Show simple item record

Chemistry and decomposition of litter from Populus tremuloides Michaux grown at elevated atmospheric CO 2 and varying N availability

dc.contributor.authorKing, John S.en_US
dc.contributor.authorPregitzer, Kurt S.en_US
dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorKubiske, Mark E.en_US
dc.contributor.authorAshby, Jennifer A.en_US
dc.contributor.authorHolmes, William E.en_US
dc.date.accessioned2010-06-01T22:19:29Z
dc.date.available2010-06-01T22:19:29Z
dc.date.issued2001-01en_US
dc.identifier.citationKing, John S.; Pregitzer, Kurt S.; Zak, Donald R.; Kubiske, Mark E.; Ashby, Jennifer A.; Holmes, William E. (2001). "Chemistry and decomposition of litter from Populus tremuloides Michaux grown at elevated atmospheric CO 2 and varying N availability." Global Change Biology 7(1): 65-74. <http://hdl.handle.net/2027.42/75335>en_US
dc.identifier.issn1354-1013en_US
dc.identifier.issn1365-2486en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75335
dc.description.abstractIt has been hypothesized that greater production of total nonstructural carbohydrates (TNC) in foliage grown under elevated atmospheric carbon dioxide (CO 2 ) will result in higher concentrations of defensive compounds in tree leaf litter, possibly leading to reduced rates of decomposition and nutrient cycling in forest ecosystems of the future. To evaluate the effects of elevated atmospheric CO 2 on litter chemistry and decomposition, we performed a 111 day laboratory incubation with leaf litter of trembling aspen ( Populus tremuloides Michaux) produced at 36 Pa and 56 Pa CO 2 and two levels of soil nitrogen (N) availability. Decomposition was quantified as microbially respired CO 2 and dissolved organic carbon (DOC) in soil solution, and concentrations of nonstructural carbohydrates, N, carbon (C), and condensed tannins were monitored throughout the incubation. Growth under elevated atmospheric CO 2 did not significantly affect initial litter concentrations of TNC, N, or condensed tannins. Rates of decomposition, measured as both microbially respired CO 2 and DOC did not differ between litter produced under ambient and elevated CO 2 . Total C lost from the samples was 38 mg g −1 litter as respired CO 2 and 138 mg g −1 litter as DOC, suggesting short-term pulses of dissolved C in soil solution are important components of the terrestrial C cycle. We conclude that litter chemistry and decomposition in trembling aspen are minimally affected by growth under higher concentrations of CO 2 .en_US
dc.format.extent216616 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rightsBlackwell Science Ltden_US
dc.subject.otherCen_US
dc.subject.otherN Ratioen_US
dc.subject.otherCarbohydratesen_US
dc.subject.otherGlobal Changeen_US
dc.subject.otherMicrolysimeteren_US
dc.subject.otherSoil Carbonen_US
dc.subject.otherTanninen_US
dc.titleChemistry and decomposition of litter from Populus tremuloides Michaux grown at elevated atmospheric CO 2 and varying N availabilityen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* School of Forestry and Wood Products, Michigan Technological University, Houghton, MI, 49931 USA,en_US
dc.contributor.affiliationum† School of Natural Resources and Environment, The University of Michigan, Ann Arbor, MI 48109 USA,en_US
dc.contributor.affiliationother† Department of Forestry, Box 9681, Mississippi State University, MS 39762,en_US
dc.contributor.affiliationother§ USDA Forest Service, North Central Research Station, Houghton, MI, 49931 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75335/1/j.1365-2486.2001.00388.x.pdf
dc.identifier.doi10.1046/j.1365-2486.2001.00388.xen_US
dc.identifier.sourceGlobal Change Biologyen_US
dc.identifier.citedreferenceAlban, DH & Perala, DA 1992 Carbon storage in Lake States aspen ecosystems. Canadian Journal of Forest Research, 22, 1107 – 1110.en_US
dc.identifier.citedreferenceAmthor, JS 1995 Terrestrial higher-plant response to increasing atmospheric [CO 2 ] in relation to the global carbon cycle. Global Change Biology, 1, 243 – 274.en_US
dc.identifier.citedreferenceBall, AS & Drake, BG 1997 Short-term decomposition of litter produced by plants grown in ambient and elevated atmospheric CO 2 concentrations. Global Change Biology, 3, 29 – 35.en_US
dc.identifier.citedreferenceBazzaz, FA, Chiariello, NR, Coley, PD & Pitelka, LF 1987 Allocating resources to reproduction and defense. Bioscience, 37, 58 – 67.en_US
dc.identifier.citedreferenceBerg, B & Staaf, H 1981 Leaching, accumulation and release of nitrogen in decomposing forest litter. In: Terrestrial Nitrogen Cycles (eds Clark, FE & Rosswall, T ). Ecological Bulletins, 33, 163 – 178.en_US
dc.identifier.citedreferenceBockheim, JG, Jepsen, EA & Heisey, DM 1991 Nutrient dynamics in decomposing leaf litter of four tree species on a sandy soil in northwestern Wisconsin. Canadian Journal of Forest Research, 21, 803 – 812.en_US
dc.identifier.citedreferenceBryant, JP, Chapin, Fs III & Klein, DR 1983 Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos, 40, 357 – 368.en_US
dc.identifier.citedreferenceCeulemans, R & Mousseau, M 1994 Tansley Review no. 71: Effects of elevated atmospheric CO 2 on woody plants. New Phytologist, 127, 425 – 446.en_US
dc.identifier.citedreferenceCotrufo, MF, Briones, MJI & Ineson, P 1998 Elevated CO 2 affects field decomposition rate and palatability of tree leaf litter: importance of changes in substrate quality. Soil Biology and Biochemistry, 30, 1565 – 1571.en_US
dc.identifier.citedreferenceCurtis, PS 1996 A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant, Cell and Environment, 19, 127 – 137.en_US
dc.identifier.citedreferenceCurtis, PS, Vogel, CS, Pregitzer, KS, Zak, DR & Teeri, JT 1995 Interacting effects of soil fertility and atmospheric CO 2 on leaf area growth and carbon gain physiology in Populus ×. Euramericana. New Phytologist, 129, 253 – 263.en_US
dc.identifier.citedreferenceCurtis, PS, Vogel, CS, Wang, X, Pregitzer, KS & Zak, DR 2000 Gas exchange, leaf nitrogen, and growth efficiency of Populus tremuloides in a CO 2 enriched atmosphere. Ecological Applications, 10, 3 – 17.en_US
dc.identifier.citedreferenceCurtis, PS & Wang, X 1998 A meta-analysis of elevated CO 2 effects on woody plant mass, form, and physiology. Oecologia, 113, 299 – 313.en_US
dc.identifier.citedreferenceDickson, RE & Nelson, EA 1982 Fixation and distribution of 14 C in Populus deltoides during dormancy induction. Physiologia Plantarum, 54, 393 – 401.en_US
dc.identifier.citedreferenceEamus, D & Jarvis, PG 1989 The direct effects of increase in the global atmospheric CO 2 concentration on natural and commercial temperate trees and forests. Advances in Ecological Research, 19, 1 – 55.en_US
dc.identifier.citedreferenceEntry, JA, Runion, GB, Prior, SA, Mitchell, RJ & Rogers, HH 1998 Influence of CO 2 enrichment and nitrogen fertilization on tissue chemistry and carbon allocation in longleaf pine seedlings. Plant and Soil, 200, 3 – 11.en_US
dc.identifier.citedreferenceGebauer, RLE, Strain, BR & Reynolds, JF 1998 The effect of elevated CO 2 and N availability on tissue concentrations and whole plant pools of carbon-based secondary compounds in loblolly pine ( Pinus taeda ). Oecologia, 113, 29 – 36.en_US
dc.identifier.citedreferencevan Ginkel, JH & Gorissen, A 1998 In situ decomposition of grass roots as affected by elevated atmospheric carbon dioxide. Soil Science Society of America Journal, 62, 951 – 958.en_US
dc.identifier.citedreferenceHagerman, AE & Butler, LG 1989 Choosing appropriate methods and standard for assaying tannin. Journal of Chemical Ecology, 15, 1795 – 1810.en_US
dc.identifier.citedreferenceHerbert, BE & Bertsch, PM 1995 Characterization of dissolved and colloidal organic matter in soil solution: A review. In: Carbon Forms and Functions in Forest Soils (eds McFee, WW & Kelly, JM ), pp. 63 – 88. Soil Science Society of America, Madison, WI.en_US
dc.identifier.citedreferenceHeyworth, CJ, Iason, GR, Temperton, V, Jarvis, PG & Duncan, AJ 1998 The effect of elevated CO 2 concentration and nutrient supply on carbon-based plant secondary metabolites in Pinus sylvestris L. Oecologia, 115, 344 – 350.en_US
dc.identifier.citedreferenceHorner, JD, Gosz, JR & Cates, RG 1988 The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems. American Naturalist, 132, 869 – 883.en_US
dc.identifier.citedreferenceHungate, BA, Holland, EA, Jackson, RB, Chapin, Fs III, Mooney, HA & Field, CB 1997 The fate of carbon in grasslands under carbon dioxide enrichment. Nature, 388, 576 – 579.en_US
dc.identifier.citedreferenceKainulainen, P, Holopainen, JK & Holopainen, T 1998 The influence of elevated CO 2 and O 3 concentrations on Scots pine needles: changes in secondary metabolites over three years exposure. Oecologia, 114, 455 – 460.en_US
dc.identifier.citedreferenceKing, JS, Allen, HL, Dougherty, P & Strain, BR 1997b Decomposition of roots in loblolly pine: Effects of nutrient and water availability and root size class on mass loss and nutrient dynamics. Plant and Soil, 195, 171 – 184.en_US
dc.identifier.citedreferenceKing, JS, Thomas, RB & Strain, BR 1997a Morphology and tissue quality of seedling root systems of Pinus taeda and Pinus ponderosa as affected by varying CO 2, temperature, and nitrogen. Plant and Soil, 195, 107 – 119.en_US
dc.identifier.citedreferenceKuehny, JS, Peet, MM, Nelson, PV & Willits, DH 1991 Nutrient dilution by starch in CO 2 -enriched Chrysanthemum. Journal of Experimental Botany, 42, 711 – 716.en_US
dc.identifier.citedreferenceLindroth, RL 1996 CO 2 -mediated changes in tree chemistry and tree–Lepidoptera interactions. In: Carbon Dioxide and Terrestrial Ecosystems (eds Koch, GW & Mooney, HA ), pp. 105 – 120. Academic Press, San Diego, CA.en_US
dc.identifier.citedreferenceLindroth, RL & Hwang, S-Y 1996 Clonal variation in foliar chemistry of quaking apsen ( Populus tremuloides Michx.). Biochemical Systematics and Ecology, 24, 357 – 364.en_US
dc.identifier.citedreferenceLindroth, RL & Koss, PA 1996 Preservation of Salicaceae leaves for phytochemical analyses: further assessment. Journal of Chemical Ecology, 22, 765 – 771.en_US
dc.identifier.citedreferenceMansfield, JL, Curtis, PS, Zak, DR & Pregitzer, KS 1999 Genotypic variation for condensed tannin production in trembling aspen ( Populus tremuloides Salicaceae) under elevated CO 2 and in high- and low-fertility soil. American Journal of Botany, 86, 1154 – 1159.en_US
dc.identifier.citedreferenceMartijn Bezemer, T & Hefin Jones, T 1998 Plant–insect herbivore interactions in elevated atmospheric CO 2: Quantitative analyses and guild effects. Oikos, 82, 212 – 222.en_US
dc.identifier.citedreferenceMelillo, JM, Prentice, IC, Farquhar, GD, Schulze, E-D & Sala, OE 1996 Terrestrial biotic responses to environmental change and feedback to climate. In: Climate Change 1995: the Science of Climate Change (eds Houghton, JT et al. ), pp. 447 – 481, Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferenceMeyer, JL & Tate, CM 1983 The effects of watershed disturbance on dissolved organic carbon dynamics of a stream. Ecology, 64, 33 – 44.en_US
dc.identifier.citedreferenceNambiar, EKS & Fife, DN 1991 Nutrient translocation in temperate conifers. Tree Physiology, 9, 5 – 207.en_US
dc.identifier.citedreferenceNguyen, PV, Dickmann, DI, Pregitzer, KS & Hendrick, R 1990 Late-season changes in allocation of starch and sugar to shoots, coarse roots, and fine roots in two hybrid poplar clones. Tree Physiology, 7, 95 – 105.en_US
dc.identifier.citedreferenceNorby, RJ & Cotrufo, MF 1998 A question of litter quality. Nature, 396, 17 – 18.en_US
dc.identifier.citedreferenceNorby, RJ, O'neill, EG & Luxmooore, RJ 1986 Effects of atmospheric CO 2 enrichment on the growth and mineral nutrition of Quercus alba in nutrient-poor soil. Plant Physiology, 82, 83 – 89.en_US
dc.identifier.citedreferenceO'neill, EG & Norby, RJ 1996 Litter quality and decomposition rates of foliar litter produced under CO 2 enrichment. In: Carbon Dioxide and Terrestrial Ecosystems (eds Koch, GW & Mooney, HA ), pp. 87 – 103. Academic Press, San Diego, CA.en_US
dc.identifier.citedreferenceOlson, JS 1963 Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322 – 331.en_US
dc.identifier.citedreferencePeÑuelas, J, Estiarte, M & Kimball, BA et al. 1996 Variety of responses of plant phenolic concentration to CO 2 enrichment. Journal of Experimental Botany, 47, 1463 – 1467.en_US
dc.identifier.citedreferencePerala, DA 1990 Populus tremuloides Michx., trembling aspen. In: Silvics of North America, Vol. 2 Hardwoods (eds Burns, RMB & Honkala, BH ), USDA Forest Service Handbook Number 654, pp. 555 – 569.USDA, Washington, D.C.en_US
dc.identifier.citedreferencePoorter, H, Van Berkel, Y & Baxter, R et al. 1997 The effect of elevated CO 2 on the chemical composition and construction costs of leaves of 27 C 3 species. Plant, Cell and Environment, 20, 472 – 482.en_US
dc.identifier.citedreferencePorter, LJ 1992 Structure and chemical properties of the condensed tannins. In: Plant Polyphenols (eds Hemingway, RW & Laks, PE ), pp. 245 – 258. Plenum Press, New York.en_US
dc.identifier.citedreferencePorter, LJ, Hrstich, LN & Chan, BG 1986 The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry, 25, 223 – 230.en_US
dc.identifier.citedreferencePregitzer, KS, Zak, DR, Curtis, PS, Kubiske, ME, Teeri, JE & Vogel, CS 1995 Atmospheric CO 2, soil nitrogen, and fine root turnover. New Phytologist, 129, 579 – 585.en_US
dc.identifier.citedreferencePrior, SA, Torbert, HA & Runion, GB et al. 1997 Free-air carbon dioxide enrichment of wheat: Soil carbon and nitrogen dynamics. Journal of Environmental Quality, 26, 1161 – 1166.en_US
dc.identifier.citedreferenceRandlett, DL, Zak, DR, Pregitzer, KS & Curtis, PS 1996 Elevated atmospheric carbon dioxide and leaf litter chemistry: Influences on microbial respiration and net nitrogen mineralization. Soil Science Society of America Journal, 60, 1571 – 1577.en_US
dc.identifier.citedreferenceRobinson, CH, Michelsen, A, Lee, JA, Whitehead, SJ, Callaghan, TV, Press, MC & Jonasson, S 1997 Elevated atmospheric CO 2 affects decomposition of Festuca vivipara (L.) Sm. litter and roots in experiments simulating environmental change in two contrasting arctic ecosystems. Global Change Biology, 3, 37 – 49.en_US
dc.identifier.citedreferenceRogers, HH, Heck, WW & Heagle, AS 1983 A field technique for the study of plant responses to elevated carbon dioxide concentrations. Air Pollution Control Association Journal, 33, 42 – 44.en_US
dc.identifier.citedreferenceRogers, HH, Runion, GB & Krupa, SV 1994 Plant responses to atmospheric CO 2 enrichment with emphasis on roots and the rhizosphere. Environmental Pollution, 83, 155 – 189.en_US
dc.identifier.citedreferenceSchofield, JA, Hagerman, AE & Harold, A 1998 Loss of tannins and other phenolics from willow leaf litter. Journal of Chemical Ecology, 24, 1409 – 1420.en_US
dc.identifier.citedreferenceSokal, RR & Rohlf, FJ 1995. Biometry: the Principles and Practice of Statistics in Biological Research. 3rd edn. W.H. Freeman. New York.en_US
dc.identifier.citedreferenceStrain, BR & Bazzaz, FA 1983 Terrestrial plant communities. In: CO 2 and Plants (ed. Lemon, ER ), pp. 177 – 222. Westview Press, Boulder, CO.en_US
dc.identifier.citedreferenceSuberkropp, K, Godshalk, GL & Klug, MJ 1976 Changes in the chemical composition of leaves during processing in a woodland stream. Ecology, 57, 720 – 727.en_US
dc.identifier.citedreferenceTaylor, BR 1998 Air-drying depresses rates of leaf litter decomposition. Soil Biology and Biochemistry, 30, 403 – 412.en_US
dc.identifier.citedreferenceTiarks, AE, Meier, CE, Flagler, RB & Steynberg, EC 1992 Sequential extraction of condensed tannins from pine litter at different stages of decomposition. In: Plant Polyphenols (eds Hemingway, RW & Laks, PE ), pp. 597 – 608. Plenum Press, New York.en_US
dc.identifier.citedreferenceTissue, DT & Wright, SJ 1995 Effect of water availability on phenology and the annual shoot carbohydrate cycle of tropical forest shrubs. Functional Ecology, 9, 519 – 527.en_US
dc.identifier.citedreferenceTorbert, HA, Prior, SA, Rogers, HH & Runion, GB 1998 Crop residue decomposition as affected by growth under elevated atmospheric CO 2. Soil Science, 163, 412 – 419.en_US
dc.identifier.citedreferenceWaring, RH & Schlesinger, WH 1985. Forest Ecosystems: Concepts and Management. Academic Press. San Diego, CA.en_US
dc.identifier.citedreferenceZak, DR, Grigal, DF & Ohmann, LF 1993 Kinetics of microbial respiration and nitrogen mineralization in Great Lakes forests. Soil Science Society of America Journal, 57, 100 – 106.en_US
dc.identifier.citedreferenceZak, DR & Pregitzer, KS 1990 Spatial and temporal variability of nitrogen cycling in northern Lower Michigan. Forest Science, 36, 367 – 380.en_US
dc.identifier.citedreferenceZak, DR, Pregitzer, KS, Curtis, PS & Holmes, WE 2000 Atmospheric CO 2 and the composition and function of soil microbial communities. Ecological Applications, 10, 47 – 59.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.