Show simple item record

Characterization of CetA and CetB, a bipartite energy taxis system in Campylobacter jejuni

dc.contributor.authorElliott, Kathryn T.en_US
dc.contributor.authorDiRita, Victor J.en_US
dc.date.accessioned2010-06-01T22:11:49Z
dc.date.available2010-06-01T22:11:49Z
dc.date.issued2008-09en_US
dc.identifier.citationElliott, Kathryn T.; DiRita, Victor J. (2008). "Characterization of CetA and CetB, a bipartite energy taxis system in Campylobacter jejuni ." Molecular Microbiology 69(5): 1091-1103. <http://hdl.handle.net/2027.42/75215>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75215
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18631239&dopt=citationen_US
dc.description.abstractThe energy taxis receptor Aer, in Escherichia coli , senses changes in the redox state of the electron transport system via an flavin adenine dinucleotide cofactor bound to a PAS domain. The PAS domain (a sensory domain named after three proteins P er, A RNT and S im, where it was first identified) is thought to interact directly with the Aer HAMP domain to transmit this signal to the highly conserved domain (HCD) found in chemotaxis receptors. An apparent energy taxis system in Campylobacter jejuni is composed of two proteins, CetA and CetB, that have the domains of Aer divided between them. CetB has a PAS domain, while CetA has a predicted transmembrane region, HAMP domain and the HCD. In this study, we examined the expression of cetA and cetB and the biochemical properties of the proteins they encode. cetA and cetB are co-transcribed independently of the flagellar regulon. CetA has two transmembrane helices in a helical hairpin while CetB is a peripheral membrane protein tightly associated with the membrane. CetB levels are CetA dependent. Additionally, we demonstrated that both CetA and CetB participate in complexes, including a likely CetB dimer and a complex that may include both CetA and CetB. This study provides a foundation for further characterization of signal transduction mechanisms within CetA/CetB.en_US
dc.format.extent441646 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 Blackwell Publishingen_US
dc.titleCharacterization of CetA and CetB, a bipartite energy taxis system in Campylobacter jejunien_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUnit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.en_US
dc.contributor.affiliationotherDepartment of Microbiology and Immunology anden_US
dc.identifier.pmid18631239en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75215/1/j.1365-2958.2008.06357.x.pdf
dc.identifier.doi10.1111/j.1365-2958.2008.06357.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAlexandre, G., Greer-Phillips, S., and Zhulin, I.B. ( 2004 ) Ecological role of energy taxis in microorganisms. FEMS Microbiol Rev 28: 113 – 126.en_US
dc.identifier.citedreferenceAmin, D.N., Taylor, B.L., and Johnson, M.S. ( 2006 ) Topology and boundaries of the aerotaxis receptor Aer in the membrane of Escherichia coli. J Bacteriol 188: 894 – 901.en_US
dc.identifier.citedreferenceAravind, L., and Ponting, C.P. ( 1999 ) The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett 176: 111 – 116.en_US
dc.identifier.citedreferenceBlank, T.E., and Donnenberg, M.S. ( 2001 ) Novel topology of BfpE, a cytoplasmic membrane protein required for type IV fimbrial biogenesis in enteropathogenic Escherichia coli. J Bacteriol 183: 4435 – 4450.en_US
dc.identifier.citedreferenceBorel, A.C., and Simon, S.M. ( 1996 ) Biogenesis of polytopic membrane proteins: membrane segments assemble within translocation channels prior to membrane integration. Cell 85: 379 – 389.en_US
dc.identifier.citedreferenceBoyd, D., and Beckwith, J. ( 1989 ) Positively charged amino acid residues can act as topogenic determinants in membrane proteins. Proc Natl Acad Sci USA 86: 9446 – 9450.en_US
dc.identifier.citedreferenceBuron-Barral, M.C., Gosink, K.K., and Parkinson, J.S. ( 2006 ) Loss- and gain-of-function mutations in the F1-HAMP region of the Escherichia coli aerotaxis transducer Aer. J Bacteriol 188: 3477 – 3486.en_US
dc.identifier.citedreferenceChervitz, S.A., and Falke, J.J. ( 1996 ) Molecular mechanism of transmembrane signaling by the aspartate receptor: a model. Proc Natl Acad Sci USA 93: 2545 – 2550.en_US
dc.identifier.citedreferenceCrawford, J.A., Krukonis, E.S., and DiRita, V.J. ( 2003 ) Membrane localization of the ToxR winged-helix domain is required for TcpP-mediated virulence gene activation in Vibrio cholerae. Mol Microbiol 47: 1459 – 1473.en_US
dc.identifier.citedreferenceCserzo, M., Wallin, E., Simon, I., von Heijne, G., and Elofsson, A. ( 1997 ) Prediction of transmembrane alpha-helics in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng 10: 673 – 676.en_US
dc.identifier.citedreferenceFigurski, D.H., and Helinski, D.R. ( 1979 ) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76: 1648 – 1652.en_US
dc.identifier.citedreferenceFroshauer, S., Green, G.N., Boyd, D., McGovern, K., and Beckwith, J. ( 1988 ) Genetic analysis of the membrane insertion and topology of MalF, a cytoplasmic membrane protein of Escherichia coli. J Mol Biol 200: 501 – 511.en_US
dc.identifier.citedreferenceFrye, J., Karlinsey, J.E., Felise, H.R., Marzolf, B., Dowidar, N., McClelland, M., and Hughes, K.T. ( 2006 ) Identification of new flagellar genes of Salmonella enterica serovar Typhimurium. J Bacteriol 188: 2233 – 2243.en_US
dc.identifier.citedreferenceGeorgiou, C.D., Dueweke, T.J., and Gennis, R.B. ( 1988 ) Beta-galactosidase gene fusions as probes for the cytoplasmic regions of subunits I and II of the membrane-bound cytochrome d terminal oxidase from Escherichia coli. J Biol Chem 263: 13130 – 13137.en_US
dc.identifier.citedreferenceGilmore, R., and Blobel, G. ( 1985 ) Translocation of secretory proteins across the microsomal membrane occurs through an environment accessible to aqueous perturbants. Cell 42: 497 – 505.en_US
dc.identifier.citedreferenceGott, P., and Boos, W. ( 1988 ) The transmembrane topology of the sn-glycerol-3-phosphate permease of Escherichia coli analysed by phoA and lacZ protein fusions. Mol Microbiol 2: 655 – 663.en_US
dc.identifier.citedreferenceGuerry, P. ( 2007 ) Campylobacter flagella: not just for motility. Trends Microbiol 15: 456 – 461.en_US
dc.identifier.citedreferenceGuerry, P., Yao, R., Alm, R.A., Burr, D.H., and Trust, T.J. ( 1994 ) Systems of experimental genetics for Campylobacter species. Methods Enzymol 235: 474 – 481.en_US
dc.identifier.citedreferenceHendrixson, D.R., and DiRita, V.J. ( 2003 ) Transcription of sigma54-dependent but not sigma28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol Microbiol 50: 687 – 702.en_US
dc.identifier.citedreferenceHendrixson, D.R., Akerley, B.J., and DiRita, V.J. ( 2001 ) Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol Microbiol 40: 214 – 224.en_US
dc.identifier.citedreferenceHugle, T., Fehrmann, F., Bieck, E., Kohara, M., Krausslich, H.G., Rice, C.M., et al. ( 2001 ) The hepatitis C virus nonstructural protein 4B is an integral endoplasmic reticulum membrane protein. Virology 284: 70 – 81.en_US
dc.identifier.citedreferenceHulko, M., Berndt, F., Gruber, M., Linder, J.U., Truffault, V., Schultz, A., et al. ( 2006 ) The HAMP domain structure implies helix rotation in transmembrane signaling. Cell 126: 929 – 940.en_US
dc.identifier.citedreferenceKretzschmar, E., Bui, M., and Rose, J.K. ( 1996 ) Membrane association of influenza virus matrix protein does not require specific hydrophobic domains or the viral glycoproteins. Virology 220: 37 – 45.en_US
dc.identifier.citedreferenceManoil, C. ( 1990 ) Analysis of protein localization by use of gene fusions with complementary properties. J Bacteriol 172: 1035 – 1042.en_US
dc.identifier.citedreferenceManoil, C. ( 1991 ) Analysis of membrane protein topology using alkaline phosphatase and beta-galactosidase gene fusions. Methods Cell Biol 34: 61 – 75.en_US
dc.identifier.citedreferenceManoil, C., and Beckwith, J. ( 1986 ) A genetic approach to analyzing membrane protein topology. Science 233: 1403 – 1408.en_US
dc.identifier.citedreferenceMiller, J.H. ( 1972 ) Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.en_US
dc.identifier.citedreferenceMonne, M., Hermansson, M., and von Heijne, G. ( 1999a ) A turn propensity scale for transmembrane helices. J Mol Biol 288: 141 – 145.en_US
dc.identifier.citedreferenceMonne, M., Nilsson, I., Elofsson, A., and von Heijne, G. ( 1999b ) Turns in transmembrane helices: determination of the minimal length of a ‘helical hairpin’ and derivation of a fine-grained turn propensity scale. J Mol Biol 293: 807 – 814.en_US
dc.identifier.citedreferenceMoukhametzianov, R., Klare, J.P., Efremov, R., Baeken, C., Goppner, A., Labahn, J., et al. ( 2006 ) Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature 440: 115 – 119.en_US
dc.identifier.citedreferenceMyers, J.D., and Kelly, D.J. ( 2005 ) A sulphite respiration system in the chemoheterotrophic human pathogen Campylobacter jejuni. Microbiology 151: 233 – 242.en_US
dc.identifier.citedreferencePark, K., Choi, S., Ko, M., and Park, C. ( 2001 ) Novel sigmaF-dependent genes of Escherichia coli found using a specified promoter consensus. FEMS Microbiol Lett 202: 243 – 250.en_US
dc.identifier.citedreferenceParrish, J.R., Yu, J., Liu, G., Hines, J.A., Chan, J.E., Mangiola, B.A., et al. ( 2007 ) A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol 8: R130.en_US
dc.identifier.citedreferenceRebbapragada, A., Johnson, M.S., Harding, G.P., Zuccarelli, A.J., Fletcher, H.M., Zhulin, I.B., and Taylor, B.L. ( 1997 ) The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. Proc Natl Acad Sci USA 94: 10541 – 10546.en_US
dc.identifier.citedreferenceRepik, A., Rebbapragada, A., Johnson, M.S., Haznedar, J.O., Zhulin, I.B., and Taylor, B.L. ( 2000 ) PAS domain residues involved in signal transduction by the Aer redox sensor of Escherichia coli. Mol Microbiol 36: 806 – 816.en_US
dc.identifier.citedreferenceSambrook, J., Fritsch, E.F., and Maniatis, T. ( 1989 ) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.en_US
dc.identifier.citedreferenceSilhavy, T.J., and Beckwith, J.R. ( 1985 ) Uses of lac fusions for the study of biological problems. Microbiol Rev 49: 398 – 418.en_US
dc.identifier.citedreferenceTaylor, B.L. ( 2007 ) Aer on the inside looking out: paradigm for a PAS-HAMP role in sensing oxygen, redox and energy. Mol Microbiol 65: 1415 – 1424.en_US
dc.identifier.citedreferenceTaylor, B.L., and Zhulin, I.B. ( 1998 ) In search of higher energy: metabolism-dependent behaviour in bacteria. Mol Microbiol 28: 683 – 690.en_US
dc.identifier.citedreferenceTaylor, B.L., Zhulin, I.B., and Johnson, M.S. ( 1999 ) Aerotaxis and other energy-sensing behavior in bacteria. Annu Rev Microbiol 53: 103 – 128.en_US
dc.identifier.citedreferenceWatts, K.J., Ma, Q., Johnson, M.S., and Taylor, B.L. ( 2004 ) Interactions between the PAS and HAMP domains of the Escherichia coli aerotaxis receptor Aer. J Bacteriol 186: 7440 – 7449.en_US
dc.identifier.citedreferenceWeiner, M.P., Costa, G.L., Schoettlin, W., Cline, J., Mathur, E., and Bauer, J.C. ( 1994 ) Site-directed mutagenesis of double-stranded DNA by the polymerase chain reaction. Gene 151: 119 – 123.en_US
dc.identifier.citedreferenceWiesner, R.S., Hendrixson, D.R., and DiRita, V.J. ( 2003 ) Natural transformation of Campylobacter jejuni requires components of a type II secretion system. J Bacteriol 185: 5408 – 5418.en_US
dc.identifier.citedreferenceYao, R., Alm, R.A., Trust, T.J., and Guerry, P. ( 1993 ) Construction of new Campylobacter cloning vectors and a new mutational cat cassette. Gene 130: 127 – 130.en_US
dc.identifier.citedreferenceYoung, K.T., Davis, L.M., and DiRita, V.J. ( 2007 ) Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol 5: 665 – 679.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.