Show simple item record

Oxidative protein folding in bacteria

dc.contributor.authorCollet, Jean-Francoisen_US
dc.contributor.authorBardwell, James C. A.en_US
dc.date.accessioned2010-06-01T22:07:42Z
dc.date.available2010-06-01T22:07:42Z
dc.date.issued2002-04en_US
dc.identifier.citationCollet, Jean-Francois; Bardwell, James C. A. (2002). "Oxidative protein folding in bacteria." Molecular Microbiology 44(1): 1-8. <http://hdl.handle.net/2027.42/75150>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75150
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11967064&dopt=citationen_US
dc.description.abstractTen years ago it was thought that disulphide bond formation in prokaryotes occurred spontaneously. Now two pathways involved in disulphide bond formation have been well characterized, the oxidative pathway, which is responsible for the formation of disulphides, and the isomerization pathway, which shuffles incorrectly formed disulphides. Disulphide bonds are donated directly to unfolded polypeptides by the DsbA protein; DsbA is reoxidized by DsbB. DsbB generates disulphides de novo from oxidized quinones. These quinones are reoxidized by the electron transport chain, showing that disulphide bond formation is actually driven by electron transport. Disulphide isomerization requires that incorrect disulphides be attacked using a reduced catalyst, followed by the redonation of the disulphide, allowing alternative disulphide pairing. Two isomerases exist in Escherichia coli , DsbC and DsbG. The membrane protein DsbD maintains these disulphide isomerases in their reduced and thereby active form. DsbD is kept reduced by cytosolic thioredoxin in an NADPH-dependent reaction.en_US
dc.format.extent159390 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2002 Blackwell Science Ltd.en_US
dc.titleOxidative protein folding in bacteriaen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationotherGroupe de recherches metaboliques, Universite catholique de Louvain, UCL 75-39, B-1200 Brussels, Belgium.en_US
dc.identifier.pmid11967064en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75150/1/j.1365-2958.2002.02851.x.pdf
dc.identifier.doi10.1046/j.1365-2958.2002.02851.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAndersen, C.L., Matthey-Dupraz, A., Missiakas, D., and Raina, S. ( 1997 ) A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins. Mol Microbiol 26: 121 – 132.en_US
dc.identifier.citedreferenceBader, M.W., Hiniker, A., Regeimbal, J., Goldstone, D., Haebel, P.W., Riemer, J., Metcalf, P., and Bardwell, J.C. ( 2001 ) Turning a disulfide isomerase into an oxidase: DsbC mutants that imitate DsbA. EMBO J 20: 1555 – 1562.en_US
dc.identifier.citedreferenceBader, M., Muse, W., Ballou, D.P., Gassner, C., and Bardwell, J.C. ( 1999 ) Oxidative protein folding is driven by the electron transport system. Cell 98: 217 – 227.en_US
dc.identifier.citedreferenceBader, M., Muse, W., Zander, T., and Bardwell, J. ( 1998 ) Reconstitution of a protein disulfide catalytic system. J Biol Chem 273: 10302 – 10307.en_US
dc.identifier.citedreferenceBader, M.W., Xie, T., Yu, C.A., and Bardwell, J.C. ( 2000 ) Disulfide bonds are generated by quinone reduction. J Biol Chem 275: 26082 – 26088.en_US
dc.identifier.citedreferenceBardwell, J.C., McGovern, K., and Beckwith, J. ( 1991 ) Identification of a protein required for disulfide bond formation in vivo. Cell 67: 581 – 589.en_US
dc.identifier.citedreferenceBardwell, J.C., Lee, J.O., Jander, G., Martin, N., Belin, D., and Beckwith, J. ( 1993 ) A pathway for disulfide bond formation in vivo. Proc Natl Acad Sci USA 90: 1038 – 1042.en_US
dc.identifier.citedreferenceBessette, P.H., Cotto, J.J., Gilbert, H.F., and Georgiou, G. ( 1999 ) In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG. J Biol Chem 274: 7784 – 7792.en_US
dc.identifier.citedreferenceChen, J., Song, J.L., Zhang, S., Wang, Y., Cui, D.F., and Wang, C.C. ( 1999 ) Chaperone activity of DsbC. J Biol Chem 274: 19601 – 19605.en_US
dc.identifier.citedreferenceChung, J., Chen, T., and Missiakas, D. ( 2000 ) Transfer of electrons across the cytoplasmic membrane by DsbD, a membrane protein involved in thiol-disulphide exchange and protein folding in the bacterial periplasm. Mol Microbiol 35: 1099 – 1109.en_US
dc.identifier.citedreferenceCouprie, J., Vinci, F., Dugave, C., Quemeneur, E., and Moutiez, M. ( 2000 ) Investigation of the DsbA mechanism through the synthesis and analysis of an irreversible enzyme–ligand complex. Biochemistry 39: 6732 – 6742.en_US
dc.identifier.citedreferenceCrooke, H., and Cole, J. ( 1995 ) The biogenesis of c -type cytochromes in Escherichia coli requires a membrane-bound protein, DipZ, with a protein disulphide isomerase-like domain. Mol Microbiol 15: 1139 – 1150.en_US
dc.identifier.citedreferenceDailey, F.E., and Berg, H.C. ( 1993 ) Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli. Proc Natl Acad Sci USA 90: 1043 – 1047.en_US
dc.identifier.citedreferenceDeshmukh, M., Brasseur, G., and Daldal, F. ( 2000 ) Novel Rhodobacter capsulatus genes required for the biogenesis of various c-type cytochromes. Mol Microbiol 35: 123 – 138.en_US
dc.identifier.citedreferenceFong, S.T., Camakaris, J., and Lee, B.T. ( 1995 ) Molecular genetics of a chromosomal locus involved in copper tolerance in Escherichia coli K-12. Mol Microbiol 15: 1127 – 1137.en_US
dc.identifier.citedreferenceGordon, E.H., Page, M.D., Willis, A.C., and Ferguson, S.J. ( 2000 ) Escherichia coli DipZ: anatomy of a transmembrane protein disulphide reductase in which three pairs of cysteine residues, one in each of three domains, contribute differentially to function. Mol Microbiol 35: 1360 – 1374.en_US
dc.identifier.citedreferenceGrauschopf, U., Winther, J.R., Korber, P., Zander, T., Dallinger, P., and Bardwell, J.C. ( 1995 ) Why is DsbA such an oxidizing disulfide catalyst? Cell 83: 947 – 955.en_US
dc.identifier.citedreferenceGuddat, L.W., Bardwell, J.C., Zander, T., and Martin, J.L. ( 1997 ) The uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide binding. Protein Sci 6: 1148 – 1156.en_US
dc.identifier.citedreferenceGuddat, L.W., Bardwell, J.C., and Martin, J.L. ( 1998 ) Crystal structures of reduced and oxidized DsbA: investigation of domain motion and thiolate stabilization. Structure 6: 757 – 767.en_US
dc.identifier.citedreferenceGuilhot, C., Jander, G., Martin, N.L., and Beckwith, J. ( 1995 ) Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. Proc Natl Acad Sci USA 92: 9895 – 9899.en_US
dc.identifier.citedreferenceJacob-Dubuisson, F., Pinkner, J., Xu, Z., Striker, R., Padmanhaban, A., and Hultgren, S.J. ( 1994 ) PapD chaperone function in pilus biogenesis depends on oxidant and chaperone-like activities of DsbA. Proc Natl Acad Sci USA 91: 11552 – 11556.en_US
dc.identifier.citedreferenceKadokura, H., Bader, M., Tian, H., Bardwell, J.C., and Beckwith, J. ( 2000 ) Roles of a conserved arginine residue of DsbB in linking protein disulfide-bond-formation pathway to the respiratory chain of Escherichia coli. Proc Natl Acad Sci USA 97: 10884 – 10889.en_US
dc.identifier.citedreferenceKamitani, S., Akiyama, Y., and Ito, K. ( 1992 ) Identification and characterization of an Escherichia coli gene required for the formation of correctly folded alkaline phosphatase, a periplasmic enzyme. EMBO J 11: 57 – 62.en_US
dc.identifier.citedreferenceKatzen, F., and Beckwith, J. ( 2000 ) Transmembrane electron transfer by the membrane protein DsbD occurs via a dis-ulfide bond cascade. Cell 103: 769 – 779.en_US
dc.identifier.citedreferenceKishigami, S., and Ito, K. ( 1996 ) Roles of cysteine residues of DsbB in its activity to reoxidize DsbA, the protein dis-ulphide bond catalyst of Escherichia coli. Genes Cells 1: 201 – 208.en_US
dc.identifier.citedreferenceKishigami, S., Kanaya, E., Kikuchi, M., and Ito, K. ( 1995 ) DsbA–DsbB interaction through their active site cysteines. Evidence from an odd cysteine mutant of DsbA. J Biol Chem 270: 17072 – 17074.en_US
dc.identifier.citedreferenceKobayashi, T., and Ito, K. ( 1999 ) Respiratory chain strongly oxidizes the CXXC motif of DsbB in the Escherichia coli disulfide bond formation pathway. Embo J 18: 1192 – 1198.en_US
dc.identifier.citedreferenceKobayashi, T., Kishigami, S., Sone, M., Inokuchi, H., Mogi, T., and Ito, K. ( 1997 ) Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells. Proc Natl Acad Sci USA 94: 11857 – 11862.en_US
dc.identifier.citedreferenceKobayashi, T., Takahashi, Y., and Ito, K. ( 2001 ) Identification of a segment of DsbB essential for its respiration- coupled oxidation. Mol Microbiol 39: 158 – 165.en_US
dc.identifier.citedreferenceKrupp, R., Chan, C., and Missiakas, D. ( 2001 ) DsbD-catalyzed transport of electrons across the membrane of Escherichia coli. J Biol Chem 276: 3696 – 3701.en_US
dc.identifier.citedreferenceMcCarthy, A.A., Haebel, P.W., Torronen, A., Rybin, V., Baker, E.N., and Metcalf, P. ( 2000 ) Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nature Struct Biol 7: 196 – 199.en_US
dc.identifier.citedreferenceMartin, J.L., Bardwell, J.C., and Kuriyan, J. ( 1993 ) Crystal structure of the DsbA protein required for disulphide bond formation i n vivo. Nature 365: 464 – 468.en_US
dc.identifier.citedreferenceMetheringham, R., Griffiths, L., Crooke, H., Forsythe, S., and Cole, J. ( 1995 ) An essential role for DsbA in cytochrome c synthesis and formate- dependent nitrite reduction by Escherichia coli K-12. Arch Microbiol 164: 301 – 307.en_US
dc.identifier.citedreferenceMissiakas, D., Georgopoulos, C., and Raina, S. ( 1993 ) Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo. Proc Natl Acad Sci USA 90: 7084 – 7088.en_US
dc.identifier.citedreferenceMissiakas, D., Georgopoulos, C., and Raina, S. ( 1994 ) The Escherichia coli dsbC ( xprA ) gene encodes a periplasmic protein involved in disulfide bond formation. EMBO J 13: 2013 – 2020.en_US
dc.identifier.citedreferenceMissiakas, D., Schwager, F., and Raina, S. ( 1995 ) Identifi-cation and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli. EMBO J 14: 3415 – 3424.en_US
dc.identifier.citedreferencePugsley, A.P., Bayan, N., and Sauvonnet, N. ( 2001 ) Disulfide bond formation in secreton component PulK provides a possible explanation for the role of DsbA in pullulanase secretion. J Bacteriol 183: 1312 – 1319.en_US
dc.identifier.citedreferenceRaina, S., and Missiakas, D. ( 1997 ) Making and breaking disulfide bonds. Annu Rev Microbiol 51: 179 – 202.en_US
dc.identifier.citedreferenceRietsch, A., Belin, D., Martin, N., and Beckwith, J. ( 1996 ) An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc Natl Acad Sci USA 93: 13048 – 13053.en_US
dc.identifier.citedreferenceRietsch, A., Bessette, P., Georgiou, G., and Beckwith, J. ( 1997 ) Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J Bacteriol 179: 6602 – 6608.en_US
dc.identifier.citedreferenceSauvonnet, N., and Pugsley, A.P. ( 1998 ) The requirement for DsbA in pullulanase secretion is independent of disulphide bond formation in the enzyme. Mol Microbiol 27: 661 – 667.en_US
dc.identifier.citedreferenceShao, F., Bader, M.W., Jakob, U., and Bardwell, J.C. ( 2000 ) DsbG, a protein disulfide isomerase with chaperone activity. J Biol Chem 275: 13349 – 13352.en_US
dc.identifier.citedreferenceStafford, S.J., Humphreys, D.P., and Lund, P.A. ( 1999 ) Mutations in dsbA and dsbB, but not dsbC, lead to an enhanced sensitivity of Escherichia coli to Hg 2+ and Cd 2+. FEMS Microbiol Lett 174: 179 – 184.en_US
dc.identifier.citedreferenceStewart, E.J., Katzen, F., and Beckwith, J. ( 1999 ) Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. EMBO J 18: 5963 – 5971.en_US
dc.identifier.citedreferenceSun, X.X., and Wang, C.C. ( 2000 ) The N-terminal sequence (residues 1–65) is essential for dimerization, activities, and peptide binding of Escherichia coli DsbC. J Biol Chem 275: 22743 – 22749.en_US
dc.identifier.citedreferenceZapun, A., Bardwell, J.C., and Creighton, T.E. ( 1993 ) The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry 32: 5083 – 5092.en_US
dc.identifier.citedreferenceZapun, A., Missiakas, D., Raina, S., and Creighton, T.E. ( 1995 ) Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Esche-richia coli. Biochemistry 34: 5075 – 5089.en_US
dc.identifier.citedreferenceZheng, W.D., Quan, H., Song, J.L., Yang, S.L., and Wang, C.C. ( 1997 ) Does DsbA have chaperone-like activity? Arch Biochem Biophys 337: 326 – 331.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.