Show simple item record

Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework

dc.contributor.authorMcGill, Brian J.en_US
dc.contributor.authorEtienne, Rampal S.en_US
dc.contributor.authorGray, John S.en_US
dc.contributor.authorAlonso, Daviden_US
dc.contributor.authorAnderson, Marti J.en_US
dc.contributor.authorBenecha, Habtamu Kassaen_US
dc.contributor.authorDornelas, Mariaen_US
dc.contributor.authorEnquist, Brian J.en_US
dc.contributor.authorGreen, Jessica L.en_US
dc.contributor.authorHe, Fangliangen_US
dc.contributor.authorHurlbert, Allen H.en_US
dc.contributor.authorMagurran, Anne E.en_US
dc.contributor.authorMarquet, Pablo A.en_US
dc.contributor.authorMaurer, Brian A.en_US
dc.contributor.authorOstling, Annetteen_US
dc.contributor.authorSoykan, Candan U.en_US
dc.contributor.authorUgland, Karl I.en_US
dc.contributor.authorWhite, Ethan P.en_US
dc.date.accessioned2010-06-01T22:13:50Z
dc.date.available2010-06-01T22:13:50Z
dc.date.issued2007-10en_US
dc.identifier.citationMcGill, Brian J.; Etienne, Rampal S.; Gray, John S.; Alonso, David; Anderson, Marti J.; Benecha, Habtamu Kassa; Dornelas, Maria; Enquist, Brian J.; Green, Jessica L.; He, Fangliang; Hurlbert, Allen H.; Magurran, Anne E.; Marquet, Pablo A.; Maurer, Brian A.; Ostling, Annette; Soykan, Candan U.; Ugland, Karl I.; White, Ethan P. (2007). "Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework." Ecology Letters 10(10): 995-1015. <http://hdl.handle.net/2027.42/75247>en_US
dc.identifier.issn1461-023Xen_US
dc.identifier.issn1461-0248en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75247
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17845298&dopt=citationen_US
dc.format.extent1056651 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2007 Blackwell Publishing Ltd/CNRSen_US
dc.subject.otherEnvironmental Indicatorsen_US
dc.subject.otherMacroecologyen_US
dc.subject.otherScientific Inferenceen_US
dc.subject.otherSpecies Abundance Distributionsen_US
dc.titleSpecies abundance distributions: moving beyond single prediction theories to integration within an ecological frameworken_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USAen_US
dc.contributor.affiliationotherDepartment of Biology, McGill University, 1205 Ave Dr Penfield, Montreal, QC H3A 1B1, Canadaen_US
dc.contributor.affiliationotherCommunity and Conservation Ecology Group, University of Groningen, Haren, The Netherlandsen_US
dc.contributor.affiliationotherDepartment of Biology, University of Oslo, Oslo, Norwayen_US
dc.contributor.affiliationotherDepartment of Statistics, University of Auckland, Auckland, New Zealanden_US
dc.contributor.affiliationotherGatty Marine Laboratory, University of St Andrews, Fife, Scotlanden_US
dc.contributor.affiliationotherDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USAen_US
dc.contributor.affiliationotherSchool of Natural Sciences, University of California Merced, Merced, CA, USAen_US
dc.contributor.affiliationotherDepartment of Renewable Natural Resources, University of Alberta, Edmonton, Alberta, Canadaen_US
dc.contributor.affiliationotherNational Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, CA, USAen_US
dc.contributor.affiliationotherCenter for Advanced Studies in Ecology & Biodiversity (CASEB), Departamento de EcologÍa, Facultad de Ciencias BiolÍgicas, Pontificia Universidad CatÓlica de Chile, Alameda 340, Santiago, Chileen_US
dc.contributor.affiliationotherInstituto de EcologÍa y Biodiversidad (IEB), Departamento de Ciencias EcolÓgicas. Facultad de Ciencias, Universidad de Chile. Casilla 653, Santiago, Chileen_US
dc.contributor.affiliationotherSchool of Life Sciences, Arizona State University, Tempe, AZ, USAen_US
dc.identifier.pmid17845298en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75247/1/j.1461-0248.2007.01094.x.pdf
dc.identifier.doi10.1111/j.1461-0248.2007.01094.xen_US
dc.identifier.sourceEcology Lettersen_US
dc.identifier.citedreferenceAlonso, D., Etienne, R.S. & McKane, A.J. ( 2006 ). The merits of neutral theory. Trends Ecol. Evol., 21, 451 – 457.en_US
dc.identifier.citedreferenceAtmar, W. & Patterson, B.D. ( 1993 ). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96, 373 – 382.en_US
dc.identifier.citedreferenceBakkes, J.A. ( 1994 ). An Overview of Environmental Indicators: State of the art and Perspectives. UNEP/Earthprint, Bilthaven, Netherlands.en_US
dc.identifier.citedreferenceBazzaz, F.A. ( 1975 ). Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology, 56, 485 – 488.en_US
dc.identifier.citedreferenceBell, G. ( 2000 ). The distribution of abundance in neutral communities. Am. Nat., 155, 606 – 617.en_US
dc.identifier.citedreferenceBell, G. ( 2001 ). Neutral macroecology. Science, 293, 2413 – 2418.en_US
dc.identifier.citedreferenceBell, G. ( 2003 ). The interpretation of biological surveys. Proc. R Soc. Lond. B, 270, 2531 – 2542.en_US
dc.identifier.citedreferenceBorda-de-Agua, L., Hubbell, S.P. & McAllister, M. ( 2002 ). Species-area curves, diversity indices, and species abundance distributions: A multifractal analysis. Am. Nat., 159, 138 – 155.en_US
dc.identifier.citedreferenceBoswell, M.T. & Patil, G.P. ( 1971 ). Chance mechanisms generating the logarithmic series distribution used in the analysis of number of species and individuals. In: Statistical Ecology, Volume I, Spatial Patterns and Statistical Distirbutions ( eds Patil, G.P., Pielou, E.C. & Waters, W.E. ). Pennsylvania State University Press, University Park, PA, pp. 99 – 130.en_US
dc.identifier.citedreferenceBrian, M.V. ( 1953 ). Species frequencies in random samples from animal populations. J. Anim. Ecol., 22, 57 – 64.en_US
dc.identifier.citedreferenceBrown, J.H., Mehlman, D.H. & Stevens, G.C. ( 1995 ). Spatial variation in abundance. Ecology, 76, 2028 – 2043.en_US
dc.identifier.citedreferenceBulmer, M.G. ( 1974 ). Fitting poisson lognormal distribution to species-abundance data. Biometrics, 30, 101 – 110.en_US
dc.identifier.citedreferenceBurnham, K.P. & Anderson, D.R. ( 1998 ). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd edn. Springer, New York, NY.en_US
dc.identifier.citedreferenceCaswell, H. ( 1976 ). Community structure: a neutral model analysis. Ecol. Monogr., 46, 327 – 354.en_US
dc.identifier.citedreferenceChave, J. ( 2004 ). Neutral theory and community ecology. Ecol. Lett., 7, 241 – 253.en_US
dc.identifier.citedreferenceChiarucci, A., Wilson, J.B., Anderson, B.J. & De Dominicis, V. ( 1999 ). Cover versus biomass as an estimate of species abundance: does it make a difference to the conclusions? J. Veg. Sci., 10, 35 – 42.en_US
dc.identifier.citedreferenceChu, J. & Adami, C. ( 1999 ). A simple explanation for taxon abundance patterns. Int. Natl Acad. Sci., 96, 15017 – 15019.en_US
dc.identifier.citedreferenceClarke, K.R. & Warwick, R.M. ( 2001 ). Change in Marine Communities: An Approach to Statistical Analysis and Interpretation (PRIMER-E). Plymouth Marine Laboratory, Plymouth, UK.en_US
dc.identifier.citedreferenceCohen, A.C. ( 1949 ). On estimating the mean and standard deviation of truncated normal distributions. J. Am. Stat. Assoc., 44, 518 – 525.en_US
dc.identifier.citedreferenceCohen, J.E. ( 1968 ). Alternate derivations of a species-abundance relation. Am. Nat., 102, 165.en_US
dc.identifier.citedreferenceColeman, B. ( 1981 ). Random placement and species area relations. Math. Biosci., 54, 191 – 215.en_US
dc.identifier.citedreferenceCondit, R., Hubbell, S.P., LaFrankie, J.V., Sukumar, R., Manokaran, N., Foster, R.B. et al. ( 1996 ). Species–area and species–individual relationships for tropical trees: a comparison of three 50-ha plots. J. Ecol., 84, 549 – 562.en_US
dc.identifier.citedreferenceCondit, R., Ashton, P.S., Baker, P., Bunyavejchewin, S., Gunatilleke, S., Gunatilleke, N. et al. ( 2000 ). Spatial patterns in the distribution of tropical tree species. Science, 288, 1414 – 1418.en_US
dc.identifier.citedreferenceConnolly, S.R., Hughes, T.P., Bellwood, D.R. & Karlson, R.H. ( 2005 ). Community structure of corals and reef fishes at multiple scales. Science, 309, 1363 – 1365.en_US
dc.identifier.citedreferenceConnor, E.F. & McCoy, E.D. ( 1979 ). The statistics and biology of the species–area relationship. Am. Nat., 113, 791 – 833.en_US
dc.identifier.citedreferenceCotgreave, P. & Harvey, P.H. ( 1994 ). Evennes of abundance in bird communities. J. Anim. Ecol., 63, 365 – 374.en_US
dc.identifier.citedreferenceDamuth, J. ( 1981 ). Population density and body size in mammals. Nature, 290, 699 – 700.en_US
dc.identifier.citedreferenceDamuth, J. ( 1991 ). Of size and abundance. Nature, 351, 268 – 269.en_US
dc.identifier.citedreferenceDarwin, C. ( 1859 ). On the Origin of Species. Clows and Sons, London.en_US
dc.identifier.citedreferenceDennis, B. & Patil, G.P. ( 1984 ). The gamma distribution and weighted multimodal gamma distributions as models of population abundance. Math. Biosci., 68, 187 – 212.en_US
dc.identifier.citedreferenceDennis, B. & Patil, G.P. ( 1988 ). Applications in ecology. In: Lognormal Distributions: Theory and Applications ( eds Crow, E.L. & Shimizu, K. ). Marcel Dekker, New York, pp. 303 – 330.en_US
dc.identifier.citedreferenceDewdney, A.K. ( 1998 ). A general theory of the sampling process with applications to the ‘veil line’. Theor. Popul. Biol., 54, 294 – 302.en_US
dc.identifier.citedreferenceDewdney, A.K. ( 2000 ). A dynamical model of communities and a new species-abundance distribution. Biol. Bull., 198, 152 – 165.en_US
dc.identifier.citedreferenceDiserud, O.H. & Engen, S. ( 2000 ). A general and dynamic species abundance model, embracing the lognormal and the gamma models. Am. Nat., 155, 497 – 511.en_US
dc.identifier.citedreferenceDornelas, M., Connolly, S.R. & Hughes, T.P. ( 2006 ). Coral reef diversity refutes the neutral theory of biodiversity. Nature, 440, 80 – 82.en_US
dc.identifier.citedreferenceEngen, S. & Lande, R. ( 1996a ). Population dynamic models generating species abundance distributions of the gamma type. J. Theor. Biol., 178, 325 – 331.en_US
dc.identifier.citedreferenceEngen, S. & Lande, R. ( 1996b ). Population dynamic models generating the lognormal species abundance distribution. Math. Biosci., 132, 169 – 183.en_US
dc.identifier.citedreferenceEngen, S., Lande, R., Walla, T. & DeVries, P.J. ( 2002 ). Analyzing spatial structure of communities using the two-dimensional poisson lognormal species abundance model. Am. Nat., 160, 60 – 73.en_US
dc.identifier.citedreferenceEnquist, B.J., Sanderson, J. & Weiser, M.D. ( 2002 ). Modeling macroscopic patterns in ecology. Science, 295, 1835 – 1837.en_US
dc.identifier.citedreferenceEtienne, R.S. ( 2005 ). A new sampling formula for neutral biodiversity. Ecol. Lett., 8, 253 – 260.en_US
dc.identifier.citedreferenceEtienne, R.S. ( 2007 ). A neutral sampling formula for multiple samples and an ‘exact’ test of neutrality. Ecol. Lett., 10, 608 – 618.en_US
dc.identifier.citedreferenceEtienne, R.S. & Alonso, D. ( 2005 ). A dispersal-limited sampling theory for species and alleles. Ecol. Lett., 8, 1147 – 1156.en_US
dc.identifier.citedreferenceEtienne, R.S. & Olff, H. ( 2004a ). How dispersal limitation shapes species-body size distributions in local communities. Am. Nat., 163, 69 – 83.en_US
dc.identifier.citedreferenceEtienne, R.S. & Olff, H. ( 2004b ). A novel genealogical approach to neutral biodiversity theory. Ecol. Lett., 7, 170 – 175.en_US
dc.identifier.citedreferenceEtienne, R.S. & Olff, H. ( 2005 ). Confronting different models of community structure to species-abundance data: a Bayesian model comparison. Ecol. Lett., 8, 493 – 504.en_US
dc.identifier.citedreferenceEtienne, R.S., Alonso, D. & McKane, A.J. ( 2007a ). The zero-sum assumption in neutral biodiversity theory. J. Theor. Biol., http://dx.doi.org/10.1016/j.jtbi.2007.06.010.en_US
dc.identifier.citedreferenceEtienne, R.S., Apol, M.E.F., Olff, H. & Weissing, F.J. ( 2007b ). Modes of speciation and the neutral theory of biodiversity. Oikos, 116, 241 – 258.en_US
dc.identifier.citedreferenceEvans, M., Hastings, N. & Peacock, B. ( 1993 ). Statistical Distributions, 2nd edn. John Wiley & Sons, New York.en_US
dc.identifier.citedreferenceFauth, J.E., Bernardo, J., Camara, M., Resetarits, W.J., Jr, Buskirk, J.V. & McCollum, S.A. ( 1996 ). Simplifying the jargon of community ecology: a conceptual approach. Am. Nat., 147, 282 – 286.en_US
dc.identifier.citedreferenceFischer, J. & Lindenmayer, D.B. ( 2002 ). Treating the nestedness temperature calculator as a ‘black box’ can lead to false conclusions. Oikos, 99, 193 – 199.en_US
dc.identifier.citedreferenceFisher, R.A., Corbet, A.S. & Williams, C.B. ( 1943 ). The relation between the number of species and the number of individuals in a random sample from an animal population. J. Anim. Ecol., 12, 42 – 58.en_US
dc.identifier.citedreferenceFrontier, S. ( 1994 ). Species-diversity as a fractal property of biomass. In: Fractals in the Natural and Applied Sciences ( ed. Novak, M. ) North-Holland Publishing, Amsterdam, pp. 119 – 127.en_US
dc.identifier.citedreferenceFrontier, S. ( 1985 ). Diversity and structure in aquatic ecosystems. Oceanogr. Mar. Biol., 23, 253 – 312.en_US
dc.identifier.citedreferenceGalton, F. ( 1879 ). The geometric mean in vital and social statistics. Proc. R Soc. Lond., 29, 365 – 367.en_US
dc.identifier.citedreferenceGaston, K.J. ( 1996 ). The multiple forms of the interspecific abundance-distribution relationship. Oikos, 76, 211 – 220.en_US
dc.identifier.citedreferenceGaston, K.J., Blackburn, T.M., Greenwood, J.J.D., Gregory, R.D., Quinn, R.M. & Lawton, J.H. ( 2000 ). Abundance-occupancy relationships. J. Appl. Ecol., 37, S39 – S59.en_US
dc.identifier.citedreferenceGauch, H.G.J. & Whittaker, R.H. ( 1972 ). Coencline simulation. Ecology, 53, 446 – 451.en_US
dc.identifier.citedreferenceGilbert, B., Laurance, W.F., Leigh, E.G., Jr & Nascimento, H.E. ( 2006 ). Can neutral theory predict the responses of amazonian tree communities to forest fragmentation? Am. Nat., 168, 304 – 317.en_US
dc.identifier.citedreferenceGotelli, N.J. & Colwell, R.K. ( 2001 ). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett., 4, 379 – 391.en_US
dc.identifier.citedreferenceGray, J.S. ( 1979 ). Pollution-induced changes in populations. Philos. Trans. R Soc. Lond. B, 286, 545 – 561.en_US
dc.identifier.citedreferenceGray, J.S. ( 1987 ). Species-abundance patterns. In: Organization of Communities Past and Present ( eds Gee, J.H.R. & Giller, P.S. ). Blackwell Science, Oxford, pp. 53 – 68.en_US
dc.identifier.citedreferenceGray, J.S., Bjorgesaeter, A. & Ugland, K.I. ( 2005 ). The impact of rare species on natural assemblages. J. Anim. Ecol., 74, 1131 – 1139.en_US
dc.identifier.citedreferenceGray, J.S., Bjorgesaeter, A. & Ugland, K.I. ( 2006 ). On plotting species abundance distributions. J. Anim. Ecol., 75, 752 – 756.en_US
dc.identifier.citedreferenceGreen, J.L. & Plotkin, J.B. ( 2007 ). A statistical theory for sampling species abundances. Ecol. Lett., 10, doi :.en_US
dc.identifier.citedreferenceGreen, J.L., Harte, J. & Ostling, A. ( 2003 ). Species richness, endemism and abundance patterns: tests of two fractal models in a serpentine grassland. Ecol. Lett., 6, 919 – 928.en_US
dc.identifier.citedreferenceGregory, R.D. ( 2000 ). Abundance patterns of European breeding birds. Ecography, 23, 201 – 208.en_US
dc.identifier.citedreferenceHamer, K.C., Hill, J.K., Lace, L.A. & Langan, A.M. ( 1997 ). Ecological and biogeographical effects of forest disturbance on tropical butterflies of Sumba Indonesia. J. Biogeogr., 24, 67 – 75.en_US
dc.identifier.citedreferenceHanski, I. ( 1982 ). Dynamics of regional distribution: the core and satellite species hypothesis. Oikos, 38, 210 – 221.en_US
dc.identifier.citedreferenceHanski, I. & Gyllenberg, M. ( 1997 ). Uniting two general patterns in the distribution of species. Science, 275, 397 – 400.en_US
dc.identifier.citedreferenceHarte, J., Kinzig, A.P. & Green, J. ( 1999 ). Self-similarity in the distribution and abundance of species. Science, 284, 334 – 336.en_US
dc.identifier.citedreferenceHarte, J., Conlisk, E., Ostling, A., Green, J.L. & Smith, A.B. ( 2005 ). A theory of spatial structure in ecological communities at multiple spatial scales. Ecol. Monogr., 75, 179 – 197.en_US
dc.identifier.citedreferenceHe, F.L. & Legendre, P. ( 2002 ). Species diversity patterns derived from species–area models. Ecology, 83, 1185 – 1198.en_US
dc.identifier.citedreferenceHe, F., Gaston, K.J. & Wu, J. ( 2002 ). On species occupancy-abundance models. Ecoscience, 9, 119 – 126.en_US
dc.identifier.citedreferenceHeck, K.L.J., Van Belle, G. & Simberloff, D. ( 1975 ). Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology, 56, 1459 – 1461.en_US
dc.identifier.citedreferenceHengeveld, R. & Haeck, J. ( 1981 ). The distribution of abundance II Models and implications. Proc. K. Ned. Akad. Wet. C, 84, 257 – 284.en_US
dc.identifier.citedreferenceHengeveld, R., Kooijman, S.A.L.M. & Taillie, C. ( 1979 ). A spatial model explaining species-abundance curves. In: Statistical Distributions in Ecological Work ( eds Ord, J.K., Patil, G.P. & Taillie, C. ). International Co-operative Publishing House, Fairland, MD, pp. 337 – 347.en_US
dc.identifier.citedreferenceHill, J.K., Hamer, K.C., Lace, L.A. & Banham, W.M.T. ( 1995 ). Effects of selective logging on tropical forest butterflies on Buru, Indonesia. J. Appl. Ecol., 32, 754 – 760.en_US
dc.identifier.citedreferenceHoagland, B.W. & Collins, S.L. ( 1997 ). Gradient models, gradient analysis, and hierarchical structure in plant communities. Oikos, 78, 23 – 30.en_US
dc.identifier.citedreferenceHubbell, S.P. ( 1979 ). Tree dispersion, abundance and diversity in a tropical dry forest. Science, 203, 1299 – 1309.en_US
dc.identifier.citedreferenceHubbell, S.P. ( 2001 ). A Unified Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.en_US
dc.identifier.citedreferenceHubbell, S.P. ( 2006 ). Neutral theory and the evolution of ecological equivalence. Ecology, 87, 1387 – 1398.en_US
dc.identifier.citedreferenceHughes, R.G. ( 1986 ). Theories and models of species abundance. Am. Nat., 128, 879 – 899.en_US
dc.identifier.citedreferenceHurlbert, S.H. ( 1971 ). The nonconcept of species diversity: a critque and alternative parameters. Ecology, 52, 577 – 586.en_US
dc.identifier.citedreferenceHurlbert, A.H. ( 2004 ). Species–energy relationships and habitat complexity. Ecol. Lett., 7, 714 – 720.en_US
dc.identifier.citedreferenceKempton, R.A. & Taylor, L.R. ( 1974 ). Log-series and log-normal parameters as diversity discriminants for lepidoptera. J. Anim. Ecol., 43, 381 – 399.en_US
dc.identifier.citedreferenceKendall, D.G. ( 1948a ). On some modes of population growth leading to Fisher, R.A. logarithmic series distribution. Biometrika, 35, 6 – 15.en_US
dc.identifier.citedreferenceKendall, D.G. ( 1948b ). On the generalized ‘birth-and-death’ process. Ann. Math. Stat., 19, 1 – 15.en_US
dc.identifier.citedreferenceLabra, F.A., Abades, S. & Marquet, P.A. ( 2005 ). Distribution and abundance: scaling patterns in exotic and native bird species. In: Species Invasions. Insights Into Ecology, Evolution and Biogeography ( eds Sax, D.F., Stachowicz, J.J. & Gaines, S.D. ). Sinauer Associates, Sunderland, MA, pp. 421 – 446.en_US
dc.identifier.citedreferenceLakatos, I. ( 1978 ). Introduction: science and pseudoscience. In: The Methodology of Scientific Research Programs ( eds Worrall, J. & Currie, G. ). Cambridge University Press, Cambridge, pp. 1 – 8.en_US
dc.identifier.citedreferenceLambshead, P.J.D., Platt, H.M. & Shaw, K.M. ( 1983 ). The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J. Nat. His., 17, 859 – 874.en_US
dc.identifier.citedreferenceLatimer, A.M., Silander, J.A. & Cowling, R.M. ( 2005 ). Neutral ecological theory reveals isolation and rapid speciation in a biodiversity hot spot. Science, 309, 1722 – 1725.en_US
dc.identifier.citedreferenceLawton, J.H. ( 1993 ). Range, population abundance and conservation. Trends Ecol. Evol., 8, 409 – 413.en_US
dc.identifier.citedreferenceLevin, S.A. ( 1992 ). The problem of pattern and scale in ecology. Ecology, 73, 1943 – 1967.en_US
dc.identifier.citedreferenceLewontin, R.C., Ginzburg, L.R. & Tuljapurkar, S.D. ( 1978 ). Heterosis as an explanation for large amounts of genic polymorphism. Genetics, 88, 149 – 170.en_US
dc.identifier.citedreferenceMac Nally, R. ( 2007 ). Use of the abundance spectrum and relative-abundance distributions to analyze assemblage change in massively altered landscapes. Am. Nat., in press.en_US
dc.identifier.citedreferenceMacArthur, R. ( 1957 ). On the relative abundance of bird species. Proc. Natl Acad. Sci., 43, 293 – 295.en_US
dc.identifier.citedreferenceMacArthur, R. ( 1960 ). On the relative abundance of species. Am. Nat., 94, 25 – 36.en_US
dc.identifier.citedreferenceMacArthur, R. ( 1966 ). Note on Mrs Pielou’s comments. Ecology, 47, 1074.en_US
dc.identifier.citedreferenceMacLachlan, G. & Peel, D. ( 2000 ). Finite Mixture Models. John Wiley & Sons, New York.en_US
dc.identifier.citedreferenceMagurran, A.E. ( 2004 ). Measuring Biological Diversity, 2nd edn. Blackwell, Oxford.en_US
dc.identifier.citedreferenceMagurran, A.E. ( 2005 ). Species abundance distributions: pattern or process? Funct. Ecol., 19, 177 – 181.en_US
dc.identifier.citedreferenceMagurran, A.E. ( 2007 ). Species abundance distributions over time. Ecol. Lett., 10, 347 – 354.en_US
dc.identifier.citedreferenceMagurran, A.E. & Henderson, P.A. ( 2003 ). Explaining the excess of rare species in natural species abundance distributions. Nature, 422, 714 – 716.en_US
dc.identifier.citedreferenceMandelbrot, B. ( 1965 ). Information theory and psycholinguistics. In: Scientific Psychology: Principles and Applications, ( edn Wolman, B.A. & Nagel, E.N. ). Basic Books, New York, pp. 350 – 368.en_US
dc.identifier.citedreferenceMarks, C.O. & Lechowicz, M.J. ( 2006 ). Alternative designs and the evolution of functional diversity. Am. Nat., 167, 55 – 66.en_US
dc.identifier.citedreferenceMarquet, P.A., Navarrete, S.A. & Castilla, J.C. ( 1990 ). Scaling population density to body size in rocky intertidal communities. Science, 250, 1125 – 1127.en_US
dc.identifier.citedreferenceMarquet, P.A., Keymer, J.A. & Cofre, H. ( 2003 ). Breaking the stick in space: of niche models, metacommunities and patterns in the relative abundance of species. In: Macroecology: Concepts and Consequences ( eds Blackburn, T.M. & Gaston, K.J. ). Blackwell Science, Oxford, pp. 64 – 86.en_US
dc.identifier.citedreferenceMarquet, P.A., FernÁndez, M., Navarrete, S.A. & Valdivinos, C. ( 2004 ). Diversity emerging: towards a deconstruction of biodiversity patterns. In: Frontiers of Biogeography: New Directions in the Geography of Nature ( ed Heaney, M.L.a.L.R. ). Cambridge University Press, Cambridge, pp. 192 – 209.en_US
dc.identifier.citedreferenceMartinez, W.L. & Martinez, A.R. ( 2002 ). Computational Statistics Handbook With MATLAB. Chapman & Hall/CRC, Boca Raton.en_US
dc.identifier.citedreferenceMaurer, B.A. ( 1990 ). The relationship between distribution and abundance in a patchy environment. Oikos, 58, 181 – 189.en_US
dc.identifier.citedreferenceMay, R.M. ( 1975 ). Patterns of species abundance and diversity. In: Ecology and Evolution of Communities ( eds Cody, M.L. & Diamond, J.M. ). Belknap Press of Harvard University Press, Cambridge MA, pp. 81 – 120.en_US
dc.identifier.citedreferenceMcAlister, D. ( 1879 ). The law of the geometric mean. Proc. R Soc. Lond., 29, 367 – 376.en_US
dc.identifier.citedreferenceMcGill, B. ( 2003a ). Strong and weak tests of macroecological theory. Oikos, 102, 679 – 685.en_US
dc.identifier.citedreferenceMcGill, B.J. ( 2003b ). Does Mother Nature really prefer rare species or are log-left-skewed SADs a sampling artefact? Ecol. Lett., 6, 766 – 773.en_US
dc.identifier.citedreferenceMcGill, B.J. ( 2003c ). A test of the unified neutral theory of biodiversity. Nature, 422, 881 – 885.en_US
dc.identifier.citedreferenceMcGill, B.J. ( 2006 ). A renaissance in the study of abundance. Science, 314, 770 – 771.en_US
dc.identifier.citedreferenceMcGill, B. & Collins, C. ( 2003 ). A unified theory for macroecology based on spatial patterns of abundance. Evol. Ecol. Res., 5, 469 – 492.en_US
dc.identifier.citedreferenceMcGill, B.J., Hadly, E.A. & Maurer, B.A. ( 2005 ). Community inertia of Quaternary small mammal assemblages in North America. Proc. Natl Acad. Sci., 102, 16701 – 16706.en_US
dc.identifier.citedreferenceMcGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. ( 2006a ). Rebuilding community ecology from functional traits. Trends Ecol. Evol., 21, 178 – 185.en_US
dc.identifier.citedreferenceMcGill, B.J., Maurer, B.A. & Weiser, M.D. ( 2006b ). Empirical evaluation of the neutral theory. Ecology, 87, 1411 – 1423.en_US
dc.identifier.citedreferenceMotomura, I. ( 1932 ). On the statistical treatment of communities. Zool. Mag., 44, 379 – 383.en_US
dc.identifier.citedreferenceMouillot, D. & Lepretre, A. ( 2000 ). Introduction of relative abundance distribution (RAD) indices, estimated from the rank-frequency diagrams (RFD), to assess changes in community diversity. Environ. Monit. Assess., 63, 279 – 295.en_US
dc.identifier.citedreferenceMouillot, D., Lepretre, A., Andrei-Ruiz, M.C. & Viale, D. ( 2000 ). The Fractal model: a new model to describe the species accumulation process and relative abundance distribution (RAD). Oikos, 90, 333 – 342.en_US
dc.identifier.citedreferenceMunoz, F., Couteron, P., Ramesh, B. & Etienne, R. ( 2007 ). Estimating parameters of neutral communities: from one single large to several small samples. Ecology, ( in press ).en_US
dc.identifier.citedreferenceMurray, B.R. & Westoby, M. ( 2000 ). Properties of species in the tail of rank-abundance curves: the potential for increase in abundance. Evol. Ecol. Res., 2, 583 – 592.en_US
dc.identifier.citedreferenceMurray, B.R., Rice, B.L., Keith, D.A., Myerscough, P.J., Howell, J., Floyd, A.G. et al. ( 1999 ). Species in the tail of rank-abundance curves. Ecology, 80, 1806 – 1816.en_US
dc.identifier.citedreferenceMurray, B.R., Thrall, P.H., Gill, A.M. & Nicotra, A.B. ( 2002 ). How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Aust. Ecol., 27, 291 – 310.en_US
dc.identifier.citedreferenceNee, S. ( 2003 ). The unified phenomenological theory of biodiversity. In: Macroecology: Concepts and Consequences ( eds Blackburn, T.M. & Gaston, K.J. ). Blackwell Science, Oxford, pp. 31 – 44.en_US
dc.identifier.citedreferenceNee, S., Harvey, P.H. & May, R.M. ( 1991 ). Lifting the veil on abundance patterns. Proc. R Soc Lond Ser. B Biol. Sci., 243, 161 – 163.en_US
dc.identifier.citedreferenceNekola, J.C. & Brown, J.H. ( 2007 ). The wealth of species: ecological communities, complex systems and the legacy of Frank Preston. Ecol. Lett., 10, 188 – 196.en_US
dc.identifier.citedreferenceOckham, W.. ( 1495 ). Quaestiones et decisiones in quattuor libros Sententiarum Petri Lombardi Editioni Lugdenensi, i, dist. 27, qu. 2, K.en_US
dc.identifier.citedreferenceOlszewski, T.D. ( 2004 ). A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos, 104, 377 – 387.en_US
dc.identifier.citedreferencePatil, G.P. & Taillie, C. ( 1982 ). Diversity as a concept and its measurement. J. Am. Stat. Assoc., 77, 548 – 561.en_US
dc.identifier.citedreferencePeters, R.H. ( 1991 ). A Critique for Ecology. Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferencePielou, E.C. ( 1975 ). Ecological Diversity. John Wiley & Sons, New York.en_US
dc.identifier.citedreferencePielou, E.C. ( 1977 ). Mathematical Ecology. John Wiley & Sons, New York.en_US
dc.identifier.citedreferencePlatt, J.R. ( 1964 ). Strong inference. Science, 146, 347 – 353.en_US
dc.identifier.citedreferencePlotkin, J.B. & Muller-Landau, H.C. ( 2002 ). Sampling the species composition of a landscape. Ecology, 83, 3344 – 3356.en_US
dc.identifier.citedreferencePreston, F.W. ( 1948 ). The commonness and rarity of species. Ecology, 29, 254 – 283.en_US
dc.identifier.citedreferencePreston, F.W. ( 1960 ). Time and space and the variation of species. Ecology, 41, 611 – 627.en_US
dc.identifier.citedreferencePueyo, S. ( 2006 ). Diversity: between neutrality and structure. Oikos, 112, 392 – 405.en_US
dc.identifier.citedreferenceRaunkiaer, C. ( 1909 ). Formationsundersogelse og Formationsstatistik. Bot. Tidskr., 30, 20 – 132.en_US
dc.identifier.citedreferenceRicklefs, R.E. ( 2003 ). A comment on Hubbell’s zero-sum ecological drift model. Oikos, 100, 185 – 192.en_US
dc.identifier.citedreferenceRiitters, K.H., O’Neill, R.V., Hunsaker, C.T., Wickham, J.D., Yankee, D.H., Timmins, S.P. et al. ( 1995 ). A factor analysis of landscape pattern and structure metrics. Landsc. Ecol., 10, 23 – 39.en_US
dc.identifier.citedreferenceRobbins, C.S., Bystrak, D. & Geissler, P.H. ( 1986 ). The Breeding Bird Survey: Its First Fifteen Years, 1965–1979. US Department of the Interior Fish and Wildlife Service, Washington, DC.en_US
dc.identifier.citedreferenceRosenzweig, M.L. ( 1995 ). Species Diversity in Space and Time. Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferenceRosenzweig, M.L. & Abramsky, Z. ( 1997 ). Two gerbils of the Negev: a long-term investigation of optimal habitat selection and its consequences. Evol. Ecol., 11, 733 – 756.en_US
dc.identifier.citedreferenceRosenzweig, M.L. & Lomolino, M.V. ( 1997 ). Who gets the short bits of the broken stick. In: The Biology of Rarity: Causes and Consequences of Rare-Common Differences ( eds Kunin, W.E. & Gaston, K.J. ). Chapman & Hall, London, pp. 63 – 90.en_US
dc.identifier.citedreferenceRosindell, J. & Cornell, S.J. ( 2007 ). Species-area relationships from a spatially explicit neutral model in an infinite landscape. Ecol. Lett., 7, 586 – 595.en_US
dc.identifier.citedreferenceRusso, S.E., Robinson, S.K. & Terborgh, J. ( 2003 ). Size-abundance relationships in an amazonian bird community: implications for the energetic equivalence rule. Am. Nat, 161, 267 – 283.en_US
dc.identifier.citedreferenceSanders, H.L. ( 1968 ). Marine benthic diversity: a comparative study. Am. Nat., 102, 243 – 282.en_US
dc.identifier.citedreferenceSavage, V.M., Gillooly, J.F., Brown, J.H., West, G.B. & Charnov, E.L. ( 2004 ). Effects of body size and temperature on population growth. Am. Nat., 163, 429 – 441.en_US
dc.identifier.citedreferenceShipley, B., Vile, D. & Garnier, E. ( 2006 ). From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science, 314, 812 – 814.en_US
dc.identifier.citedreferenceSimberloff, D.S. ( 1972 ). Properties of the rarefaction diversity measurement. Am. Nat., 106, 414 – 418.en_US
dc.identifier.citedreferenceSimon, H.A. ( 1955 ). On a class of skew distribution functions. Biometrika, 42, 425 – 440.en_US
dc.identifier.citedreferenceSoule, M.E. ( 1986 ). Conservation Biology: The Science of Scarcity and Diversity. Sinauer Associates, Sunderland, MA.en_US
dc.identifier.citedreferenceSouthwood, T.R.E. ( 1996 ). The Croonian lecture, 1995: natural communities: structure and dynamics. Philos. Trans. Biol. Sci., 351, 1113 – 1129.en_US
dc.identifier.citedreferenceStirling, G. & Wilsey, B. ( 2001 ). Empirical relationships between species richness, evenness, and proportional diversity. Am. Nat., 158, 286 – 299.en_US
dc.identifier.citedreferenceSugihara, G. ( 1980 ). Minimal community structure: an explanation of species-abundance patterns. Am. Nat., 116, 770 – 787.en_US
dc.identifier.citedreferenceSugihara, G., Bersier, L.F., Southwood, T.R.E., Pimm, S.L. & May, R.M. ( 2003 ). Predicted correspondence between species abundances and dendrograms of niche similarities. Proc. Natl Acad. Sci. USA., 100, 5246 – 5251.en_US
dc.identifier.citedreferenceThibault, K.M., White, E.P. & Ernest, S.K.M. ( 2004 ). Temporal dynamics in the structure and composition of a desert rodent community. Ecology, 85, 2649 – 2655.en_US
dc.identifier.citedreferenceTokeshi, M. ( 1993 ). Species abundance patterns and community structure. Adv. Ecol. Res., 24, 111 – 186.en_US
dc.identifier.citedreferenceTokeshi, M. ( 1996 ). Power fraction: a new explanation of relative abundance patterns in species-rich assemblages. Oikos, 75, 543 – 550.en_US
dc.identifier.citedreferenceTuljapurkar, S.D. ( 1990 ). Population Dynamics in Variable Environments. Springer-Verlag, New York.en_US
dc.identifier.citedreferenceUgland, K.I. & Gray, J.S. ( 1982 ). Lognormal distributions and the concept of community equilibrium. Oikos, 39, 171 – 178.en_US
dc.identifier.citedreferenceUgland, K.I. & Gray, J.S. ( 1983 ). Reanalysis of Caswell’s neutral models. Ecology, 64, 603 – 605.en_US
dc.identifier.citedreferenceUgland, K.I., Gray, J.S. & Ellingsen, K.E. ( 2003 ). The species-accumulation curve and estimation of species richness. J. Anim. Ecol., 72, 888 – 897.en_US
dc.identifier.citedreferenceUgland, K.I., Lambshead, P.J.D., McGill, B., Gray, J.S., O’Dea, N., Ladle, R.J. et al. ( 2007 ). Modelling dimensionality in species abundance distributions: description and evaluation of the Gambin model. Evol. Ecol. Res., 9, 1 – 12.en_US
dc.identifier.citedreferenceUlrich, W. & Ollik, M. ( 2004 ). Frequent and occasional species and the shape of relative-abundance distributions. Divers. Distrib., 10, 263 – 269.en_US
dc.identifier.citedreferenceVolkov, I., Banavar, J.R., Hubbell, S.P. & Maritan, A. ( 2003 ). Neutral theory and relative species abundance in ecology. Nature, 424, 1035 – 1037.en_US
dc.identifier.citedreferenceWarwick, R.M. ( 1986 ). A new method for detecting pollution effects on marine macrobenthic communities. Mar. Biol., 92, 557 – 562.en_US
dc.identifier.citedreferenceWatterson, G.A. ( 1974 ). The sampling theory of selectively neutral alleles. Adv. Appl. Probability, 6, 463 – 488.en_US
dc.identifier.citedreferenceWebb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. ( 2002 ). Phylogenies and community ecology. Annu. Rev. Ecol. Syst., 33, 475 – 505.en_US
dc.identifier.citedreferenceWeiher, E. & Keddy, P.A. ( 1999 ). Relative abundance and evenness patterns along diversity and biomass gradients. Oikos, 87, 355.en_US
dc.identifier.citedreferenceWhite, E.P., Ernest, S.K.M., Kerkhoff, A.J. & Enquist, B.J. ( 2007 ). Relationships between body size and abundance in ecology. Trends Ecol. Evol., 22, 323 – 330.en_US
dc.identifier.citedreferenceWhittaker, R.H. ( 1960 ). Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr., 30, 279 – 338.en_US
dc.identifier.citedreferenceWhittaker, R.H. ( 1965 ). Dominance and diversity in land plant communities. Science, 147, 250 – 260.en_US
dc.identifier.citedreferenceWhittaker, R.H. ( 1967 ). Gradient analysis of vegetation. Biol. Rev., 42, 207 – 264.en_US
dc.identifier.citedreferenceWhittaker, R.H. ( 1975 ). Communities and Ecosystems, 2nd edn. MacMillan Publishers, New York.en_US
dc.identifier.citedreferenceWiens, J.A. ( 1989 ). Spatial scaling in ecology. Funct. Ecol., 3, 385 – 397.en_US
dc.identifier.citedreferenceWilliams, C.B. ( 1964 ). Patterns in the Balance of Nature. Academic Press, London.en_US
dc.identifier.citedreferenceWilliamson, M. & Gaston, K.J. ( 2005 ). The lognormal distribution is not an appropriate null hypothesis for the species abundance distribution. J. Anim. Ecol., 74, 1 – 14.en_US
dc.identifier.citedreferenceWilsey, B.J., Chalcraft, D.R., Bowles, C.M. & Willig, M.R. ( 2005 ). Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity. Ecology, 86, 1178 – 1184.en_US
dc.identifier.citedreferenceWilson, J.B. ( 1991 ). Methods for fitting dominance diversity curves. J. Veg. Sci., 2, 35 – 46.en_US
dc.identifier.citedreferenceWilson, J.B. ( 1993 ). Would we recognise a broken-stick community if we found one? Oikos, 67, 181 – 183.en_US
dc.identifier.citedreferenceWilson, J.B., Wells, T.C.E., Trueman, I.C., Jones, G., Atkinson, M.D., Crawley, M.J. et al. ( 1996 ). Are there assembly rules for plant species abundance? An investigation in relation to soil resources and successional trends? J. Ecol., 84, 527 – 538.en_US
dc.identifier.citedreferenceWilson, J.B., Gitay, H., Steel, J.B. & King, W.M. ( 1998 ). Relative abundance distributions in plant communities: effects of species richness and of spatial scale. J. Veg. Sci., 9, 213 – 220.en_US
dc.identifier.citedreferenceWilson, W.G., Lundberg, P., Vazquez, D.P., Shurin, J.B., Smith, M.D., Langford, W. et al. ( 2003 ). Biodiversity and species interactions: extending Lotka-Volterra community theory. Ecol. Lett., 6, 944 – 952.en_US
dc.identifier.citedreferenceWinemiller, K.O. ( 1990 ). Spatial and temporal variation in tropical fish trophic networks. Ecol. Monogr., 60, 331 – 367.en_US
dc.identifier.citedreferenceWootton, J.T. ( 2005 ). Field parameterization and experimental test of the neutral theory of biodiversity. Nature, 433, 309 – 312.en_US
dc.identifier.citedreferenceWright, D.H., Patterson, B.D., Mikkelson, G.M., Cutler, A. & Atmar, W. ( 1998 ). A comparative analysis of nested subset patterns of species composition. Oecologia, 113, 1 – 20.en_US
dc.identifier.citedreferenceYin, Z.Y., Ren, H., Zhang, Q.M., Peng, S.L., Guo, Q.F. & Zhou, G.Y. ( 2005 ). Species abundance in a forest community in south China: a case of poisson lognormal distribution. J. Integr. Plant Biol., 47, 801 – 810.en_US
dc.identifier.citedreferenceYule, G.U. ( 1924 ). A mathematical theory of evolution based on the conclusions of Dr J C Willis. Philosophical Transactions of the Royal Society B, 213, 21 – 87.en_US
dc.identifier.citedreferenceZipf, G.K. ( 1949 ). Human Behaviour and the Principle of Least-Effort. Addison-Wesley Publishing Co., Cambridge, MA.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.