH 4 VO 3 -treated Escherichia coli versus kdsA mutants of Salmonella typhimurium. J Biol Chem 275: 13542 – 13551.en_US
dc.identifier.citedreferenceZimmermann, K., and Mannhalter, J.W. ( 1996 ) Technical aspects of quantitative competitive PCR. Biotechniques 21: 268 – 269.en_US
dc.identifier.citedreferenceZuo, Y., and Deutscher, M.P. ( 2001 ) Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 29: 1017 – 1026.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.