Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data
dc.contributor.author | Medlyn, B. E. | en_US |
dc.contributor.author | Dreyer, E. | en_US |
dc.contributor.author | Ellsworth, David S. | en_US |
dc.contributor.author | Forstreuter, M. | en_US |
dc.contributor.author | Harley, P. C. | en_US |
dc.contributor.author | Kirschbaum, M. U. F. | en_US |
dc.contributor.author | Le Roux, X. | en_US |
dc.contributor.author | Montpied, P. | en_US |
dc.contributor.author | Strassemeyer, J. | en_US |
dc.contributor.author | Walcroft, A. | en_US |
dc.contributor.author | Wang, K. | en_US |
dc.contributor.author | Loustau, D. | en_US |
dc.date.accessioned | 2010-06-01T22:08:31Z | |
dc.date.available | 2010-06-01T22:08:31Z | |
dc.date.issued | 2002-09 | en_US |
dc.identifier.citation | Medlyn, B. E.; Dreyer, E.; Ellsworth, D.; Forstreuter, M.; Harley, P. C.; Kirschbaum, M. U. F.; Le Roux, X.; Montpied, P.; Strassemeyer, J.; Walcroft, A.; Wang, K.; Loustau, D. (2002). "Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data." Plant, Cell & Environment 25(9): 1167-1179. <http://hdl.handle.net/2027.42/75163> | en_US |
dc.identifier.issn | 0140-7791 | en_US |
dc.identifier.issn | 1365-3040 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/75163 | |
dc.description.abstract | The temperature dependence of C 3 photosynthesis is known to vary with growth environment and with species. In an attempt to quantify this variability, a commonly used biochemically based photosynthesis model was parameterized from 19 gas exchange studies on tree and crop species. The parameter values obtained described the shape and amplitude of the temperature responses of the maximum rate of Rubisco activity ( V cmax ) and the potential rate of electron transport ( J max ). Original data sets were used for this review, as it is shown that derived values of V cmax and its temperature response depend strongly on assumptions made in derivation. Values of J max and V cmax at 25 °C varied considerably among species but were strongly correlated, with an average J max : V cmax ratio of 1·67. Two species grown in cold climates, however, had lower ratios. In all studies, the J max : V cmax ratio declined strongly with measurement temperature. The relative temperature responses of J max and V cmax were relatively constant among tree species. Activation energies averaged 50 kJ mol −1 for J max and 65 kJ mol −1 for V cmax , and for most species temperature optima averaged 33 °C for J max and 40 °C for V cmax . However, the cold climate tree species had low temperature optima for both J max ( 19 °C) and V cmax (29 °C), suggesting acclimation of both processes to growth temperature. Crop species had somewhat different temperature responses, with higher activation energies for both J max and V cmax , implying narrower peaks in the temperature response for these species. The results thus suggest that both growth environment and plant type can influence the photosynthetic response to temperature. Based on these results, several suggestions are made to improve modelling of temperature responses. | en_US |
dc.format.extent | 437112 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Science Ltd | en_US |
dc.rights | 2002 Blackwell Publishing Ltd | en_US |
dc.subject.other | Electron Transport | en_US |
dc.subject.other | Model Parameters | en_US |
dc.subject.other | Photosynthesis | en_US |
dc.subject.other | Ribulose-1,5- Bis Phosphate Carboxylase-oxygenase | en_US |
dc.subject.other | Ribulose-1,5- Bis Phosphate Regeneration | en_US |
dc.subject.other | Temperature Acclimation | en_US |
dc.title | Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA, | en_US |
dc.contributor.affiliationother | INRA Pierroton, Laboratoire d"Ecophysiologie et Nutrition, 33611 Gazinet Cedex, France, | en_US |
dc.contributor.affiliationother | School of Biological, Earth and Environmental Science, University of NSW, Sydney 2052, Australia, | en_US |
dc.contributor.affiliationother | UMR INRA UHP, Ecologie et Ecophysiologie ForestiÈres, 54280 Champenoux, France, | en_US |
dc.contributor.affiliationother | Institut fÜr Ökologie, Technische UniversitÄt Berlin, KÖnigin-Luise-Str.22, D-100 Berlin 33, Germany, | en_US |
dc.contributor.affiliationother | Atmospheric Chemistry Division, NCAR, Boulder, CO 80307–3000, USA, | en_US |
dc.contributor.affiliationother | CSIRO Forestry and Forest Products, PO Box E4008, Kingston ACT 2604, Australia, | en_US |
dc.contributor.affiliationother | UMR PIAF (INRA/University Blaise Pascal), 234 avenue du Brezet, 63039 Clermont Ferrand, France, | en_US |
dc.contributor.affiliationother | UMR 5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France, | en_US |
dc.contributor.affiliationother | Manaaki Whenua – Landcare Research, Private Bag 11 052, Palmerston North, New Zealand and | en_US |
dc.contributor.affiliationother | Faculty of Forestry, University of Joensuu, PO Box 111, Joensuu, Finland | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/75163/1/j.1365-3040.2002.00891.x.pdf | |
dc.identifier.doi | 10.1046/j.1365-3040.2002.00891.x | en_US |
dc.identifier.source | Plant, Cell & Environment | en_US |
dc.identifier.citedreference | Armond P. A., Schreiber U. & BjÖrkman O. ( 1978 ) Photosynthetic acclimation to temperature in the desert shrub, Larrea divaricata. II. Light-harvesting efficiency and electron transport. Plant Physiology 61, 411 – 415. | en_US |
dc.identifier.citedreference | Badger M. R. & Andrews T. J. ( 1974 ) Effects of CO 2, O 2 and temperature on a high-affinity form of ribulose diphosphate carboxylase-oxygenase from spinach. Biochemical and Biophysical Research Communications 60, 204 – 210. | en_US |
dc.identifier.citedreference | Badger M. R. & Collatz G. J. ( 1977 ) Studies on the kinetic mechanism of ribulose-1,5-bisphosphate carboxylase and oxygenase reactions, with particular reference to the effect of temperature on kinetic parameters. Carnegie Institute of Washington Yearbook 76, 355 – 361. | en_US |
dc.identifier.citedreference | Bernacchi C. J., Singsaas E. L., Pimentel C., Portis A. R. Jr & Long S. P. ( 2001 ) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell and Environment 24, 253 – 260. | en_US |
dc.identifier.citedreference | Berry J. & BjÖrkman O. ( 1980 ) Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology 31, 491 – 543. | en_US |
dc.identifier.citedreference | Brooks A. & Farquhar G. D. ( 1985 ) Effect of temperature on the CO 2 /O 2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light: estimates from gas-exchange experiments on spinach. Planta 165, 397 – 406. | en_US |
dc.identifier.citedreference | Cramer W., Bondeau A., Woodward F. I., et al. ( 2001 ) Global response of terrestrial ecosystem structure and function to CO 2 and climate change: results from six dynamic global vegetation models. Global Change Biology 7, 357 – 373. | en_US |
dc.identifier.citedreference | Dreyer E., Le Roux X., Montpied P., Daudet F. A. & Masson F. ( 2001 ) Temperature response of leaf photosynthetic capacity in seedlings from seven temperate forest tree species. Tree Physiology 21, 223 – 232. | en_US |
dc.identifier.citedreference | Ellsworth D. S. ( 2000 ) Seasonal CO 2 assimilation and stomatal limitations in a Pinus taeda canopy. Tree Physiology 20, 435 – 445. | en_US |
dc.identifier.citedreference | Farquhar G. D., von Caemmerer S. & Berry J. A. ( 1980 ) A biochemical model of photosynthetic CO 2 assimilation on leaves of C 3 species. Planta 149, 78 – 90. | en_US |
dc.identifier.citedreference | Ferrar P. J., Slatyer R. O. & Vranjic J. A. ( 1989 ) Photosynthetic temperature acclimation in Eucalyptus species from diverse habitats, and a comparison with Nerium oleander. Australian Journal of Plant Physiology 16, 199 – 217. | en_US |
dc.identifier.citedreference | Harley P. C. & Baldocchi D. D. ( 1995 ) Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. I. Leaf model parameterization. Plant, Cell and Environment 18, 1146 – 1156. | en_US |
dc.identifier.citedreference | Harley P. C., Tenhunen J. D. & Lange O. L. ( 1986 ) Use of an analytical model to study limitation on net photosynthesis in Arbutus unedo under field conditions. Oecologia 70, 393 – 401. | en_US |
dc.identifier.citedreference | Harley P. C., Thomas R. B., Reynolds J. F. & Strain B. R. ( 1992 ) Modelling photosynthesis of cotton grown in elevated CO 2. Plant, Cell and Environment 15, 271 – 282. | en_US |
dc.identifier.citedreference | Harley P. C., Weber J. A. & Gates D. M. ( 1985 ) Interactive effects of light, leaf temperature, CO 2 and O 2 on photosynthesis in soybean. Planta 165, 249 – 263. | en_US |
dc.identifier.citedreference | Havaux M. ( 1993 ) Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant, Cell and Environment 16, 461 – 467. | en_US |
dc.identifier.citedreference | Hikosaka K., Murakami A. & Hirose T. ( 1999 ) Balancing carboxylation and regeneration of ribulose-1,5-bisphosphate in leaf photosynthesis: temperature acclimation of an evergreen tree, Quercus myrsinaefolia. Plant, Cell and Environment 22, 841 – 849. | en_US |
dc.identifier.citedreference | Johnson F., Eyring H. & Williams R. ( 1942 ) The nature of enzyme inhibitions in bacterial luminescence: sulphanilamide, urethane, temperature, pressure. Journal of Cell Comparative Physiology 20, 247 – 268. | en_US |
dc.identifier.citedreference | Jordan D. B. & Ogren W. L. ( 1984 ) The CO 2 /O 2 specficity of ribulose-1,5-bisphosphate carboxylase/oxygenase: dependence on ribulose bisphosphate concentration, pH and temperature. Planta 161, 308 – 313. | en_US |
dc.identifier.citedreference | Kirschbaum M. U. F. & Farquhar G. D. ( 1984 ) Temperature dependence of whole-leaf photosynthesis in Eucalyptus pauciflora Sieb. ex Spreng. Australian Journal of Plant Physiology 11, 519 – 538. | en_US |
dc.identifier.citedreference | Kleinbaum D. G., Kupper L. L., Muller K. E. & Nizam A. ( 1998 ) Applied Regression Analysis and Other Multivariable Methods. Duxbury Press, Pacific Grove, CA, USA. | en_US |
dc.identifier.citedreference | Leuning R. ( 1997 ) Scaling to a common temperature improves the correlation between the photosynthesis parameters J max and V cmax. Journal of Experimental Botany 48, 345 – 347. | en_US |
dc.identifier.citedreference | Lloyd J., Grace J., Miranda A. C., Meir P., Wong S. C., Miranda H. S., Wright I. R., Gash J. H. C. & McIntyre J. ( 1995 ) A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant, Cell and Environment 18, 1129 – 1145. | en_US |
dc.identifier.citedreference | Long S. P. ( 1991 ) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO 2 concentrations: has its importance been underestimated? Plant, Cell and Environment 14, 729 – 739. | en_US |
dc.identifier.citedreference | Long S. P., Postl W. F. & Bolharnordenkampf H. R. ( 1993 ) Quantum yields for uptake of carbon dioxide in C 3 vascular plants of contrasting habitats and taxonomic groupings. Planta 189, 226 – 234. | en_US |
dc.identifier.citedreference | Makino A., Nakano H. & Mae T. ( 1994 ) Effects of growth temperature on the responses of ribulose-1,5-bisphosphate carboxylase, electron transport components, and sucrose synthesis enzymes to leaf nitrogen in rice, and their relationships to photosynthesis. Plant Physiology 105, 1231 – 1238. | en_US |
dc.identifier.citedreference | Martindale W. & Leegood R. C. ( 1997 ) Acclimation of photosynthesis to low temperature in Spinacia oleracea L. II. Effects of nitrogen supply. Journal of Experimental Botany 48, 1873 – 1880. | en_US |
dc.identifier.citedreference | Medlyn B. E., Badeck F. -W., de Pury D. G. G., et al. ( 1999 ) Effects of elevated [CO 2 ] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell and Environment 22, 1475 – 1495. | en_US |
dc.identifier.citedreference | Medlyn B. E., Loustau D. & Delzon S. ( 2002 ) Temperature response of parameters of a biochemically-based model of photosynthesis. I. Seasonal changes in mature maritime pine ( Pinus pinaster Ait.). Plant, Cell and Environment 25, 1155 – 1165. | en_US |
dc.identifier.citedreference | Niinemets U., Oja V. & Kull O. ( 1999 ) Shape of leaf photosynthetic electron transport versus temperature response curve is not constant along canopy light gradients in temperate deciduous trees. Plant, Cell and Environment 22, 1497 – 1513. | en_US |
dc.identifier.citedreference | Nolan W. G. & Smillie R. M. ( 1976 ) Multi temperature effects on Hill reaction activity of barley chloroplasts. Biochimica Biophysica Acta 440, 461 – 475. | en_US |
dc.identifier.citedreference | Robakowski P., Montpied P. & Dreyer E. ( 2002 ) Temperature response of photosynthesis of silver fir ( Abies alba Mill.) seedlings. Annals of Forest Science 59, 159 – 166. | en_US |
dc.identifier.citedreference | Slatyer R. O. & Morrow P. A. ( 1977 ) Altitudinal variation in the photosynthetic characteristics of snow gum Eucalyptus pauciflora Sieb. ex Spreng. I. Seasonal changes under field conditions in the Snowy Mountains area of South-eastern Australia. Australian Journal of Botany 25, 1 – 20. | en_US |
dc.identifier.citedreference | Strassemeyer J. & Forstreuter M. ( 1997 ) Parameterization of a leaf gas-exchange model for Fagus sylvatica L. using microcosms grown under ambient and elevated CO 2. Landschaftsentwicklung and Umweltforschung 107, 61 – 72. | en_US |
dc.identifier.citedreference | Walcroft A. S., Le Roux X., Diaz-Espejo A. & Sinoquet H. ( 2002 ) Spatial and temporal variability of photosynthetic capacity within a peach tree crown. Tree Physiology in press. | en_US |
dc.identifier.citedreference | Walcroft A. S., Whitehead D., Silvester W. B. & Kelliher F. M. ( 1997 ) The response of photosynthetic model parameters to temperature and nitrogen concentration in Pinus radiata D. Don. Plant, Cell and Environment 20, 1338 – 1348. | en_US |
dc.identifier.citedreference | Wang K. -Y., Kellomaki S. & Laitinen K. ( 1996 ) Acclimation of photosynthetic parameters in Scots pine after three years exposure to elevated temperature and CO 2. Agricultural and Forest Meteorology 82, 195 – 217. | en_US |
dc.identifier.citedreference | Wohlfahrt G., Bahn M., Haubner E., Horak I., Michaeler W., Rottmar K., Tappeiner U. & Cernusca A. ( 1999 ) Inter-specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use. Plant, Cell and Environment 22, 1281 – 1296. | en_US |
dc.identifier.citedreference | Wullschleger ( 1993 ) Biochemical limitations to carbon assimilation in C 3 plants – a retrospective analysis of A / C i curves from 109 species. Journal of Experimental Botany 44, 907 – 920. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.