Show simple item record

Integrative measures of consumption rates in salmon: expansion and application of a trace element approach

dc.contributor.authorKennedy, Brian P.en_US
dc.contributor.authorKlaue, Bjoernen_US
dc.contributor.authorBlum, Joel Den_US
dc.contributor.authorFolt, Carol L.en_US
dc.date.accessioned2010-06-01T22:17:51Z
dc.date.available2010-06-01T22:17:51Z
dc.date.issued2004-10en_US
dc.identifier.citationKENNEDY, BRIAN P.; KLAUE, BJOERN; BLUM, JOEL D.; FOLT, CAROL L. (2004). "Integrative measures of consumption rates in salmon: expansion and application of a trace element approach." Journal of Applied Ecology 41(5): 1009-1020. <http://hdl.handle.net/2027.42/75309>en_US
dc.identifier.issn0021-8901en_US
dc.identifier.issn1365-2664en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75309
dc.description.abstract1.   Establishing reliable estimates of consumption is necessary for understanding the physiology, bioenergetics and trophic relationships of organisms. For fish, the inability to measure consumption directly prevents a mechanistic understanding of habitat–foraging relationships. Building upon established models for 137 caesium (Cs) mass balance in fish, we used natural abundances of a stable geologically derived isotope of Cs to estimate consumption rates over the first growing season for Atlantic salmon Salmo salar and to derive a general model that provides integrative estimates of consumption rates for individuals of all sizes. 2.   To test the reliability of the trace metal approach we (i) performed a sensitivity analysis of model parameters and (ii) parameterized the model with site-specific data, including gut contents, Cs concentrations of invertebrate prey and assimilation rates. 3.   We applied the method in two sites to make the first in situ determinations of consumption rates of individual age-0 salmon at post-larval and fry stages, for fish as small as 0·1 g. Consumption estimates were most responsive to changes in three parameters: Cs body burdens, Cs concentration in prey items and assimilation efficiency, all of which could be measured with high precision using inductively coupled plasma mass spectrometry. 4.   The assimilation efficiency of Cs measured on field-caught age-0 salmon was approximately 60%. Consumption rates at 2 weeks post-stocking were highly variable in both sites, ranging from no detectable consumption to 8·5% fresh weight (fw) day −1 . By the end of the growing season, consumption rates were less variable (2–4% fw day −1 ). 5.   Synthesis and applications. This study is the first to demonstrate that background levels of geologically derived Cs can be used to estimate consumption rates of fish. Our results show that extremely low consumption rates during the first 6 weeks of life correspond closely with the critical survival period in other fish populations, and suggest a mechanism for a hypothesized survival bottleneck at this time. The results implicate the importance of early season habitat availability when considering management priorities of fish. Additionally, our use of stable Cs at natural abundance concentrations permits the global application of this trace element approach for estimating consumption rates of fish as well as other organisms. This general approach can be adopted for conservation and management settings in which it is necessary to identify suitable foraging habitat of a species or to quantify the relationship between consumption and growth. Journal of Applied Ecology (2004) 41 , 1009 –1020en_US
dc.format.extent224874 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights© 2004 British Ecological Societyen_US
dc.subject.otherAssimilationen_US
dc.subject.otherBioenergeticsen_US
dc.subject.otherCaesium (Cs)en_US
dc.subject.otherCritical Perioden_US
dc.subject.otherAtlantic Salmonen_US
dc.titleIntegrative measures of consumption rates in salmon: expansion and application of a trace element approachen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109, USA; anden_US
dc.contributor.affiliationother† Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75309/1/j.0021-8901.2004.00956.x.pdf
dc.identifier.doi10.1111/j.0021-8901.2004.00956.xen_US
dc.identifier.sourceJournal of Applied Ecologyen_US
dc.identifier.citedreferenceAarkrog, A., Baxter, M.S., Bettencourt, A.O., Bojanowski, R., Bologa, A., Charmasson, S., Cunha, I., Delfanti, R., Duran, E., Holm, E., Jeffree, R., Livingston, H.D., Mahapahnyawong, S., Nies, H., Osvath, I., Pingyu, L., Povinec, P.P., Sanchez, A., Smith, J.N. & Swift, D. ( 1997 ) A comparison of doses from 137 Cs and 210 Po in marine food: a major international study. Journal of Environmental Radioactivity, 34, 69 – 90.en_US
dc.identifier.citedreferenceBartell, S.M., Breck, J.E., Gardner, R.H. & Brenkert, A.L. ( 1986 ) Individual parameter perturbation and error analysis of fish bioenergetics models. Canadian Journal of Fisheries and Aquatic Sciences, 43, 160 – 168.en_US
dc.identifier.citedreferenceBoisclair, D. & Leggett, W.C. ( 1988 ) An in situ experimental evaluation of the Elliott and Persson and the Eggers models for estimating fish daily ration. Canadian Journal of Fisheries and Aquatic Sciences, 45, 138 – 145.en_US
dc.identifier.citedreferenceBoisclair, D. & Marchand, F. ( 1993 ) The guts to estimate fish daily ration. Canadian Journal of Fisheries and Aquatic Sciences, 50, 1969 – 1975.en_US
dc.identifier.citedreferenceBrandt, S.B. & Hartman, K.J. ( 1993 ) Innovative approaches with bioenergetics models: future applications to fish ecology and management. Transactions of the American Fisheries Society, 122, 731 – 735.en_US
dc.identifier.citedreferenceDavis, J.J. & Foster, R.F. ( 1958 ) Bioaccumulation of radioisotopes through aquatic food chains. Ecology, 39, 530 – 535.en_US
dc.identifier.citedreferenceEggers, D.M. ( 1977 ) Factors in interpreting data obtained by diel sampling of fish stomachs. Journal of the Fisheries Research Board of Canada, 34, 290 – 294.en_US
dc.identifier.citedreferenceElliott, J.M. ( 1989 ) The critical period concept and its relevance for population regulation in young sea trout. Journal of Fish Biology, 35, 91 – 98.en_US
dc.identifier.citedreferenceElliott, J.M. & Persson, L. ( 1978 ) The estimation of daily rates of food consumption for fish. Journal of Animal Ecology, 47, 977 – 990.en_US
dc.identifier.citedreferenceEyman, L.D. & Kitchings, J.T. ( 1975 ) The availability of 137 Cs to fishes from ingested clays. Internationale Vereinigung fÜr Theoretische und Angewandte Limnologie: Verhandlungen, 19, 2504 – 2509.en_US
dc.identifier.citedreferenceFolt, C.L. & Parrish, D.L. ( 1994 ) An Analysis of Food Availability for Age-0 Atlantic Salmon. Final Report March 1994. SO Conte Anadromous Fish Research Center (USGS/BRD), Turners Falls, MA.en_US
dc.identifier.citedreferenceForseth, T., Hurley, M.A., Jensen, A.J. & Elliott, J.M. ( 2001 ) Functional models for growth and food consumption of Atlantic salmon parr, Salmo salar, from a Norwegian river. Freshwater Biology, 46, 173 – 186.en_US
dc.identifier.citedreferenceForseth, T., Jonsson, B., NÆ;umann, R. & Ugedal, O. ( 1992 ) Radioisotope method for estimating food consumption by brown trout ( Salmo trutta ). Canadian Journal of Fisheries and Aquatic Sciences, 49, 1328 – 1335.en_US
dc.identifier.citedreferenceForseth, T., NÆ;sje, T.F., Jonsson, B. & HÅrsaker, K. ( 1999 ) Juvenile migration in brown trout: a consequence of energetic state. Journal of Animal Ecology, 68, 783 – 793.en_US
dc.identifier.citedreferenceForseth, T., Ugedal, O. & Jonsson, B. ( 1994 ) The energy budget, niche shift, reproduction and growth in a population of Arctic charr, Salvelinus alpinus. Journal of Animal Ecology, 63, 116 – 126.en_US
dc.identifier.citedreferenceForseth, T., Ugedal, O., NÆ;sje, T.F. & Jonsson, B. ( 1998 ) Radiocaesium elimination in fish: variation among and within species. Journal of Applied Ecology, 35, 847 – 856.en_US
dc.identifier.citedreferenceHakonson, T.E., Gallegos, A.F. & Whicker, F.W. ( 1975 ) Cesium kinetics data for estimating food consumption rates of trout. Health Physics, 29, 301 – 306.en_US
dc.identifier.citedreferenceHayward, R.S., Margraf, F.J., Knight, C.T. & Glomski, D.J. ( 1989 ) Gear bias in field estimation of the amount of food consumed by fish. Canadian Journal of Fisheries and Aquatic Sciences, 46, 874 – 876.en_US
dc.identifier.citedreferenceHewett, C.J. & Jefferies, D.F. ( 1976 ) The accumulation of radioactive cesium from water by the brown trout and its comparison with plaice and rays. Journal of Fish Biology, 9, 479 – 489.en_US
dc.identifier.citedreferenceHill, J. & Grossman, G.D. ( 1993 ) An energetic model of microhabitat use for rainbow trout and rosyside dace. Ecology, 74, 685 – 698.en_US
dc.identifier.citedreferenceJonsson, B., Forseth, T. & Ugedal, O. ( 1999 ) Chernobyl radioactivity persists in fish. Nature, 400, 417.en_US
dc.identifier.citedreferenceKevern, N.R. ( 1966 ) Feeding rate of carp estimated by a radioisotopic method. Transactions of the American Fisheries Society, 95, 363 – 371.en_US
dc.identifier.citedreferenceKolehmainen, S.E. ( 1972 ) The balance of 137 Cs, stable cesium and potassium of bluegill ( Lepomis macrochirus Raf.) and other fish in White Oak Lake. Health Physics, 23, 301 – 315.en_US
dc.identifier.citedreferenceKolehmainen, S.E. ( 1974 ) Daily feeding rates of bluegill ( Lepomis macrochirus ) determined by a refined radioisotope method. Journal of the Fisheries Research Board of Canada, 31, 67 – 74.en_US
dc.identifier.citedreferenceKolehmainen, S.E., HÄsÄnen, E. & Miettinen, J.K. ( 1967 ) 137 Cs in plants, plankton and fish of Finnish lakes, and factors affecting its accumulation. Proceedings of the 1st International Congress on Radiation Protection (ed. W. E. Snyder ), pp. 407 – 415. Pergamon Press, Oxford, UK.en_US
dc.identifier.citedreferenceLa Bar, G.W. ( 1993 ) Use of bioenergetics models to predict the effect of increased lake trout predation on rainbow smelt following sea lamprey control. Transactions of the American Fisheries Society, 122, 942 – 950.en_US
dc.identifier.citedreferenceLetcher, B.H. & Terrick, T.D. ( 2001 ) Effects of developmental stage at stocking on growth and survival of Atlantic salmon fry. North American Journal of Fisheries Management, 21, 102 – 110.en_US
dc.identifier.citedreferenceMailhot, H., Peters, R.H. & Cornett, R.J. ( 1988 ) Bioaccumulation of cesium by aquatic organisms. Internationale Vereinigung fÜr Theoretische und Angewandte Limnologie: Verhandlungen, 23, 1602 – 1609.en_US
dc.identifier.citedreferenceNewbrough, K., Parrish, D.L. & Folt, C.L. ( 1995 ) Habitat Variables Contributing to Age-0 Atlantic Salmon ( Salmo salar ) Survival in the West and White Rivers, Vermont. Final Report. National Marine Fisheries Service, Gloucester, MA.en_US
dc.identifier.citedreferenceNislow, K.H., Folt, C.L. & Parrish, D.L. ( 1999 ) Favorable foraging locations for age-0 Atlantic salmon: application to the restoration of populations and habitats. Ecological Applications, 9, 1085 – 1099.en_US
dc.identifier.citedreferenceNislow, K.H., Folt, C.L. & Parrish, D.L. ( 2000 ) A spatially-explicit bioenergetic analysis of habitat quality for age-0 Atlantic salmon. Transactions of the American Fisheries Society, 129, 1067 – 1081.en_US
dc.identifier.citedreferenceOlson, M.H. ( 1996 ) Ontogenetic shifts in largemouth bass. Ecology, 77, 179 – 190.en_US
dc.identifier.citedreferencePost, J.R., Vandenbos, R. & McQueen, D.J. ( 1996 ) Uptake rates of food chain and waterborne mercury by fish: field measurements, a mechanistic model, and an assessment of uncertainties. Canadian Journal of Fisheries and Aquatic Sciences, 53, 395 – 407.en_US
dc.identifier.citedreferenceRaffenberg, M. ( 1998 ) Salmon and trout interactions in the West and White Rivers, Vermont. MS Thesis. University of Vermont, Burlington, Vermont.en_US
dc.identifier.citedreferenceRowan, D.J. & Rasmussen, J.B. ( 1994 ) Bioaccumulation of radiocesium by fish: the influence of physicochemical factors and trophic structure. Canadian Journal of Fisheries and Aquatic Sciences, 51, 2388 – 2410.en_US
dc.identifier.citedreferenceRowan, D.J. & Rasmussen, J.B. ( 1995 ) The elimination of radiocaesium from fish. Journal of Applied Ecology, 32, 739 – 744.en_US
dc.identifier.citedreferenceRowan, D.J. & Rasmussen, J.B. ( 1996 ) Measuring the bioenergetic cost of fish activity in situ using a globally dispersed radiotracer ( 137 Cs). Canadian Journal of Fisheries and Aquatic Sciences, 53, 734 – 745.en_US
dc.identifier.citedreferenceRowan, D.J., Chant, L.A. & Rasmussen, J.B. ( 1998 ) The fate of radiocesium in freshwater communities: why is biomagnification variable both within and between species? Journal of Environmental Radioactivity, 40, 15 – 36.en_US
dc.identifier.citedreferenceSAS Institute Inc. ( 2000 ) JMP® Statistical Discovery Software, Version 4. SAS Institute Inc., Cary, NC.en_US
dc.identifier.citedreferenceStewart, D.J., Weininger, D., Rottiers, D.V. & Edsall, T.A. ( 1983 ) An energetics model for lake trout, Salvelinus namaycush: application to the Lake Michigan population. Canadian Journal of Fisheries and Aquatic Sciences, 40, 681 – 698.en_US
dc.identifier.citedreferenceSundbom, M., Mieli, M., Andersson, E., Ostlund, M. & Broberg, A. ( 2003 ) Long-term dynamics of Chernobyl 137 Cs in freshwater fish: quantifying the effect of body size and trophic level. Journal of Applied Ecology, 40, 228 – 240.en_US
dc.identifier.citedreferenceTrudel, M. & Rasmussen, J.B. ( 2001 ) Predicting mercury concentration in fish using mass balance models. Ecological Applications, 11, 517 – 529.en_US
dc.identifier.citedreferenceTucker, S. & Rasmussen, J.B. ( 1999 ) Using 137 Cs to measure and compare bioenergetic budgets of juvenile Atlantic salmon ( Salmo salar ) and brook trout ( Salvelinus fontinalis ) in the field. Canadian Journal of Fisheries and Aquatic Sciences, 56, 875 – 887.en_US
dc.identifier.citedreferenceTucker, S., Pazzia, I., Rowan, D. & Rasmussen, J.B. ( 1999 ) Detecting pan-Atlantic migration in salmon ( Salmo salar ) using 137 Cs. Canadian Journal of Fisheries and Aquatic Sciences, 56, 2235 – 2239.en_US
dc.identifier.citedreferenceTukey, J. ( 1953 ) A Problem of Multiple Comparisons. Princeton University, Princeton, NJ.en_US
dc.identifier.citedreferenceUgedal, O., Forseth, T. & Jonsson, B. ( 1997 ) A functional model of radiocesium turnover in brown trout. Ecological Applications, 7, 1002 – 1016.en_US
dc.identifier.citedreferenceUgedal, O., Forseth, T., Jonsson, B. & NjÅstad, O. ( 1995 ) Sources of variation in radiocaesium levels between individual fish from a Chernobyl contaminated Norwegian Lake. Journal of Applied Ecology, 32, 352 – 361.en_US
dc.identifier.citedreferenceWelch, B.L. ( 1951 ) On the comparison of several mean values: an alternative approach. Biometrika, 38, 330 – 336.en_US
dc.identifier.citedreferenceWhitledge, G.W. & Hayward, R.S. ( 2000 ) Determining sampling date interval for precise in situ estimates of cumulative food consumption by fishes. Canadian Journal of Fisheries and Aquatic Sciences, 57, 1131 – 1138.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.