Show simple item record

Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data

dc.contributor.authorMedlyn, B. E.en_US
dc.contributor.authorDreyer, E.en_US
dc.contributor.authorEllsworth, David S.en_US
dc.contributor.authorForstreuter, M.en_US
dc.contributor.authorHarley, P. C.en_US
dc.contributor.authorKirschbaum, M. U. F.en_US
dc.contributor.authorLe Roux, X.en_US
dc.contributor.authorMontpied, P.en_US
dc.contributor.authorStrassemeyer, J.en_US
dc.contributor.authorWalcroft, A.en_US
dc.contributor.authorWang, K.en_US
dc.contributor.authorLoustau, D.en_US
dc.date.accessioned2010-06-01T22:08:31Z
dc.date.available2010-06-01T22:08:31Z
dc.date.issued2002-09en_US
dc.identifier.citationMedlyn, B. E.; Dreyer, E.; Ellsworth, D.; Forstreuter, M.; Harley, P. C.; Kirschbaum, M. U. F.; Le Roux, X.; Montpied, P.; Strassemeyer, J.; Walcroft, A.; Wang, K.; Loustau, D. (2002). "Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data." Plant, Cell & Environment 25(9): 1167-1179. <http://hdl.handle.net/2027.42/75163>en_US
dc.identifier.issn0140-7791en_US
dc.identifier.issn1365-3040en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75163
dc.description.abstractThe temperature dependence of C 3 photosynthesis is known to vary with growth environment and with species. In an attempt to quantify this variability, a commonly used biochemically based photosynthesis model was parameterized from 19 gas exchange studies on tree and crop species. The parameter values obtained described the shape and amplitude of the temperature responses of the maximum rate of Rubisco activity ( V cmax ) and the potential rate of electron transport ( J max ). Original data sets were used for this review, as it is shown that derived values of V cmax and its temperature response depend strongly on assumptions made in derivation. Values of J max and V cmax at 25 °C varied considerably among species but were strongly correlated, with an average J max  :  V cmax ratio of 1·67. Two species grown in cold climates, however, had lower ratios. In all studies, the J max  :  V cmax ratio declined strongly with measurement temperature. The relative temperature responses of J max and V cmax were relatively constant among tree species. Activation energies averaged 50 kJ mol −1 for J max and 65 kJ mol −1 for V cmax , and for most species temperature optima averaged 33 °C for J max and 40 °C for V cmax . However, the cold climate tree species had low temperature optima for both J max ( 19 °C) and V cmax (29 °C), suggesting acclimation of both processes to growth temperature. Crop species had somewhat different temperature responses, with higher activation energies for both J max and V cmax , implying narrower peaks in the temperature response for these species. The results thus suggest that both growth environment and plant type can influence the photosynthetic response to temperature. Based on these results, several suggestions are made to improve modelling of temperature responses.en_US
dc.format.extent437112 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2002 Blackwell Publishing Ltden_US
dc.subject.otherElectron Transporten_US
dc.subject.otherModel Parametersen_US
dc.subject.otherPhotosynthesisen_US
dc.subject.otherRibulose-1,5- Bis Phosphate Carboxylase-oxygenaseen_US
dc.subject.otherRibulose-1,5- Bis Phosphate Regenerationen_US
dc.subject.otherTemperature Acclimationen_US
dc.titleTemperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental dataen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA,en_US
dc.contributor.affiliationotherINRA Pierroton, Laboratoire d"Ecophysiologie et Nutrition, 33611 Gazinet Cedex, France,en_US
dc.contributor.affiliationotherSchool of Biological, Earth and Environmental Science, University of NSW, Sydney 2052, Australia,en_US
dc.contributor.affiliationotherUMR INRA UHP, Ecologie et Ecophysiologie ForestiÈres, 54280 Champenoux, France,en_US
dc.contributor.affiliationotherInstitut fÜr Ökologie, Technische UniversitÄt Berlin, KÖnigin-Luise-Str.22, D-100 Berlin 33, Germany,en_US
dc.contributor.affiliationotherAtmospheric Chemistry Division, NCAR, Boulder, CO 80307–3000, USA,en_US
dc.contributor.affiliationotherCSIRO Forestry and Forest Products, PO Box E4008, Kingston ACT 2604, Australia,en_US
dc.contributor.affiliationotherUMR PIAF (INRA/University Blaise Pascal), 234 avenue du Brezet, 63039 Clermont Ferrand, France,en_US
dc.contributor.affiliationotherUMR 5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France,en_US
dc.contributor.affiliationotherManaaki Whenua – Landcare Research, Private Bag 11 052, Palmerston North, New Zealand anden_US
dc.contributor.affiliationotherFaculty of Forestry, University of Joensuu, PO Box 111, Joensuu, Finlanden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75163/1/j.1365-3040.2002.00891.x.pdf
dc.identifier.doi10.1046/j.1365-3040.2002.00891.xen_US
dc.identifier.sourcePlant, Cell & Environmenten_US
dc.identifier.citedreferenceArmond P. A., Schreiber U. & BjÖrkman O. ( 1978 ) Photosynthetic acclimation to temperature in the desert shrub, Larrea divaricata. II. Light-harvesting efficiency and electron transport. Plant Physiology 61, 411 – 415.en_US
dc.identifier.citedreferenceBadger M. R. & Andrews T. J. ( 1974 ) Effects of CO 2, O 2 and temperature on a high-affinity form of ribulose diphosphate carboxylase-oxygenase from spinach. Biochemical and Biophysical Research Communications 60, 204 – 210.en_US
dc.identifier.citedreferenceBadger M. R. & Collatz G. J. ( 1977 ) Studies on the kinetic mechanism of ribulose-1,5-bisphosphate carboxylase and oxygenase reactions, with particular reference to the effect of temperature on kinetic parameters. Carnegie Institute of Washington Yearbook 76, 355 – 361.en_US
dc.identifier.citedreferenceBernacchi C. J., Singsaas E. L., Pimentel C., Portis A. R. Jr & Long S. P. ( 2001 ) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell and Environment 24, 253 – 260.en_US
dc.identifier.citedreferenceBerry J. & BjÖrkman O. ( 1980 ) Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology 31, 491 – 543.en_US
dc.identifier.citedreferenceBrooks A. & Farquhar G. D. ( 1985 ) Effect of temperature on the CO 2 /O 2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light: estimates from gas-exchange experiments on spinach. Planta 165, 397 – 406.en_US
dc.identifier.citedreferenceCramer W., Bondeau A., Woodward F. I., et al. ( 2001 ) Global response of terrestrial ecosystem structure and function to CO 2 and climate change: results from six dynamic global vegetation models. Global Change Biology 7, 357 – 373.en_US
dc.identifier.citedreferenceDreyer E., Le Roux X., Montpied P., Daudet F. A. & Masson F. ( 2001 ) Temperature response of leaf photosynthetic capacity in seedlings from seven temperate forest tree species. Tree Physiology 21, 223 – 232.en_US
dc.identifier.citedreferenceEllsworth D. S. ( 2000 ) Seasonal CO 2 assimilation and stomatal limitations in a Pinus taeda canopy. Tree Physiology 20, 435 – 445.en_US
dc.identifier.citedreferenceFarquhar G. D., von Caemmerer S. & Berry J. A. ( 1980 ) A biochemical model of photosynthetic CO 2 assimilation on leaves of C 3 species. Planta 149, 78 – 90.en_US
dc.identifier.citedreferenceFerrar P. J., Slatyer R. O. & Vranjic J. A. ( 1989 ) Photosynthetic temperature acclimation in Eucalyptus species from diverse habitats, and a comparison with Nerium oleander. Australian Journal of Plant Physiology 16, 199 – 217.en_US
dc.identifier.citedreferenceHarley P. C. & Baldocchi D. D. ( 1995 ) Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. I. Leaf model parameterization. Plant, Cell and Environment 18, 1146 – 1156.en_US
dc.identifier.citedreferenceHarley P. C., Tenhunen J. D. & Lange O. L. ( 1986 ) Use of an analytical model to study limitation on net photosynthesis in Arbutus unedo under field conditions. Oecologia 70, 393 – 401.en_US
dc.identifier.citedreferenceHarley P. C., Thomas R. B., Reynolds J. F. & Strain B. R. ( 1992 ) Modelling photosynthesis of cotton grown in elevated CO 2. Plant, Cell and Environment 15, 271 – 282.en_US
dc.identifier.citedreferenceHarley P. C., Weber J. A. & Gates D. M. ( 1985 ) Interactive effects of light, leaf temperature, CO 2 and O 2 on photosynthesis in soybean. Planta 165, 249 – 263.en_US
dc.identifier.citedreferenceHavaux M. ( 1993 ) Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant, Cell and Environment 16, 461 – 467.en_US
dc.identifier.citedreferenceHikosaka K., Murakami A. & Hirose T. ( 1999 ) Balancing carboxylation and regeneration of ribulose-1,5-bisphosphate in leaf photosynthesis: temperature acclimation of an evergreen tree, Quercus myrsinaefolia. Plant, Cell and Environment 22, 841 – 849.en_US
dc.identifier.citedreferenceJohnson F., Eyring H. & Williams R. ( 1942 ) The nature of enzyme inhibitions in bacterial luminescence: sulphanilamide, urethane, temperature, pressure. Journal of Cell Comparative Physiology 20, 247 – 268.en_US
dc.identifier.citedreferenceJordan D. B. & Ogren W. L. ( 1984 ) The CO 2 /O 2 specficity of ribulose-1,5-bisphosphate carboxylase/oxygenase: dependence on ribulose bisphosphate concentration, pH and temperature. Planta 161, 308 – 313.en_US
dc.identifier.citedreferenceKirschbaum M. U. F. & Farquhar G. D. ( 1984 ) Temperature dependence of whole-leaf photosynthesis in Eucalyptus pauciflora Sieb. ex Spreng. Australian Journal of Plant Physiology 11, 519 – 538.en_US
dc.identifier.citedreferenceKleinbaum D. G., Kupper L. L., Muller K. E. & Nizam A. ( 1998 ) Applied Regression Analysis and Other Multivariable Methods. Duxbury Press, Pacific Grove, CA, USA.en_US
dc.identifier.citedreferenceLeuning R. ( 1997 ) Scaling to a common temperature improves the correlation between the photosynthesis parameters J max and V cmax. Journal of Experimental Botany 48, 345 – 347.en_US
dc.identifier.citedreferenceLloyd J., Grace J., Miranda A. C., Meir P., Wong S. C., Miranda H. S., Wright I. R., Gash J. H. C. & McIntyre J. ( 1995 ) A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant, Cell and Environment 18, 1129 – 1145.en_US
dc.identifier.citedreferenceLong S. P. ( 1991 ) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO 2 concentrations: has its importance been underestimated? Plant, Cell and Environment 14, 729 – 739.en_US
dc.identifier.citedreferenceLong S. P., Postl W. F. & Bolharnordenkampf H. R. ( 1993 ) Quantum yields for uptake of carbon dioxide in C 3 vascular plants of contrasting habitats and taxonomic groupings. Planta 189, 226 – 234.en_US
dc.identifier.citedreferenceMakino A., Nakano H. & Mae T. ( 1994 ) Effects of growth temperature on the responses of ribulose-1,5-bisphosphate carboxylase, electron transport components, and sucrose synthesis enzymes to leaf nitrogen in rice, and their relationships to photosynthesis. Plant Physiology 105, 1231 – 1238.en_US
dc.identifier.citedreferenceMartindale W. & Leegood R. C. ( 1997 ) Acclimation of photosynthesis to low temperature in Spinacia oleracea L. II. Effects of nitrogen supply. Journal of Experimental Botany 48, 1873 – 1880.en_US
dc.identifier.citedreferenceMedlyn B. E., Badeck F. -W., de Pury D. G. G., et al. ( 1999 ) Effects of elevated [CO 2 ] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell and Environment 22, 1475 – 1495.en_US
dc.identifier.citedreferenceMedlyn B. E., Loustau D. & Delzon S. ( 2002 ) Temperature response of parameters of a biochemically-based model of photosynthesis. I. Seasonal changes in mature maritime pine ( Pinus pinaster Ait.). Plant, Cell and Environment 25, 1155 – 1165.en_US
dc.identifier.citedreferenceNiinemets U., Oja V. & Kull O. ( 1999 ) Shape of leaf photosynthetic electron transport versus temperature response curve is not constant along canopy light gradients in temperate deciduous trees. Plant, Cell and Environment 22, 1497 – 1513.en_US
dc.identifier.citedreferenceNolan W. G. & Smillie R. M. ( 1976 ) Multi temperature effects on Hill reaction activity of barley chloroplasts. Biochimica Biophysica Acta 440, 461 – 475.en_US
dc.identifier.citedreferenceRobakowski P., Montpied P. & Dreyer E. ( 2002 ) Temperature response of photosynthesis of silver fir ( Abies alba Mill.) seedlings. Annals of Forest Science 59, 159 – 166.en_US
dc.identifier.citedreferenceSlatyer R. O. & Morrow P. A. ( 1977 ) Altitudinal variation in the photosynthetic characteristics of snow gum Eucalyptus pauciflora Sieb. ex Spreng. I. Seasonal changes under field conditions in the Snowy Mountains area of South-eastern Australia. Australian Journal of Botany 25, 1 – 20.en_US
dc.identifier.citedreferenceStrassemeyer J. & Forstreuter M. ( 1997 ) Parameterization of a leaf gas-exchange model for Fagus sylvatica L. using microcosms grown under ambient and elevated CO 2. Landschaftsentwicklung and Umweltforschung 107, 61 – 72.en_US
dc.identifier.citedreferenceWalcroft A. S., Le Roux X., Diaz-Espejo A. & Sinoquet H. ( 2002 ) Spatial and temporal variability of photosynthetic capacity within a peach tree crown. Tree Physiology in press.en_US
dc.identifier.citedreferenceWalcroft A. S., Whitehead D., Silvester W. B. & Kelliher F. M. ( 1997 ) The response of photosynthetic model parameters to temperature and nitrogen concentration in Pinus radiata D. Don. Plant, Cell and Environment 20, 1338 – 1348.en_US
dc.identifier.citedreferenceWang K. -Y., Kellomaki S. & Laitinen K. ( 1996 ) Acclimation of photosynthetic parameters in Scots pine after three years exposure to elevated temperature and CO 2. Agricultural and Forest Meteorology 82, 195 – 217.en_US
dc.identifier.citedreferenceWohlfahrt G., Bahn M., Haubner E., Horak I., Michaeler W., Rottmar K., Tappeiner U. & Cernusca A. ( 1999 ) Inter-specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use. Plant, Cell and Environment 22, 1281 – 1296.en_US
dc.identifier.citedreferenceWullschleger ( 1993 ) Biochemical limitations to carbon assimilation in C 3 plants – a retrospective analysis of A / C i curves from 109 species. Journal of Experimental Botany 44, 907 – 920.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.