Show simple item record

Autophagy is an immediate macrophage response to Legionella pneumophila

dc.contributor.authorAmer, Amal O.en_US
dc.contributor.authorSwanson, Michele S.en_US
dc.date.accessioned2010-06-01T22:15:53Z
dc.date.available2010-06-01T22:15:53Z
dc.date.issued2005-06en_US
dc.identifier.citationAmer, Amal O.; Swanson, Michele S. (2005). "Autophagy is an immediate macrophage response to Legionella pneumophila ." Cellular Microbiology 7(6): 765-778. <http://hdl.handle.net/2027.42/75279>en_US
dc.identifier.issn1462-5814en_US
dc.identifier.issn1462-5822en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75279
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15888080&dopt=citationen_US
dc.description.abstractAfter ingestion by macrophages, Legionella pneumophila enter spacious vacuoles that are quickly enveloped by endoplasmic reticulum (ER), then slowly transferred to lysosomes. Here we demonstrate that the macrophage autophagy machinery recognizes the pathogen phagosome as cargo for lysosome delivery. The autophagy conjugation enzyme Atg7 immediately translocated to phagosomes harbouring virulent Legionella . Subsequently, Atg8, a second autophagy enzyme, and monodansyl-cadaverine (MDC), a dye that accumulates in acidic autophagosomes, decorated the pathogen vacuoles. The autophagy machinery responded to 10–30 kDa species released into culture supernatants by Type IV secretion-competent Legionella , as judged by the macrophages’ processing of Atg8 and formation of vacuoles that sequentially acquired Atg7, Atg8 and MDC. When compared with autophagosomes stimulated by rapamycin, Legionella vacuoles acquired Atg7, Atg8 and MDC more slowly, and Atg8 processing was also delayed. Moreover, compared with autophagosomes of Legionella -permissive naip5 mutant A/J macrophages, those of resistant C57BL/6 J macrophages matured quickly, preventing efficient Legionella replication. Accordingly, we discuss a model in which macrophages elevate autophagy as a barrier to infection, a decision influenced by regulatory interactions between Naip proteins and caspases.en_US
dc.format.extent326693 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 Blackwell Publishing Ltden_US
dc.titleAutophagy is an immediate macrophage response to Legionella pneumophilaen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, 6734 Medical Science Building II, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0620, USA.en_US
dc.identifier.pmid15888080en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75279/1/j.1462-5822.2005.00509.x.pdf
dc.identifier.doi10.1111/j.1462-5822.2005.00509.xen_US
dc.identifier.sourceCellular Microbiologyen_US
dc.identifier.citedreferenceAbu Kwaik, Y. ( 1996 ) The phagosome containing Legionella pneumophila within the protozoan Hartmonella vermiformis is surrounded by the rough endoplasmic reticulum. Appl Environ Microbiol 62: 2022 – 2028.en_US
dc.identifier.citedreferenceAmer, A. O., Byrne, B. G., and Swanson, M. S. ( 2005 ) Macrophages rapidly transfer pathogens from lipid raft vacuoles to autophagosomes. Autophagy 1, in press.en_US
dc.identifier.citedreferenceAnderson, H. A., Chen, Y., and Norkin, L. C. ( 1996 ) Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol Biol Cell 7: 1825 – 1834.en_US
dc.identifier.citedreferenceAridor, M., Bannykh, S. I., Rowe, T., and Balch, W. E. ( 1995 ) Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport. J Cell Biol 131: 875 – 893.en_US
dc.identifier.citedreferenceBerger, K. H., Merriam, J. J., and Isberg, R. I. ( 1994 ) Altered intracellular targeting properties associated with mutations in the Legionella pneumophila dotA gene. Mol Microbiol 14: 809 – 822.en_US
dc.identifier.citedreferenceBeron, W., Gutierrez, M. G., Rabinovitch, M., and Colombo, M. I. ( 2002 ) Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Infect Immun 70: 5816 – 5821.en_US
dc.identifier.citedreferenceBiederbick, A., Kern, H. F., and Elsasser, H. P. ( 1995 ) Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 66: 3 – 14.en_US
dc.identifier.citedreferenceByrne, B., and Swanson, M. S. ( 1998 ) Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66: 3029 – 3034.en_US
dc.identifier.citedreferenceCzuprynski, C. J., Faith, N. G., and Steinberg, H. ( 2003 ) A/J mice are susceptible and C57BL/6 mice are resistant to Listeria monocytogenes infection by intragastric inoculation. Infect Immun 71: 682 – 689.en_US
dc.identifier.citedreferenceDerre, I., and Isberg, R. R. ( 2004 ) Legionella pneumophila replication vacuole formation involves rapid recruitment of proteins of the early secretory system. Infect Immun 72: 3048 – 3053.en_US
dc.identifier.citedreferenceDietrich, W. F., Damron, D. M., Isberg, R. R., Lander, E. S., and Swanson, M. S. ( 1995 ) Lgn1, a gene that determines susceptibility to Legionella pneumophila, maps to mouse chromosome 13. Genomics 26: 443 – 450.en_US
dc.identifier.citedreferenceDiez, E., Yaraghi, Z., MacKenzie, A., and Gros, P. ( 2000 ) The neuronal apoptosis inhibitory protein (Naip) is expressed in macrophages and is modulated after phagocytosis and during intracellular infection with Legionella pneumophila. J Immunol 164: 1470 – 1477.en_US
dc.identifier.citedreferenceDiez, E., Lee, S. H., Gauthier, S., Yaraghi, Z., Tremblay, M., Vidal, S., and Gros, P. ( 2003 ) Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat Genet 33: 55 – 60.en_US
dc.identifier.citedreferenceDorn, B. R., Dunn, W. A. Jr and Progulske-Fox, A. ( 2001 ) Porphyromonas gingivalis traffics to autophagosomes in human coronary artery endothelial cells. Infect Immun 69: 5698 – 5708.en_US
dc.identifier.citedreferenceDunn, W. A. ( 1990a ) Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 110: 1923 – 1933.en_US
dc.identifier.citedreferenceDunn, W. A. ( 1990b ) Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J Cell Biol 110: 1935 – 1945.en_US
dc.identifier.citedreferenceElliott, J. A., and Winn, W. C. ( 1986 ) Treatment of alveolar macrophages with cytochalasin D inhibits uptake and subsequent growth of Legionella pneumophila. Infect Immun 51: 31 – 36.en_US
dc.identifier.citedreferenceFujinaga, Y., Wolf, A., Rodighiero, C., Wheeler, H., Tsai, B., Allen, L., et al. ( 2003 ) Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to ER. Mol Biol Cell 14: 4783 – 4793.en_US
dc.identifier.citedreferenceGonÇalves da Costa, S. C., Calabrese, K. S., Zaverucha do Valle, T., and Lagrange, P. H. ( 2002 ) Trypanosoma cruzi: infection patterns in intact and athymic mice of susceptible and resistant genotypes. Histol Histopathol 17: 837 – 844.en_US
dc.identifier.citedreferenceGozuacik, D., and Kimchi, A. ( 2004 ) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23: 2891 – 2906.en_US
dc.identifier.citedreferenceGutierrez, M. G., Master, S. S., Singh, S. B., Taylor, G. A., Colombo, M. I., and Deretic, V. ( 2004 ) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119: 753 – 766.en_US
dc.identifier.citedreferenceHamasaki, M., Noda, T., and Ohsumi, Y. ( 2003 ) The early secretory pathway contributes to autophagy in yeast. Cell Struct Funct 28: 49 – 54.en_US
dc.identifier.citedreferenceHernandez, L. D., Pypaert, M., Flavell, R. A., and Galan, J. E. ( 2003 ) A Salmonella protein causes macrophage cell death by inducing autophagy. J Cell Biol 163: 1123 – 1131.en_US
dc.identifier.citedreferenceHirsimaki, P. ( 1983 ) Studies on vinblastine-induced autophagocytosis in mouse liver. II. Origin of membranes and acquisition of acid phosphatase. Histochem 79: 59 – 67.en_US
dc.identifier.citedreferenceHorwitz, M. A. ( 1983a ) The Legionnaires’ disease bacterium ( Legionella pneumophila ) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med 158: 2108 – 2126.en_US
dc.identifier.citedreferenceHorwitz, M. A. ( 1983b ) Formation of a novel phagosome by the Legionnaires’ disease bacterium ( Legionella pneumophila ) in human monocytes. J Exp Med 158: 1319 – 1331.en_US
dc.identifier.citedreferenceIchimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., et al. ( 2000 ) A ubiquitin-like system mediates protein lipidation. Nature 408: 488 – 492.en_US
dc.identifier.citedreferenceJoshi, A. D., Sturgill-Koszycki, S., and Swanson, M. S. ( 2001 ) Evidence that Dot-dependent and – independent factors isolate the Legionella pneumophila phagosome from the endocytic network in mouse macrophages. Cell Microbiol 3: 99 – 114.en_US
dc.identifier.citedreferenceKabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., et al. ( 2000 ) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19: 5720 – 5728.en_US
dc.identifier.citedreferenceKagan, J. C., and Roy, C. R. ( 2002 ) Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 4: 945 – 954.en_US
dc.identifier.citedreferenceKagan, J. C., Stein, M. -P., Pypaert, M., and Roy, C. R. ( 2004 ) Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J Exp Med 199: 1201 – 1211.en_US
dc.identifier.citedreferenceKirkegaard, K., Taylor, M. P., and Jackson, W. T. ( 2004 ) Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2: 301 – 314.en_US
dc.identifier.citedreferenceKlausner, R., Donaldson, J., and Lippincott-Schwartz, J. ( 1992 ) Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116: 1071 – 1080.en_US
dc.identifier.citedreferenceKlionsky, D. J., and Emr, S. D. ( 2000 ) Autophagy as a regulated pathway of cellular degradation. Science 290: 1717 – 1721.en_US
dc.identifier.citedreferenceKlionsky, D. J., Cregg, J. M., Dunn, A. W., Emr, S. D., Sakai, Y., Sandoval, I. V., et al. ( 2003 ) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5: 539 – 545.en_US
dc.identifier.citedreferenceKopitz, J., Kisen, G. O., Gordon, P. B., Bohley, P., and Seglen, P. O. ( 1990 ) Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol 111: 941 – 953.en_US
dc.identifier.citedreferenceListon, P., Fong, W. G., and Korneluk, R. G. ( 2003 ) The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 22: 8568 – 8580.en_US
dc.identifier.citedreferenceMaier, J. K. X., Lahoua, Z., Gendron, N. H., Fetni, R., Johnston, A., Davoodi, J., et al. ( 2002 ) The neuronal apoptosis inhibitory protein is a direct inhibitor of caspases 3 and 7. J Neurosci 22: 2035 – 2043.en_US
dc.identifier.citedreferenceMartin, D. N., and Baehrecke, E. H. ( 2004 ) Caspases function in autophagic programmed cell death in Drosophila. Development 131: 275 – 284.en_US
dc.identifier.citedreferenceMizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M. D., et al. ( 1998 ) A protein conjugation system essential for autophagy. Nature 395: 395 – 398.en_US
dc.identifier.citedreferenceMolmeret, M., Zink, S. D., Han, L., Abu-Zant, A., Asari, R., Bitar, D. M., and Abu Kwaik, Y. ( 2004 ) Activation of caspase-3 by the Dot/Icm virulence system is essential for arrested biogenesis of the Legionella containing phagosome. Cell Microbiol 6: 33 – 48.en_US
dc.identifier.citedreferenceMolofsky, A., and Swanson, M. S. ( 2003 ) Legionella pneumphila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol Microbiol 50: 445 – 461.en_US
dc.identifier.citedreferenceMolofsky, A. B., and Swanson, M. S. ( 2004 ) Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53: 29 – 40.en_US
dc.identifier.citedreferenceMunafo, D. B., and Colombo, M. I. ( 2001 ) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 114: 3619 – 3629.en_US
dc.identifier.citedreferenceNagai, H., Kagan, J. C., Zhu, X., Kahn, R. A., and Roy, C. R. ( 2002 ) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295: 679 – 682.en_US
dc.identifier.citedreferenceNakagawa, I., Amano, A., Mizushima, N., Yamamato, A., Yamaguchi, H., Kamimoto, T., et al. ( 2004 ) Autophagy defends cells against invading group A Streptococcus. Science 306: 1037 – 1040.en_US
dc.identifier.citedreferenceNaroeni, A., and Porte, F. ( 2002 ) Role of cholesterol and the ganglioside GM1 in entry and short term survival of Brucella suis in murine macrophages. Infect Immun 70: 1640 – 1644.en_US
dc.identifier.citedreferenceNiemann, A., Takatsuki, A., and Elsasser, H. P. ( 2000 ) The lysosomotropic agent monodansylcadaverine also acts as a solvent polarity probe. J Histochem Cytochem 48: 251 – 258.en_US
dc.identifier.citedreferenceNimmerjahn, F., Milosevic, S., Behrends, U., Jaffee, E. M., Pardoll, D. M., Bornkamm, G. W., and Mautner, J. ( 2003 ) Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 33: 1250 – 1259.en_US
dc.identifier.citedreferenceNoda, T., and Ohsumi, Y. ( 1998 ) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273: 3963 – 3966.en_US
dc.identifier.citedreferenceNoda, T., Suzuki, K., and Ohsumi, Y. ( 2002 ) Yeast autophagosomes: de novo formation of a membrane structure. Trends Cell Biol 12: 231 – 235.en_US
dc.identifier.citedreferenceOgier-Denis, E., and Codogno, P. ( 2003 ) Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 1603: 113 – 128.en_US
dc.identifier.citedreferenceOhsumi, Y. ( 2001 ) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2: 211 – 216.en_US
dc.identifier.citedreferenceOtto, G. P., Wu, M. Y., Clarke, M., Lu, H., Anderson, O. R., Hilbi, H., et al. ( 2004 ) Macroautophagy is dispensable for intracellular replication of Legionella pneumophila in Dictyostelium discoideum. Mol Microbiol 51: 63 – 72.en_US
dc.identifier.citedreferencePizarro-Cerda, J., Meresse, S., Parton, R. G., van der Goot, G., Sola-Landa, A., Lopez-Goni, I., et al. ( 1998a ) Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Immun 66: 5711 – 5724.en_US
dc.identifier.citedreferencePizarro-Cerda, J., Moreno, E., Sanguedolce, V., Mege, J. L., and Gorvel, J. P. ( 1998b ) Virulent Brucella abortus prevents lysosome fusion and is distributed within autophagosome-like compartments. Infect Immun 66: 2387 – 2392.en_US
dc.identifier.citedreferenceRich, K. A., Burkett, C., and Webster, P. ( 2003 ) Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol 5: 455 – 468.en_US
dc.identifier.citedreferenceRichterova, Z., Liebl, D., Horak, M., Palkova, Z., Stokrova, J., and Hozak, P. ( 2001 ) Caveolae are involved in the trafficking of mouse polyoma virus virions and artificial VP1 pseudocapsids toward cell nuclei. J Virol 75: 10880 – 10891.en_US
dc.identifier.citedreferenceRoisin-Bouffay, C., Luciani, M. F., Klein, G., Levraud, J. P., Adam, M., and Golstein, P. ( 2004 ) Developmental cell death in Dictyostelium does not require paracaspase. J Biol Chem 279: 11489 – 11494.en_US
dc.identifier.citedreferenceRoy, C. R., Berger, K. H., and Isberg, R. R. ( 1998 ) Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol Microbiol 28: 663 – 674.en_US
dc.identifier.citedreferenceScales, S. J., Pepperkok, R., and Kreis, T. E. ( 1997 ) Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 90: 1137 – 1148.en_US
dc.identifier.citedreferenceSchaible, U. E., Schlesinger, P. H., Steinberg, T. H., Mangel, W. F., Kobayashi, T., and Russell, D. G. ( 1999 ) Parasitophorous vacuoles of Leishmania mexicanao acquire macromolecules from the host cell cytosol via two independent routes. J Cell Sci 112: 681 – 693.en_US
dc.identifier.citedreferenceSeglen, P. O., and Gordon, P. B. ( 1982 ) 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA 79: 1889 – 1892.en_US
dc.identifier.citedreferenceSeglen, P. O., and Bohley, P. ( 1992 ) Autophagy and other vacuolar protein degradation mechanisms. Experientia 48: 158 – 172.en_US
dc.identifier.citedreferenceSeglen, P. O., Gordon, P. B., and Holen, I. ( 1990 ) Non-selective autophagy. Semin Cell Dev Biol 1: 441 – 448.en_US
dc.identifier.citedreferenceStevenson, M. M., and Tam, M. F. ( 1993 ) Differential induction of helper T cell subsets during blood-stage Plasmodium chabaudi AS infection in resistant and susceptible mice. Clin Exp Immunol 92: 77 – 83.en_US
dc.identifier.citedreferenceStromhaug, P. E., Berg, T. O., Fengsrud, M., and Seglen, P. O. ( 1998 ) Purification and characterization of autophagosomes from rat hepatocytes. Biochem J 335: 217 – 224.en_US
dc.identifier.citedreferenceSturgill-Koszycki, S., and Swanson, M. S. ( 2000 ) Legionella pneumophila replication vacuoles mature into acidic, endocytic organelles. J Exp Med 192: 1261 – 1272.en_US
dc.identifier.citedreferenceSwanson, M. S., and Isberg, R. R. ( 1995 ) Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect Immun 63: 3609 – 3620.en_US
dc.identifier.citedreferenceSwanson, M. S., and Fernandez-Moreira, E. ( 2002 ) A microbial strategy to multiply in macrophages: the pregnant pause. Traffic 3: 170 – 177.en_US
dc.identifier.citedreferenceTalloczy, Z., Jiang, W., Virgin, H. W. T., Leib, D. A., Scheuner, D., Kaufman, R. J., et al. ( 2002 ) Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci USA 99: 190 – 195.en_US
dc.identifier.citedreferenceTanida, I., Mizushima, N., Kiyooka, M., Ohsumi, M., Ueno, T., Ohsumi, Y., and Kominami, E. ( 1999 ) Apg7p/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol Biol Cell 10: 1367 – 1379.en_US
dc.identifier.citedreferenceTanida, I., Ueno, T., Ohsumi, M., Ohsumi, Y., and Kominami, E. ( 2001 ) The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 276: 9846 – 9854.en_US
dc.identifier.citedreferenceTilney, L. G., Harb, O. S., Connelly, P. S., Robinson, C. G., and Roy, C. R. ( 2001 ) How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J Cell Sci 114: 4637 – 4650.en_US
dc.identifier.citedreferenceUeno, T., Muno, D., and Kominami, E. ( 1991 ) Membrane markers of endoplasmic reticulum preserved in autophagic vacuolar membranes isolated from leupeptin-administered rat liver. J Biol Chem 266: 18995 – 18999.en_US
dc.identifier.citedreferenceVogel, J. P., Andrews, H. L., Wong, S. K., and Isberg, R. R. ( 1998 ) Conjugative transfer by the virulence system of Legionella pneumophila. Science 279: 873 – 876.en_US
dc.identifier.citedreferenceWatarai, M., Derre, I., Kirby, J., Growney, J. D., Dietrich, W. F., and Isberg, R. R. ( 2001 ) Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus. J Exp Med 194: 1081 – 1096.en_US
dc.identifier.citedreferenceWright, E. K., Goodart, S. A., Growney, J. D., Hadinoto, V., Endrizzi, M. G., Long, E. M., et al. ( 2003 ) Naip5 affects host suceptibility to the intracellular pathogen Legionella pneumophila. Curr Biol 13: 27 – 36.en_US
dc.identifier.citedreferenceXue, L., Fletcher, G. C., and Tolkovsky, A. M. ( 1999 ) Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol Cell Neurosci 14: 180 – 198.en_US
dc.identifier.citedreferenceYoshimori, T. ( 2004 ) Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun 313: 453 – 458.en_US
dc.identifier.citedreferenceYu, L., Alva, A., Su, H., Dutt, P., Freundt, E., Welsh, S., et al. ( 2004 ) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304: 1500 – 1502.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.