Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework
dc.contributor.author | McGill, Brian J. | en_US |
dc.contributor.author | Etienne, Rampal S. | en_US |
dc.contributor.author | Gray, John S. | en_US |
dc.contributor.author | Alonso, David | en_US |
dc.contributor.author | Anderson, Marti J. | en_US |
dc.contributor.author | Benecha, Habtamu Kassa | en_US |
dc.contributor.author | Dornelas, Maria | en_US |
dc.contributor.author | Enquist, Brian J. | en_US |
dc.contributor.author | Green, Jessica L. | en_US |
dc.contributor.author | He, Fangliang | en_US |
dc.contributor.author | Hurlbert, Allen H. | en_US |
dc.contributor.author | Magurran, Anne E. | en_US |
dc.contributor.author | Marquet, Pablo A. | en_US |
dc.contributor.author | Maurer, Brian A. | en_US |
dc.contributor.author | Ostling, Annette | en_US |
dc.contributor.author | Soykan, Candan U. | en_US |
dc.contributor.author | Ugland, Karl I. | en_US |
dc.contributor.author | White, Ethan P. | en_US |
dc.date.accessioned | 2010-06-01T22:13:50Z | |
dc.date.available | 2010-06-01T22:13:50Z | |
dc.date.issued | 2007-10 | en_US |
dc.identifier.citation | McGill, Brian J.; Etienne, Rampal S.; Gray, John S.; Alonso, David; Anderson, Marti J.; Benecha, Habtamu Kassa; Dornelas, Maria; Enquist, Brian J.; Green, Jessica L.; He, Fangliang; Hurlbert, Allen H.; Magurran, Anne E.; Marquet, Pablo A.; Maurer, Brian A.; Ostling, Annette; Soykan, Candan U.; Ugland, Karl I.; White, Ethan P. (2007). "Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework." Ecology Letters 10(10): 995-1015. <http://hdl.handle.net/2027.42/75247> | en_US |
dc.identifier.issn | 1461-023X | en_US |
dc.identifier.issn | 1461-0248 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/75247 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17845298&dopt=citation | en_US |
dc.format.extent | 1056651 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.rights | 2007 Blackwell Publishing Ltd/CNRS | en_US |
dc.subject.other | Environmental Indicators | en_US |
dc.subject.other | Macroecology | en_US |
dc.subject.other | Scientific Inference | en_US |
dc.subject.other | Species Abundance Distributions | en_US |
dc.title | Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Ecology and Evolutionary Biology | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA | en_US |
dc.contributor.affiliationum | Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA | en_US |
dc.contributor.affiliationother | Department of Biology, McGill University, 1205 Ave Dr Penfield, Montreal, QC H3A 1B1, Canada | en_US |
dc.contributor.affiliationother | Community and Conservation Ecology Group, University of Groningen, Haren, The Netherlands | en_US |
dc.contributor.affiliationother | Department of Biology, University of Oslo, Oslo, Norway | en_US |
dc.contributor.affiliationother | Department of Statistics, University of Auckland, Auckland, New Zealand | en_US |
dc.contributor.affiliationother | Gatty Marine Laboratory, University of St Andrews, Fife, Scotland | en_US |
dc.contributor.affiliationother | Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA | en_US |
dc.contributor.affiliationother | School of Natural Sciences, University of California Merced, Merced, CA, USA | en_US |
dc.contributor.affiliationother | Department of Renewable Natural Resources, University of Alberta, Edmonton, Alberta, Canada | en_US |
dc.contributor.affiliationother | National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, CA, USA | en_US |
dc.contributor.affiliationother | Center for Advanced Studies in Ecology & Biodiversity (CASEB), Departamento de EcologÍa, Facultad de Ciencias BiolÍgicas, Pontificia Universidad CatÓlica de Chile, Alameda 340, Santiago, Chile | en_US |
dc.contributor.affiliationother | Instituto de EcologÍa y Biodiversidad (IEB), Departamento de Ciencias EcolÓgicas. Facultad de Ciencias, Universidad de Chile. Casilla 653, Santiago, Chile | en_US |
dc.contributor.affiliationother | School of Life Sciences, Arizona State University, Tempe, AZ, USA | en_US |
dc.identifier.pmid | 17845298 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/75247/1/j.1461-0248.2007.01094.x.pdf | |
dc.identifier.doi | 10.1111/j.1461-0248.2007.01094.x | en_US |
dc.identifier.source | Ecology Letters | en_US |
dc.identifier.citedreference | Alonso, D., Etienne, R.S. & McKane, A.J. ( 2006 ). The merits of neutral theory. Trends Ecol. Evol., 21, 451 – 457. | en_US |
dc.identifier.citedreference | Atmar, W. & Patterson, B.D. ( 1993 ). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96, 373 – 382. | en_US |
dc.identifier.citedreference | Bakkes, J.A. ( 1994 ). An Overview of Environmental Indicators: State of the art and Perspectives. UNEP/Earthprint, Bilthaven, Netherlands. | en_US |
dc.identifier.citedreference | Bazzaz, F.A. ( 1975 ). Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology, 56, 485 – 488. | en_US |
dc.identifier.citedreference | Bell, G. ( 2000 ). The distribution of abundance in neutral communities. Am. Nat., 155, 606 – 617. | en_US |
dc.identifier.citedreference | Bell, G. ( 2001 ). Neutral macroecology. Science, 293, 2413 – 2418. | en_US |
dc.identifier.citedreference | Bell, G. ( 2003 ). The interpretation of biological surveys. Proc. R Soc. Lond. B, 270, 2531 – 2542. | en_US |
dc.identifier.citedreference | Borda-de-Agua, L., Hubbell, S.P. & McAllister, M. ( 2002 ). Species-area curves, diversity indices, and species abundance distributions: A multifractal analysis. Am. Nat., 159, 138 – 155. | en_US |
dc.identifier.citedreference | Boswell, M.T. & Patil, G.P. ( 1971 ). Chance mechanisms generating the logarithmic series distribution used in the analysis of number of species and individuals. In: Statistical Ecology, Volume I, Spatial Patterns and Statistical Distirbutions ( eds Patil, G.P., Pielou, E.C. & Waters, W.E. ). Pennsylvania State University Press, University Park, PA, pp. 99 – 130. | en_US |
dc.identifier.citedreference | Brian, M.V. ( 1953 ). Species frequencies in random samples from animal populations. J. Anim. Ecol., 22, 57 – 64. | en_US |
dc.identifier.citedreference | Brown, J.H., Mehlman, D.H. & Stevens, G.C. ( 1995 ). Spatial variation in abundance. Ecology, 76, 2028 – 2043. | en_US |
dc.identifier.citedreference | Bulmer, M.G. ( 1974 ). Fitting poisson lognormal distribution to species-abundance data. Biometrics, 30, 101 – 110. | en_US |
dc.identifier.citedreference | Burnham, K.P. & Anderson, D.R. ( 1998 ). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd edn. Springer, New York, NY. | en_US |
dc.identifier.citedreference | Caswell, H. ( 1976 ). Community structure: a neutral model analysis. Ecol. Monogr., 46, 327 – 354. | en_US |
dc.identifier.citedreference | Chave, J. ( 2004 ). Neutral theory and community ecology. Ecol. Lett., 7, 241 – 253. | en_US |
dc.identifier.citedreference | Chiarucci, A., Wilson, J.B., Anderson, B.J. & De Dominicis, V. ( 1999 ). Cover versus biomass as an estimate of species abundance: does it make a difference to the conclusions? J. Veg. Sci., 10, 35 – 42. | en_US |
dc.identifier.citedreference | Chu, J. & Adami, C. ( 1999 ). A simple explanation for taxon abundance patterns. Int. Natl Acad. Sci., 96, 15017 – 15019. | en_US |
dc.identifier.citedreference | Clarke, K.R. & Warwick, R.M. ( 2001 ). Change in Marine Communities: An Approach to Statistical Analysis and Interpretation (PRIMER-E). Plymouth Marine Laboratory, Plymouth, UK. | en_US |
dc.identifier.citedreference | Cohen, A.C. ( 1949 ). On estimating the mean and standard deviation of truncated normal distributions. J. Am. Stat. Assoc., 44, 518 – 525. | en_US |
dc.identifier.citedreference | Cohen, J.E. ( 1968 ). Alternate derivations of a species-abundance relation. Am. Nat., 102, 165. | en_US |
dc.identifier.citedreference | Coleman, B. ( 1981 ). Random placement and species area relations. Math. Biosci., 54, 191 – 215. | en_US |
dc.identifier.citedreference | Condit, R., Hubbell, S.P., LaFrankie, J.V., Sukumar, R., Manokaran, N., Foster, R.B. et al. ( 1996 ). Species–area and species–individual relationships for tropical trees: a comparison of three 50-ha plots. J. Ecol., 84, 549 – 562. | en_US |
dc.identifier.citedreference | Condit, R., Ashton, P.S., Baker, P., Bunyavejchewin, S., Gunatilleke, S., Gunatilleke, N. et al. ( 2000 ). Spatial patterns in the distribution of tropical tree species. Science, 288, 1414 – 1418. | en_US |
dc.identifier.citedreference | Connolly, S.R., Hughes, T.P., Bellwood, D.R. & Karlson, R.H. ( 2005 ). Community structure of corals and reef fishes at multiple scales. Science, 309, 1363 – 1365. | en_US |
dc.identifier.citedreference | Connor, E.F. & McCoy, E.D. ( 1979 ). The statistics and biology of the species–area relationship. Am. Nat., 113, 791 – 833. | en_US |
dc.identifier.citedreference | Cotgreave, P. & Harvey, P.H. ( 1994 ). Evennes of abundance in bird communities. J. Anim. Ecol., 63, 365 – 374. | en_US |
dc.identifier.citedreference | Damuth, J. ( 1981 ). Population density and body size in mammals. Nature, 290, 699 – 700. | en_US |
dc.identifier.citedreference | Damuth, J. ( 1991 ). Of size and abundance. Nature, 351, 268 – 269. | en_US |
dc.identifier.citedreference | Darwin, C. ( 1859 ). On the Origin of Species. Clows and Sons, London. | en_US |
dc.identifier.citedreference | Dennis, B. & Patil, G.P. ( 1984 ). The gamma distribution and weighted multimodal gamma distributions as models of population abundance. Math. Biosci., 68, 187 – 212. | en_US |
dc.identifier.citedreference | Dennis, B. & Patil, G.P. ( 1988 ). Applications in ecology. In: Lognormal Distributions: Theory and Applications ( eds Crow, E.L. & Shimizu, K. ). Marcel Dekker, New York, pp. 303 – 330. | en_US |
dc.identifier.citedreference | Dewdney, A.K. ( 1998 ). A general theory of the sampling process with applications to the ‘veil line’. Theor. Popul. Biol., 54, 294 – 302. | en_US |
dc.identifier.citedreference | Dewdney, A.K. ( 2000 ). A dynamical model of communities and a new species-abundance distribution. Biol. Bull., 198, 152 – 165. | en_US |
dc.identifier.citedreference | Diserud, O.H. & Engen, S. ( 2000 ). A general and dynamic species abundance model, embracing the lognormal and the gamma models. Am. Nat., 155, 497 – 511. | en_US |
dc.identifier.citedreference | Dornelas, M., Connolly, S.R. & Hughes, T.P. ( 2006 ). Coral reef diversity refutes the neutral theory of biodiversity. Nature, 440, 80 – 82. | en_US |
dc.identifier.citedreference | Engen, S. & Lande, R. ( 1996a ). Population dynamic models generating species abundance distributions of the gamma type. J. Theor. Biol., 178, 325 – 331. | en_US |
dc.identifier.citedreference | Engen, S. & Lande, R. ( 1996b ). Population dynamic models generating the lognormal species abundance distribution. Math. Biosci., 132, 169 – 183. | en_US |
dc.identifier.citedreference | Engen, S., Lande, R., Walla, T. & DeVries, P.J. ( 2002 ). Analyzing spatial structure of communities using the two-dimensional poisson lognormal species abundance model. Am. Nat., 160, 60 – 73. | en_US |
dc.identifier.citedreference | Enquist, B.J., Sanderson, J. & Weiser, M.D. ( 2002 ). Modeling macroscopic patterns in ecology. Science, 295, 1835 – 1837. | en_US |
dc.identifier.citedreference | Etienne, R.S. ( 2005 ). A new sampling formula for neutral biodiversity. Ecol. Lett., 8, 253 – 260. | en_US |
dc.identifier.citedreference | Etienne, R.S. ( 2007 ). A neutral sampling formula for multiple samples and an ‘exact’ test of neutrality. Ecol. Lett., 10, 608 – 618. | en_US |
dc.identifier.citedreference | Etienne, R.S. & Alonso, D. ( 2005 ). A dispersal-limited sampling theory for species and alleles. Ecol. Lett., 8, 1147 – 1156. | en_US |
dc.identifier.citedreference | Etienne, R.S. & Olff, H. ( 2004a ). How dispersal limitation shapes species-body size distributions in local communities. Am. Nat., 163, 69 – 83. | en_US |
dc.identifier.citedreference | Etienne, R.S. & Olff, H. ( 2004b ). A novel genealogical approach to neutral biodiversity theory. Ecol. Lett., 7, 170 – 175. | en_US |
dc.identifier.citedreference | Etienne, R.S. & Olff, H. ( 2005 ). Confronting different models of community structure to species-abundance data: a Bayesian model comparison. Ecol. Lett., 8, 493 – 504. | en_US |
dc.identifier.citedreference | Etienne, R.S., Alonso, D. & McKane, A.J. ( 2007a ). The zero-sum assumption in neutral biodiversity theory. J. Theor. Biol., http://dx.doi.org/10.1016/j.jtbi.2007.06.010. | en_US |
dc.identifier.citedreference | Etienne, R.S., Apol, M.E.F., Olff, H. & Weissing, F.J. ( 2007b ). Modes of speciation and the neutral theory of biodiversity. Oikos, 116, 241 – 258. | en_US |
dc.identifier.citedreference | Evans, M., Hastings, N. & Peacock, B. ( 1993 ). Statistical Distributions, 2nd edn. John Wiley & Sons, New York. | en_US |
dc.identifier.citedreference | Fauth, J.E., Bernardo, J., Camara, M., Resetarits, W.J., Jr, Buskirk, J.V. & McCollum, S.A. ( 1996 ). Simplifying the jargon of community ecology: a conceptual approach. Am. Nat., 147, 282 – 286. | en_US |
dc.identifier.citedreference | Fischer, J. & Lindenmayer, D.B. ( 2002 ). Treating the nestedness temperature calculator as a ‘black box’ can lead to false conclusions. Oikos, 99, 193 – 199. | en_US |
dc.identifier.citedreference | Fisher, R.A., Corbet, A.S. & Williams, C.B. ( 1943 ). The relation between the number of species and the number of individuals in a random sample from an animal population. J. Anim. Ecol., 12, 42 – 58. | en_US |
dc.identifier.citedreference | Frontier, S. ( 1994 ). Species-diversity as a fractal property of biomass. In: Fractals in the Natural and Applied Sciences ( ed. Novak, M. ) North-Holland Publishing, Amsterdam, pp. 119 – 127. | en_US |
dc.identifier.citedreference | Frontier, S. ( 1985 ). Diversity and structure in aquatic ecosystems. Oceanogr. Mar. Biol., 23, 253 – 312. | en_US |
dc.identifier.citedreference | Galton, F. ( 1879 ). The geometric mean in vital and social statistics. Proc. R Soc. Lond., 29, 365 – 367. | en_US |
dc.identifier.citedreference | Gaston, K.J. ( 1996 ). The multiple forms of the interspecific abundance-distribution relationship. Oikos, 76, 211 – 220. | en_US |
dc.identifier.citedreference | Gaston, K.J., Blackburn, T.M., Greenwood, J.J.D., Gregory, R.D., Quinn, R.M. & Lawton, J.H. ( 2000 ). Abundance-occupancy relationships. J. Appl. Ecol., 37, S39 – S59. | en_US |
dc.identifier.citedreference | Gauch, H.G.J. & Whittaker, R.H. ( 1972 ). Coencline simulation. Ecology, 53, 446 – 451. | en_US |
dc.identifier.citedreference | Gilbert, B., Laurance, W.F., Leigh, E.G., Jr & Nascimento, H.E. ( 2006 ). Can neutral theory predict the responses of amazonian tree communities to forest fragmentation? Am. Nat., 168, 304 – 317. | en_US |
dc.identifier.citedreference | Gotelli, N.J. & Colwell, R.K. ( 2001 ). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett., 4, 379 – 391. | en_US |
dc.identifier.citedreference | Gray, J.S. ( 1979 ). Pollution-induced changes in populations. Philos. Trans. R Soc. Lond. B, 286, 545 – 561. | en_US |
dc.identifier.citedreference | Gray, J.S. ( 1987 ). Species-abundance patterns. In: Organization of Communities Past and Present ( eds Gee, J.H.R. & Giller, P.S. ). Blackwell Science, Oxford, pp. 53 – 68. | en_US |
dc.identifier.citedreference | Gray, J.S., Bjorgesaeter, A. & Ugland, K.I. ( 2005 ). The impact of rare species on natural assemblages. J. Anim. Ecol., 74, 1131 – 1139. | en_US |
dc.identifier.citedreference | Gray, J.S., Bjorgesaeter, A. & Ugland, K.I. ( 2006 ). On plotting species abundance distributions. J. Anim. Ecol., 75, 752 – 756. | en_US |
dc.identifier.citedreference | Green, J.L. & Plotkin, J.B. ( 2007 ). A statistical theory for sampling species abundances. Ecol. Lett., 10, doi :. | en_US |
dc.identifier.citedreference | Green, J.L., Harte, J. & Ostling, A. ( 2003 ). Species richness, endemism and abundance patterns: tests of two fractal models in a serpentine grassland. Ecol. Lett., 6, 919 – 928. | en_US |
dc.identifier.citedreference | Gregory, R.D. ( 2000 ). Abundance patterns of European breeding birds. Ecography, 23, 201 – 208. | en_US |
dc.identifier.citedreference | Hamer, K.C., Hill, J.K., Lace, L.A. & Langan, A.M. ( 1997 ). Ecological and biogeographical effects of forest disturbance on tropical butterflies of Sumba Indonesia. J. Biogeogr., 24, 67 – 75. | en_US |
dc.identifier.citedreference | Hanski, I. ( 1982 ). Dynamics of regional distribution: the core and satellite species hypothesis. Oikos, 38, 210 – 221. | en_US |
dc.identifier.citedreference | Hanski, I. & Gyllenberg, M. ( 1997 ). Uniting two general patterns in the distribution of species. Science, 275, 397 – 400. | en_US |
dc.identifier.citedreference | Harte, J., Kinzig, A.P. & Green, J. ( 1999 ). Self-similarity in the distribution and abundance of species. Science, 284, 334 – 336. | en_US |
dc.identifier.citedreference | Harte, J., Conlisk, E., Ostling, A., Green, J.L. & Smith, A.B. ( 2005 ). A theory of spatial structure in ecological communities at multiple spatial scales. Ecol. Monogr., 75, 179 – 197. | en_US |
dc.identifier.citedreference | He, F.L. & Legendre, P. ( 2002 ). Species diversity patterns derived from species–area models. Ecology, 83, 1185 – 1198. | en_US |
dc.identifier.citedreference | He, F., Gaston, K.J. & Wu, J. ( 2002 ). On species occupancy-abundance models. Ecoscience, 9, 119 – 126. | en_US |
dc.identifier.citedreference | Heck, K.L.J., Van Belle, G. & Simberloff, D. ( 1975 ). Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology, 56, 1459 – 1461. | en_US |
dc.identifier.citedreference | Hengeveld, R. & Haeck, J. ( 1981 ). The distribution of abundance II Models and implications. Proc. K. Ned. Akad. Wet. C, 84, 257 – 284. | en_US |
dc.identifier.citedreference | Hengeveld, R., Kooijman, S.A.L.M. & Taillie, C. ( 1979 ). A spatial model explaining species-abundance curves. In: Statistical Distributions in Ecological Work ( eds Ord, J.K., Patil, G.P. & Taillie, C. ). International Co-operative Publishing House, Fairland, MD, pp. 337 – 347. | en_US |
dc.identifier.citedreference | Hill, J.K., Hamer, K.C., Lace, L.A. & Banham, W.M.T. ( 1995 ). Effects of selective logging on tropical forest butterflies on Buru, Indonesia. J. Appl. Ecol., 32, 754 – 760. | en_US |
dc.identifier.citedreference | Hoagland, B.W. & Collins, S.L. ( 1997 ). Gradient models, gradient analysis, and hierarchical structure in plant communities. Oikos, 78, 23 – 30. | en_US |
dc.identifier.citedreference | Hubbell, S.P. ( 1979 ). Tree dispersion, abundance and diversity in a tropical dry forest. Science, 203, 1299 – 1309. | en_US |
dc.identifier.citedreference | Hubbell, S.P. ( 2001 ). A Unified Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. | en_US |
dc.identifier.citedreference | Hubbell, S.P. ( 2006 ). Neutral theory and the evolution of ecological equivalence. Ecology, 87, 1387 – 1398. | en_US |
dc.identifier.citedreference | Hughes, R.G. ( 1986 ). Theories and models of species abundance. Am. Nat., 128, 879 – 899. | en_US |
dc.identifier.citedreference | Hurlbert, S.H. ( 1971 ). The nonconcept of species diversity: a critque and alternative parameters. Ecology, 52, 577 – 586. | en_US |
dc.identifier.citedreference | Hurlbert, A.H. ( 2004 ). Species–energy relationships and habitat complexity. Ecol. Lett., 7, 714 – 720. | en_US |
dc.identifier.citedreference | Kempton, R.A. & Taylor, L.R. ( 1974 ). Log-series and log-normal parameters as diversity discriminants for lepidoptera. J. Anim. Ecol., 43, 381 – 399. | en_US |
dc.identifier.citedreference | Kendall, D.G. ( 1948a ). On some modes of population growth leading to Fisher, R.A. logarithmic series distribution. Biometrika, 35, 6 – 15. | en_US |
dc.identifier.citedreference | Kendall, D.G. ( 1948b ). On the generalized ‘birth-and-death’ process. Ann. Math. Stat., 19, 1 – 15. | en_US |
dc.identifier.citedreference | Labra, F.A., Abades, S. & Marquet, P.A. ( 2005 ). Distribution and abundance: scaling patterns in exotic and native bird species. In: Species Invasions. Insights Into Ecology, Evolution and Biogeography ( eds Sax, D.F., Stachowicz, J.J. & Gaines, S.D. ). Sinauer Associates, Sunderland, MA, pp. 421 – 446. | en_US |
dc.identifier.citedreference | Lakatos, I. ( 1978 ). Introduction: science and pseudoscience. In: The Methodology of Scientific Research Programs ( eds Worrall, J. & Currie, G. ). Cambridge University Press, Cambridge, pp. 1 – 8. | en_US |
dc.identifier.citedreference | Lambshead, P.J.D., Platt, H.M. & Shaw, K.M. ( 1983 ). The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J. Nat. His., 17, 859 – 874. | en_US |
dc.identifier.citedreference | Latimer, A.M., Silander, J.A. & Cowling, R.M. ( 2005 ). Neutral ecological theory reveals isolation and rapid speciation in a biodiversity hot spot. Science, 309, 1722 – 1725. | en_US |
dc.identifier.citedreference | Lawton, J.H. ( 1993 ). Range, population abundance and conservation. Trends Ecol. Evol., 8, 409 – 413. | en_US |
dc.identifier.citedreference | Levin, S.A. ( 1992 ). The problem of pattern and scale in ecology. Ecology, 73, 1943 – 1967. | en_US |
dc.identifier.citedreference | Lewontin, R.C., Ginzburg, L.R. & Tuljapurkar, S.D. ( 1978 ). Heterosis as an explanation for large amounts of genic polymorphism. Genetics, 88, 149 – 170. | en_US |
dc.identifier.citedreference | Mac Nally, R. ( 2007 ). Use of the abundance spectrum and relative-abundance distributions to analyze assemblage change in massively altered landscapes. Am. Nat., in press. | en_US |
dc.identifier.citedreference | MacArthur, R. ( 1957 ). On the relative abundance of bird species. Proc. Natl Acad. Sci., 43, 293 – 295. | en_US |
dc.identifier.citedreference | MacArthur, R. ( 1960 ). On the relative abundance of species. Am. Nat., 94, 25 – 36. | en_US |
dc.identifier.citedreference | MacArthur, R. ( 1966 ). Note on Mrs Pielou’s comments. Ecology, 47, 1074. | en_US |
dc.identifier.citedreference | MacLachlan, G. & Peel, D. ( 2000 ). Finite Mixture Models. John Wiley & Sons, New York. | en_US |
dc.identifier.citedreference | Magurran, A.E. ( 2004 ). Measuring Biological Diversity, 2nd edn. Blackwell, Oxford. | en_US |
dc.identifier.citedreference | Magurran, A.E. ( 2005 ). Species abundance distributions: pattern or process? Funct. Ecol., 19, 177 – 181. | en_US |
dc.identifier.citedreference | Magurran, A.E. ( 2007 ). Species abundance distributions over time. Ecol. Lett., 10, 347 – 354. | en_US |
dc.identifier.citedreference | Magurran, A.E. & Henderson, P.A. ( 2003 ). Explaining the excess of rare species in natural species abundance distributions. Nature, 422, 714 – 716. | en_US |
dc.identifier.citedreference | Mandelbrot, B. ( 1965 ). Information theory and psycholinguistics. In: Scientific Psychology: Principles and Applications, ( edn Wolman, B.A. & Nagel, E.N. ). Basic Books, New York, pp. 350 – 368. | en_US |
dc.identifier.citedreference | Marks, C.O. & Lechowicz, M.J. ( 2006 ). Alternative designs and the evolution of functional diversity. Am. Nat., 167, 55 – 66. | en_US |
dc.identifier.citedreference | Marquet, P.A., Navarrete, S.A. & Castilla, J.C. ( 1990 ). Scaling population density to body size in rocky intertidal communities. Science, 250, 1125 – 1127. | en_US |
dc.identifier.citedreference | Marquet, P.A., Keymer, J.A. & Cofre, H. ( 2003 ). Breaking the stick in space: of niche models, metacommunities and patterns in the relative abundance of species. In: Macroecology: Concepts and Consequences ( eds Blackburn, T.M. & Gaston, K.J. ). Blackwell Science, Oxford, pp. 64 – 86. | en_US |
dc.identifier.citedreference | Marquet, P.A., FernÁndez, M., Navarrete, S.A. & Valdivinos, C. ( 2004 ). Diversity emerging: towards a deconstruction of biodiversity patterns. In: Frontiers of Biogeography: New Directions in the Geography of Nature ( ed Heaney, M.L.a.L.R. ). Cambridge University Press, Cambridge, pp. 192 – 209. | en_US |
dc.identifier.citedreference | Martinez, W.L. & Martinez, A.R. ( 2002 ). Computational Statistics Handbook With MATLAB. Chapman & Hall/CRC, Boca Raton. | en_US |
dc.identifier.citedreference | Maurer, B.A. ( 1990 ). The relationship between distribution and abundance in a patchy environment. Oikos, 58, 181 – 189. | en_US |
dc.identifier.citedreference | May, R.M. ( 1975 ). Patterns of species abundance and diversity. In: Ecology and Evolution of Communities ( eds Cody, M.L. & Diamond, J.M. ). Belknap Press of Harvard University Press, Cambridge MA, pp. 81 – 120. | en_US |
dc.identifier.citedreference | McAlister, D. ( 1879 ). The law of the geometric mean. Proc. R Soc. Lond., 29, 367 – 376. | en_US |
dc.identifier.citedreference | McGill, B. ( 2003a ). Strong and weak tests of macroecological theory. Oikos, 102, 679 – 685. | en_US |
dc.identifier.citedreference | McGill, B.J. ( 2003b ). Does Mother Nature really prefer rare species or are log-left-skewed SADs a sampling artefact? Ecol. Lett., 6, 766 – 773. | en_US |
dc.identifier.citedreference | McGill, B.J. ( 2003c ). A test of the unified neutral theory of biodiversity. Nature, 422, 881 – 885. | en_US |
dc.identifier.citedreference | McGill, B.J. ( 2006 ). A renaissance in the study of abundance. Science, 314, 770 – 771. | en_US |
dc.identifier.citedreference | McGill, B. & Collins, C. ( 2003 ). A unified theory for macroecology based on spatial patterns of abundance. Evol. Ecol. Res., 5, 469 – 492. | en_US |
dc.identifier.citedreference | McGill, B.J., Hadly, E.A. & Maurer, B.A. ( 2005 ). Community inertia of Quaternary small mammal assemblages in North America. Proc. Natl Acad. Sci., 102, 16701 – 16706. | en_US |
dc.identifier.citedreference | McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. ( 2006a ). Rebuilding community ecology from functional traits. Trends Ecol. Evol., 21, 178 – 185. | en_US |
dc.identifier.citedreference | McGill, B.J., Maurer, B.A. & Weiser, M.D. ( 2006b ). Empirical evaluation of the neutral theory. Ecology, 87, 1411 – 1423. | en_US |
dc.identifier.citedreference | Motomura, I. ( 1932 ). On the statistical treatment of communities. Zool. Mag., 44, 379 – 383. | en_US |
dc.identifier.citedreference | Mouillot, D. & Lepretre, A. ( 2000 ). Introduction of relative abundance distribution (RAD) indices, estimated from the rank-frequency diagrams (RFD), to assess changes in community diversity. Environ. Monit. Assess., 63, 279 – 295. | en_US |
dc.identifier.citedreference | Mouillot, D., Lepretre, A., Andrei-Ruiz, M.C. & Viale, D. ( 2000 ). The Fractal model: a new model to describe the species accumulation process and relative abundance distribution (RAD). Oikos, 90, 333 – 342. | en_US |
dc.identifier.citedreference | Munoz, F., Couteron, P., Ramesh, B. & Etienne, R. ( 2007 ). Estimating parameters of neutral communities: from one single large to several small samples. Ecology, ( in press ). | en_US |
dc.identifier.citedreference | Murray, B.R. & Westoby, M. ( 2000 ). Properties of species in the tail of rank-abundance curves: the potential for increase in abundance. Evol. Ecol. Res., 2, 583 – 592. | en_US |
dc.identifier.citedreference | Murray, B.R., Rice, B.L., Keith, D.A., Myerscough, P.J., Howell, J., Floyd, A.G. et al. ( 1999 ). Species in the tail of rank-abundance curves. Ecology, 80, 1806 – 1816. | en_US |
dc.identifier.citedreference | Murray, B.R., Thrall, P.H., Gill, A.M. & Nicotra, A.B. ( 2002 ). How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Aust. Ecol., 27, 291 – 310. | en_US |
dc.identifier.citedreference | Nee, S. ( 2003 ). The unified phenomenological theory of biodiversity. In: Macroecology: Concepts and Consequences ( eds Blackburn, T.M. & Gaston, K.J. ). Blackwell Science, Oxford, pp. 31 – 44. | en_US |
dc.identifier.citedreference | Nee, S., Harvey, P.H. & May, R.M. ( 1991 ). Lifting the veil on abundance patterns. Proc. R Soc Lond Ser. B Biol. Sci., 243, 161 – 163. | en_US |
dc.identifier.citedreference | Nekola, J.C. & Brown, J.H. ( 2007 ). The wealth of species: ecological communities, complex systems and the legacy of Frank Preston. Ecol. Lett., 10, 188 – 196. | en_US |
dc.identifier.citedreference | Ockham, W.. ( 1495 ). Quaestiones et decisiones in quattuor libros Sententiarum Petri Lombardi Editioni Lugdenensi, i, dist. 27, qu. 2, K. | en_US |
dc.identifier.citedreference | Olszewski, T.D. ( 2004 ). A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos, 104, 377 – 387. | en_US |
dc.identifier.citedreference | Patil, G.P. & Taillie, C. ( 1982 ). Diversity as a concept and its measurement. J. Am. Stat. Assoc., 77, 548 – 561. | en_US |
dc.identifier.citedreference | Peters, R.H. ( 1991 ). A Critique for Ecology. Cambridge University Press, Cambridge. | en_US |
dc.identifier.citedreference | Pielou, E.C. ( 1975 ). Ecological Diversity. John Wiley & Sons, New York. | en_US |
dc.identifier.citedreference | Pielou, E.C. ( 1977 ). Mathematical Ecology. John Wiley & Sons, New York. | en_US |
dc.identifier.citedreference | Platt, J.R. ( 1964 ). Strong inference. Science, 146, 347 – 353. | en_US |
dc.identifier.citedreference | Plotkin, J.B. & Muller-Landau, H.C. ( 2002 ). Sampling the species composition of a landscape. Ecology, 83, 3344 – 3356. | en_US |
dc.identifier.citedreference | Preston, F.W. ( 1948 ). The commonness and rarity of species. Ecology, 29, 254 – 283. | en_US |
dc.identifier.citedreference | Preston, F.W. ( 1960 ). Time and space and the variation of species. Ecology, 41, 611 – 627. | en_US |
dc.identifier.citedreference | Pueyo, S. ( 2006 ). Diversity: between neutrality and structure. Oikos, 112, 392 – 405. | en_US |
dc.identifier.citedreference | Raunkiaer, C. ( 1909 ). Formationsundersogelse og Formationsstatistik. Bot. Tidskr., 30, 20 – 132. | en_US |
dc.identifier.citedreference | Ricklefs, R.E. ( 2003 ). A comment on Hubbell’s zero-sum ecological drift model. Oikos, 100, 185 – 192. | en_US |
dc.identifier.citedreference | Riitters, K.H., O’Neill, R.V., Hunsaker, C.T., Wickham, J.D., Yankee, D.H., Timmins, S.P. et al. ( 1995 ). A factor analysis of landscape pattern and structure metrics. Landsc. Ecol., 10, 23 – 39. | en_US |
dc.identifier.citedreference | Robbins, C.S., Bystrak, D. & Geissler, P.H. ( 1986 ). The Breeding Bird Survey: Its First Fifteen Years, 1965–1979. US Department of the Interior Fish and Wildlife Service, Washington, DC. | en_US |
dc.identifier.citedreference | Rosenzweig, M.L. ( 1995 ). Species Diversity in Space and Time. Cambridge University Press, Cambridge. | en_US |
dc.identifier.citedreference | Rosenzweig, M.L. & Abramsky, Z. ( 1997 ). Two gerbils of the Negev: a long-term investigation of optimal habitat selection and its consequences. Evol. Ecol., 11, 733 – 756. | en_US |
dc.identifier.citedreference | Rosenzweig, M.L. & Lomolino, M.V. ( 1997 ). Who gets the short bits of the broken stick. In: The Biology of Rarity: Causes and Consequences of Rare-Common Differences ( eds Kunin, W.E. & Gaston, K.J. ). Chapman & Hall, London, pp. 63 – 90. | en_US |
dc.identifier.citedreference | Rosindell, J. & Cornell, S.J. ( 2007 ). Species-area relationships from a spatially explicit neutral model in an infinite landscape. Ecol. Lett., 7, 586 – 595. | en_US |
dc.identifier.citedreference | Russo, S.E., Robinson, S.K. & Terborgh, J. ( 2003 ). Size-abundance relationships in an amazonian bird community: implications for the energetic equivalence rule. Am. Nat, 161, 267 – 283. | en_US |
dc.identifier.citedreference | Sanders, H.L. ( 1968 ). Marine benthic diversity: a comparative study. Am. Nat., 102, 243 – 282. | en_US |
dc.identifier.citedreference | Savage, V.M., Gillooly, J.F., Brown, J.H., West, G.B. & Charnov, E.L. ( 2004 ). Effects of body size and temperature on population growth. Am. Nat., 163, 429 – 441. | en_US |
dc.identifier.citedreference | Shipley, B., Vile, D. & Garnier, E. ( 2006 ). From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science, 314, 812 – 814. | en_US |
dc.identifier.citedreference | Simberloff, D.S. ( 1972 ). Properties of the rarefaction diversity measurement. Am. Nat., 106, 414 – 418. | en_US |
dc.identifier.citedreference | Simon, H.A. ( 1955 ). On a class of skew distribution functions. Biometrika, 42, 425 – 440. | en_US |
dc.identifier.citedreference | Soule, M.E. ( 1986 ). Conservation Biology: The Science of Scarcity and Diversity. Sinauer Associates, Sunderland, MA. | en_US |
dc.identifier.citedreference | Southwood, T.R.E. ( 1996 ). The Croonian lecture, 1995: natural communities: structure and dynamics. Philos. Trans. Biol. Sci., 351, 1113 – 1129. | en_US |
dc.identifier.citedreference | Stirling, G. & Wilsey, B. ( 2001 ). Empirical relationships between species richness, evenness, and proportional diversity. Am. Nat., 158, 286 – 299. | en_US |
dc.identifier.citedreference | Sugihara, G. ( 1980 ). Minimal community structure: an explanation of species-abundance patterns. Am. Nat., 116, 770 – 787. | en_US |
dc.identifier.citedreference | Sugihara, G., Bersier, L.F., Southwood, T.R.E., Pimm, S.L. & May, R.M. ( 2003 ). Predicted correspondence between species abundances and dendrograms of niche similarities. Proc. Natl Acad. Sci. USA., 100, 5246 – 5251. | en_US |
dc.identifier.citedreference | Thibault, K.M., White, E.P. & Ernest, S.K.M. ( 2004 ). Temporal dynamics in the structure and composition of a desert rodent community. Ecology, 85, 2649 – 2655. | en_US |
dc.identifier.citedreference | Tokeshi, M. ( 1993 ). Species abundance patterns and community structure. Adv. Ecol. Res., 24, 111 – 186. | en_US |
dc.identifier.citedreference | Tokeshi, M. ( 1996 ). Power fraction: a new explanation of relative abundance patterns in species-rich assemblages. Oikos, 75, 543 – 550. | en_US |
dc.identifier.citedreference | Tuljapurkar, S.D. ( 1990 ). Population Dynamics in Variable Environments. Springer-Verlag, New York. | en_US |
dc.identifier.citedreference | Ugland, K.I. & Gray, J.S. ( 1982 ). Lognormal distributions and the concept of community equilibrium. Oikos, 39, 171 – 178. | en_US |
dc.identifier.citedreference | Ugland, K.I. & Gray, J.S. ( 1983 ). Reanalysis of Caswell’s neutral models. Ecology, 64, 603 – 605. | en_US |
dc.identifier.citedreference | Ugland, K.I., Gray, J.S. & Ellingsen, K.E. ( 2003 ). The species-accumulation curve and estimation of species richness. J. Anim. Ecol., 72, 888 – 897. | en_US |
dc.identifier.citedreference | Ugland, K.I., Lambshead, P.J.D., McGill, B., Gray, J.S., O’Dea, N., Ladle, R.J. et al. ( 2007 ). Modelling dimensionality in species abundance distributions: description and evaluation of the Gambin model. Evol. Ecol. Res., 9, 1 – 12. | en_US |
dc.identifier.citedreference | Ulrich, W. & Ollik, M. ( 2004 ). Frequent and occasional species and the shape of relative-abundance distributions. Divers. Distrib., 10, 263 – 269. | en_US |
dc.identifier.citedreference | Volkov, I., Banavar, J.R., Hubbell, S.P. & Maritan, A. ( 2003 ). Neutral theory and relative species abundance in ecology. Nature, 424, 1035 – 1037. | en_US |
dc.identifier.citedreference | Warwick, R.M. ( 1986 ). A new method for detecting pollution effects on marine macrobenthic communities. Mar. Biol., 92, 557 – 562. | en_US |
dc.identifier.citedreference | Watterson, G.A. ( 1974 ). The sampling theory of selectively neutral alleles. Adv. Appl. Probability, 6, 463 – 488. | en_US |
dc.identifier.citedreference | Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. ( 2002 ). Phylogenies and community ecology. Annu. Rev. Ecol. Syst., 33, 475 – 505. | en_US |
dc.identifier.citedreference | Weiher, E. & Keddy, P.A. ( 1999 ). Relative abundance and evenness patterns along diversity and biomass gradients. Oikos, 87, 355. | en_US |
dc.identifier.citedreference | White, E.P., Ernest, S.K.M., Kerkhoff, A.J. & Enquist, B.J. ( 2007 ). Relationships between body size and abundance in ecology. Trends Ecol. Evol., 22, 323 – 330. | en_US |
dc.identifier.citedreference | Whittaker, R.H. ( 1960 ). Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr., 30, 279 – 338. | en_US |
dc.identifier.citedreference | Whittaker, R.H. ( 1965 ). Dominance and diversity in land plant communities. Science, 147, 250 – 260. | en_US |
dc.identifier.citedreference | Whittaker, R.H. ( 1967 ). Gradient analysis of vegetation. Biol. Rev., 42, 207 – 264. | en_US |
dc.identifier.citedreference | Whittaker, R.H. ( 1975 ). Communities and Ecosystems, 2nd edn. MacMillan Publishers, New York. | en_US |
dc.identifier.citedreference | Wiens, J.A. ( 1989 ). Spatial scaling in ecology. Funct. Ecol., 3, 385 – 397. | en_US |
dc.identifier.citedreference | Williams, C.B. ( 1964 ). Patterns in the Balance of Nature. Academic Press, London. | en_US |
dc.identifier.citedreference | Williamson, M. & Gaston, K.J. ( 2005 ). The lognormal distribution is not an appropriate null hypothesis for the species abundance distribution. J. Anim. Ecol., 74, 1 – 14. | en_US |
dc.identifier.citedreference | Wilsey, B.J., Chalcraft, D.R., Bowles, C.M. & Willig, M.R. ( 2005 ). Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity. Ecology, 86, 1178 – 1184. | en_US |
dc.identifier.citedreference | Wilson, J.B. ( 1991 ). Methods for fitting dominance diversity curves. J. Veg. Sci., 2, 35 – 46. | en_US |
dc.identifier.citedreference | Wilson, J.B. ( 1993 ). Would we recognise a broken-stick community if we found one? Oikos, 67, 181 – 183. | en_US |
dc.identifier.citedreference | Wilson, J.B., Wells, T.C.E., Trueman, I.C., Jones, G., Atkinson, M.D., Crawley, M.J. et al. ( 1996 ). Are there assembly rules for plant species abundance? An investigation in relation to soil resources and successional trends? J. Ecol., 84, 527 – 538. | en_US |
dc.identifier.citedreference | Wilson, J.B., Gitay, H., Steel, J.B. & King, W.M. ( 1998 ). Relative abundance distributions in plant communities: effects of species richness and of spatial scale. J. Veg. Sci., 9, 213 – 220. | en_US |
dc.identifier.citedreference | Wilson, W.G., Lundberg, P., Vazquez, D.P., Shurin, J.B., Smith, M.D., Langford, W. et al. ( 2003 ). Biodiversity and species interactions: extending Lotka-Volterra community theory. Ecol. Lett., 6, 944 – 952. | en_US |
dc.identifier.citedreference | Winemiller, K.O. ( 1990 ). Spatial and temporal variation in tropical fish trophic networks. Ecol. Monogr., 60, 331 – 367. | en_US |
dc.identifier.citedreference | Wootton, J.T. ( 2005 ). Field parameterization and experimental test of the neutral theory of biodiversity. Nature, 433, 309 – 312. | en_US |
dc.identifier.citedreference | Wright, D.H., Patterson, B.D., Mikkelson, G.M., Cutler, A. & Atmar, W. ( 1998 ). A comparative analysis of nested subset patterns of species composition. Oecologia, 113, 1 – 20. | en_US |
dc.identifier.citedreference | Yin, Z.Y., Ren, H., Zhang, Q.M., Peng, S.L., Guo, Q.F. & Zhou, G.Y. ( 2005 ). Species abundance in a forest community in south China: a case of poisson lognormal distribution. J. Integr. Plant Biol., 47, 801 – 810. | en_US |
dc.identifier.citedreference | Yule, G.U. ( 1924 ). A mathematical theory of evolution based on the conclusions of Dr J C Willis. Philosophical Transactions of the Royal Society B, 213, 21 – 87. | en_US |
dc.identifier.citedreference | Zipf, G.K. ( 1949 ). Human Behaviour and the Principle of Least-Effort. Addison-Wesley Publishing Co., Cambridge, MA. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.