Show simple item record

The Aetiology of Diabetic Neuropathy: the Combined Roles of Metabolic and Vascular Defects

dc.contributor.authorStevens, Martin J.en_US
dc.contributor.authorFeldman, Eva L.en_US
dc.contributor.authorGreene, Douglas A.en_US
dc.date.accessioned2010-06-01T22:22:01Z
dc.date.available2010-06-01T22:22:01Z
dc.date.issued1995-07en_US
dc.identifier.citationStevens, M.J.; Feldman, E.L.; Greene, D.A. (1995). "The Aetiology of Diabetic Neuropathy: the Combined Roles of Metabolic and Vascular Defects." Diabetic Medicine 12(7): 566-579. <http://hdl.handle.net/2027.42/75362>en_US
dc.identifier.issn0742-3071en_US
dc.identifier.issn1464-5491en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75362
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=7554777&dopt=citationen_US
dc.format.extent1585418 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1995 Diabetes UKen_US
dc.subject.otherIschaemiaen_US
dc.subject.otherPolyol Pathwayen_US
dc.subject.otherNitric Oxideen_US
dc.subject.otherEicosanoidsen_US
dc.subject.otherFatty Acid Metabolismen_US
dc.subject.otherGrowth Factorsen_US
dc.subject.otherDiabetes Mellitusen_US
dc.subject.otherNeuropathyen_US
dc.titleThe Aetiology of Diabetic Neuropathy: the Combined Roles of Metabolic and Vascular Defectsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Internal Medicine, University of Michigan, Ann Arbor, USAen_US
dc.contributor.affiliationumDepartments of Neurology, and the Michigan Diabetes Research and Training Center, University of Michigan, Ann Arbor, USAen_US
dc.identifier.pmid7554777en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75362/1/j.1464-5491.1995.tb00544.x.pdf
dc.identifier.doi10.1111/j.1464-5491.1995.tb00544.xen_US
dc.identifier.sourceDiabetic Medicineen_US
dc.identifier.citedreference1 The DCCT Research Group. Factors in the development of diabetic neuropathy: baseline analysis of neuropathy in the feasibility phase of the Diabetes Control and Complications Trial (DCCT). Diabetes 1988; 37: 476 – 481.en_US
dc.identifier.citedreferencePirart J.. Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973. Diabetes Care 1978; 1: 168 – 188.en_US
dc.identifier.citedreferenceYoung MJ, Boulton AJM, Macleod AF, Williams DRR, Sonksen PH. A multicentre study of the prevalence of diabetic peripheral neuropathy in the United Kingdom hospital clinic population. Diabetologia 1993; 36: 150 – 154.en_US
dc.identifier.citedreferenceBrand PW. The diabetic foot. In: Ellenberg M., Rifkin H., eds. Diabetes Mellitus. New York: Medical Examination Publishing Co., Inc., 1982: 829 – 849.en_US
dc.identifier.citedreferenceGreene DA, Sima AAF, Stevens MJ, Feldman EL, Lattimer SA. Complications: neuropathy, pathogenetic considerations. Diabetes Care 1992; 15: 1902 – 1925.en_US
dc.identifier.citedreferenceGreene DA, Sima AAF, Pfeifer MA, Albers JW. Diabetic neuropathy. Ann Rev Med 1990; 41: 303 – 317.en_US
dc.identifier.citedreferenceThomas PK, Lascelles RG. The pathology of diabetic neuropathy. Q J Med 1966; 35: 489 – 909.en_US
dc.identifier.citedreferenceBischoff A.. Diabetic neuropathy. Pathologic anatomy, pathophysiology and pathogenesis on the basis of electron microscopic studies. Disch Med Wochenschr 1968; 93: 237 – 241.en_US
dc.identifier.citedreference9 DCCT Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977 – 986.en_US
dc.identifier.citedreferenceGreene DA, Lattimer SA, Sima AAF. Sorbitol, phospho-inositides and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Eng J Med 1987; 316: 599 – 606.en_US
dc.identifier.citedreferenceDvornik D.. Hyperglycemia in the pathogenesis of diabetic complications. In: D. Porte, ed. Aldose Reductase Inhibition. An Approach to the Prevention of Diabetic Complications. New York: Biomedical Information Corporation, 1987: 69 – 151.en_US
dc.identifier.citedreferenceLow PA, Tuck RR, Takeuchi M.. Nerve microenvironment in diabetic neuropathy. In: Dyck PJ, Thomas PK, Asbury AK, Winegrad AI, Porte D. Jr, eds. Diabetic Neuropathy. Philadelphia: Saunders, 1987: 266 – 278.en_US
dc.identifier.citedreferenceCameron NE, Cotter MA, Low PA. Nerve blood flow in early experimental diabetes in rats: relation to conduction deficits. Am J Physiol 1991: 261: E1 – E8.en_US
dc.identifier.citedreferenceCameron NE, Cotter MA, Ferguson K., Robertson S., Radcliffe MA. Effects of chronic alpha-adrenergic receptor blockade on peripheral nerve conduction, hypoxic resistance, polyols, Na/K-ATPase activity, and vascular supply in STZ-D rats. Diabetes 1991; 40: 1652 – 1658.en_US
dc.identifier.citedreferenceCameron NE, Cotter MA, Robertson S.. Angiotensin converting enzyme inhibition prevents development of muscle and nerve dysfunction and stimulated angiogenesis in streptozotocin-diabetic rats. Diabetologia 1992; 35: 12 – 18.en_US
dc.identifier.citedreferenceGreene DA, Lattimer SA, Sima AAF. Pathogenesis and prevention of diabetic neuropathy. Diabet Metab Rev 1988; 4: 201 – 221.en_US
dc.identifier.citedreferenceMarano CQ, Matchinsky FM. Biochemical aspects of diabetes mellitus in microscopic layers of the cornea and retina. Diabet Metab Rev 1989; 5: 1 – 15.en_US
dc.identifier.citedreferenceGreene DA, Lattimer SA, Sima AAF. Pathogenesis of diabetic neuropathy, role of altered phosphoinositide metabolism. Crit Rev Neurobiol 1989; 5: 143 – 219.en_US
dc.identifier.citedreferenceStevens MJ, Lattimer SA, Kamijo M., VanHuysen C., Sima AAF, Greene DA. Osmotically induced nerve taurine depletion and the compatible osmolyte hypothesis in experimental diabetic neuropathy. Diabetologia 1993; 36: 608 – 614.en_US
dc.identifier.citedreferenceGreene DA, Winegrad AI. Effects of acute experimental diabetes on composite energy metabolism in peripheral nerve axons and Schwann cells. Diabetes 1981; 30: 967 – 974.en_US
dc.identifier.citedreferenceGreene DA. Metabolic abnormalities in diabetic peripheral nerve: relation to impaired function. Metabolism 1983; 32: 118 – 125.en_US
dc.identifier.citedreferenceGreene DA, Lattimer SA. Impaired energy utilization and NA-K-ATPase in diabetic peripheral nerve. Am J Physiol 1984; 246: E311 – E318.en_US
dc.identifier.citedreferenceGreene DA, DeJesus PV, Winegrad AI. Effects of insulin and dietary myo -inositol on impaired motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest 1975; 55: 1326 – 1336.en_US
dc.identifier.citedreferenceGreene DA, Yagihashi S., Lattimer SA, Sima AAF. Nerve NA+-K+-ATPase, conduction and myoinositol in the insulin deficient BB rat. Am J Physiol 1984, 247: E534 – E539.en_US
dc.identifier.citedreferenceGreene DA, Chakrabarti S., Lattimer SA, Sikma AAF. Role of sorbitol accumulation and myoinositol depletion in paranodal swelling of large myelinated nerve fibers in the insulin-deficient spontaneously diabetic biobreeding rat. J Clin Invest 1987; 79: 1479 – 1485.en_US
dc.identifier.citedreferenceGreene DA, Lattimer S., Ulbrecht J., Carroll P.. Glucose-induced alterations in nerve metabolism: current perspective on the pathogenesis of diabetic neuropathy and future directions for research and therapy. Diabetes Care 1985; 8: 290 – 299.en_US
dc.identifier.citedreferenceTomlinson DR, Sidenius P., Larsen JR. Slow component-a of axonal transport, nerve myo-inositol and aldose reductase inhibition in streptozotocin-diabetic rats. Diabetes 1986; 34: 398 – 402.en_US
dc.identifier.citedreferenceFinegold D., Lattimer S., Nolle S., Bernstein M., Greene DA. Polyol pathway activity and myo -inositol metabolism. Diabetes 1983; 32: 988 – 992.en_US
dc.identifier.citedreferenceMayer JH, Tomlinson DR. The influence of aldose reductase inhibition and nerve myoinositol on axonal transport and nerve conduction velocity in rats with experimental diabetes. J Physiol (London) 1983; 340: 25P – 26P.en_US
dc.identifier.citedreferenceGreene DA, Lattimer SA. Action of sorbinil in diabetic peripheral nerve. Relationship of polyol (sorbitol) pathway inhibition to a myo -inositol-mediated defect in sodium-potassium ATPase activity. Diabetes 1984; 33: 712 – 716.en_US
dc.identifier.citedreferenceTomlinson DR, Mayer JH. Reversal of deficits in axonal transport and nerve conduction velocity by treatment of streptozotocin diabetic rats with myo -inositol. Exp Neurol 1985; 89: 420 – 427.en_US
dc.identifier.citedreferenceGillon KRW, Hawthorne JN. Sorbitol, inositol and nerve conduction in diabetes. Life Sci 1983; 32: 1943 – 1947.en_US
dc.identifier.citedreferenceZhu X., Eichberg J.. 1,2-diacylglycerol content and its arachidonyl-containing molecular species are reduced in sciatic nerve from streptozotocin-induced diabetic rats. J Neurochem 1990; 55: 1087 – 1090.en_US
dc.identifier.citedreferenceKim J., Kyriazi H., Greene DA. Normalization of Na,K-ATPase activity in isolated membrane fraction from sciatic nerves of streptozotocin-induced diabetic rats by dietary myo -inositol supplementation in vivo or protein kinase C agonists in vitro. Diabetes 1991; 40: 558 – 567.en_US
dc.identifier.citedreferenceLattimer SA, Sima AAF, Greene DA. In vitro correction of impaired Na+-K+-ATPase in diabetic nerve by protein kinase C agonists. Am J Physiol 1989; 256: E264 – E269.en_US
dc.identifier.citedreferenceGreene DA, Lattimer-Greene SA, Sima AAF. Pathogenesis of diabetic neuropathy: role of altered phosphoinositide metabolism. Critical Reviews in Neurobiology 1989; 5: 143 – 219.en_US
dc.identifier.citedreferenceKunisaki M., Bursell S-E, Umeda F., Nawata H., King GL. Normalization of diacylglycerol-protein kinase C activation by vitamin E in aorta of diabetic rats and cultured rat smooth muscle cells exposed to elevated glucose levels. Diabetes 1994; 43: 1372 – 1377.en_US
dc.identifier.citedreferenceCraven PA, DeRubertis FR. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats: possible mediation by glucose. J Clin Invest 1989; 83: 1667 – 1675.en_US
dc.identifier.citedreferenceHermenegildo C., Felipo V., Minana M-D, Romero FJ, Grisolia S.. Sustained recovery of Na+-K+-ATPase activity in sciatic nerve of diabetic mice by administration of H7 or claphostin C, inhibitors of PKC. Diabetes 1993; 42: 257 – 262.en_US
dc.identifier.citedreferenceJudzewitsch RG, Jaspan JB, Polonsky KS, Weinberg CR, Halter JB, Halar E., et al. Aldose reductase inhibition improves nerve conduction velocity in diabetic patients. N Engl J Med 1983; 308: 119 – 125.en_US
dc.identifier.citedreferenceSima AAF, Bril V., Nathanial V., McEwen TA, Brown M., Lattimer SA, et al. Regeneration and repair of myelinated fibers in sural nerve biopsies from patients with diabetic neuropathy treated with an ARI. N Engl J Med 1988; 319: 548 – 555.en_US
dc.identifier.citedreferenceDyck PJ, Zimmerman BR, Vilen TH, Minnerath SR, Karnes JL, Yao JK, et al. Nerve glucose, fructose, sorbitol, myo -inositol and fiber degeneration and regeneration in diabetic neuropathy. N Engl J Med 1988; 319: 542 – 548.en_US
dc.identifier.citedreferenceDas PK, Bray GM, Aguayo AJ, Rasminsky M.. Diminished ouabain sensitive, sodium potassium ATPase activity in sciatic nerves of rats with streptozotocin induced diabetes. Exp Neurol 1976; 53: 285 – 288.en_US
dc.identifier.citedreferenceGreene DA, Lattimer SA. Impaired rat sciatic nerve sodium-potassium adenosine trisphosphatase in acute streptozotocin diabetes and its correction by dietary myo -inositol supplementation. J Clin Invest 1983; 72: 1058 – 1063.en_US
dc.identifier.citedreferenceSimpson CMF, Hawthorne JN. Reduced Na+-K+-ATPase activity in peripheral nerve of streptozotocin-diabetic rats: a role for protein kinase C? Diabetologia 1988; 31: 297 – 303.en_US
dc.identifier.citedreferenceSonobe M., Yasuda H., Hisanaga T., Maeda K., Yamashita M., Kawabata T., et al. Amelioration of nerve Na/K-ATPase activity independently of myo -inositol level by PGE1 analogue OP-1206.a-CD in streptozotocin-induced diabetic rats. Diabetes 1991; 40: 726 – 730.en_US
dc.identifier.citedreferenceStevens MJ, Dananberg J., Feldman EL, Lattimer SA, Kamijo M., Thomas TP, et al. The linked roles of nitric oxide, aldose reductase and (NA+,K+)-ATPase in the slowing of nerve conduction in the streptozotocin diabetic rat. J Clin Invest 1994; 94: 853 – 859.en_US
dc.identifier.citedreferenceCameron NE, Cotter MA, Dines KC, Maxfield EK. Pharmacological manipulation of vascular endothleium function in nondiabetic and streptozotocin-diabetic rats: effects on nerve conduction, hypoxic resistance and endoneurial capillarization. Diabetologia 1993; 36: 516 – 522.en_US
dc.identifier.citedreferenceDvornik, D., In: Porte D., ed. Aldose Reductase Inhibition: An Approach to the Prevention of Diabetic Complications. New York: McGraw-Hill, 1987: 222 – 323.en_US
dc.identifier.citedreferenceKinoshita JH. Mechanism initiating cataract formation. Invest Opthalmol 1974; 13: 713 – 724.en_US
dc.identifier.citedreferenceMoriyama T., Garcia-Perez A., Burg MB. Factors affecting the ratio of different organic osmolytes in renal medullary cells. Am J Physiol 1990; 259: F847 – F858.en_US
dc.identifier.citedreferenceYancey P., Clark M., Hand S., Bowlus R., Somero G.. Living with water stress: evolution of osmolyte systems. Science 1982; 217: 1214 – 1222.en_US
dc.identifier.citedreferenceBagnasco S., Balaban R., Fales H., Yang Y.-M, Burg MB. Predominant osmotically active organic solutes in rat and rabbit medullas. J Biol Chem 1986; 261: 5872 – 5877.en_US
dc.identifier.citedreferenceBurg MB, Kador PF. Sorbitol, osmoregulation, and the complications of diabetes. J Clin Invest 1988; 81: 635 – 640.en_US
dc.identifier.citedreferenceMoriyama T., Garcia-Perez A., Burg MB. Osmotic regulation of aldose reductase protein synthesis in renal medullary cells. J Biol Chem 1989; 264: 16810 – 16814.en_US
dc.identifier.citedreferenceKwon Moo H., Yamauchi A., Uchida S., Robey R., Garcia-Perez A., Burg MB, et al. Renal Na- myo -inositol cotransporter mRNA expression in Xenopus oocytes: regulation by hypertonicity. Am J Physiol 1991; 260: F258 – F263.en_US
dc.identifier.citedreferenceUchida S., Nakanishi T., Kwon Moo H., Preston AS, Handler JS. Taurine behaves as an osmolyte in Madin-Darby canine kidney cells. J Clin Invest 1991; 88: 656 – 662.en_US
dc.identifier.citedreferenceMalone JI, Lowitt S., Cook WR. Nonosomotic diabetic cataracts. Ped Res 1990; 27: 293 – 296.en_US
dc.identifier.citedreferenceNakamura J., del Monte MA, Shewach D., Lattimer SA, Greene DA. Inhibition of phosphatidylinositol synthase by glucose in human retinal pigment epithelial cells. Am J Physiol 1992; 262: E417 – E426.en_US
dc.identifier.citedreferenceHuxtable RJ. From heart to hypothesis: a mechanism for the calcium modulatory effects actions of taurine. In: Huxtable RJ, Franconi F., Giotti A., eds. The Biology of Taurine: Methods and Mechanisms. New York: Plenum Press, 1987: 371 – 388.en_US
dc.identifier.citedreferenceLombardi JB. Effects of taurine on calcium ion uptake and protein phoshorylation in rat retinal membrane preparations. J Neurochem 1985; 45: 268 – 275.en_US
dc.identifier.citedreferenceCheung WY. Calmodulin plays a pivotal role in cellular regulation. Science 1980; 207: 17 – 19.en_US
dc.identifier.citedreferenceNestler EJ, Greengard P.. Protein phosphorylation in the brain. Nature 1983; 305: 583 – 588.en_US
dc.identifier.citedreferenceDent M., Tebbs SE, Gonzales AM, Ward JD, Wilson RM. Neutrophil aldose reductase activity and its association with established diabetic microvascular complications. Diabetic Med 1991; 8: 439 – 442.en_US
dc.identifier.citedreferenceHamada Y., Kitoh R., Raskin P.. Increased activity of erythrocyte aldose reductase in insulin dependent diabetes with severe diabetic complications. Diabetes 1991; 40 ( suppl 1 ): 35.en_US
dc.identifier.citedreferenceVinores SA, Campochiaro PA, Williams EH, May EE, Green R., Sorenson RL. Aldose reductase expression in human diabetic retina and retinal pigment epithelium. Diabetes 1988; 37: 1658 – 1664.en_US
dc.identifier.citedreferenceCarroll PB, Thornton BM, Greene DA. Glutathione redox state is not the link between polyol pathway activity and diminished (Na,K)-ATPase activity in experimental diabetic neuropathy. Diabetes 1986; 35: 1282 – 1285.en_US
dc.identifier.citedreferencePugliese G., Tilton RG, Williamson JR. Glucose-induced metabolic imbalances in the pathogenesis of diabetic vascular disease. Diab Metab Rev 1991; 7: 35 – 59.en_US
dc.identifier.citedreferenceLow PA, Lagerlund TD, McManis PG. Nerve blood flow and oxygen delivery in normal, diabetic and ischemic neuropathy. Int Rev Neurobiol 1989; 31: 355 – 438.en_US
dc.identifier.citedreferenceTuck RR, Schmelzer JD, Low PA. Endoneurial blood flow and oxygen tension in the sciatic nerves of rats with experimental diabetic neuropathy. Brain 1984; 107: 935 – 950.en_US
dc.identifier.citedreferenceTilton RG, Pugliese G., Eades DM, Privince MA, Sherman WR, Kilo C., et al. Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by ARIs. Diabetes 1989; 38: 1258 – 1270.en_US
dc.identifier.citedreferenceFaberberg S-E. Diabetic neuropathy: a clinical and histological study of the significance of vascular affections. Acta Med Scand 1959; 164 ( suppl 345 ): 1 – 97.en_US
dc.identifier.citedreferenceNewrick PG, Wilson AJ, Jakubowski J., Boulton AJM, Ward JD. Sural nerve oxygen tension in diabetes. Br Med J 1986; 293: 1053 – 1054.en_US
dc.identifier.citedreferenceAppenzeller O., Parks RD, MacGee J.. Peripheral neuropathy in chronic disease of the respiratory tract. Am J Med 1968; 44: 873 – 880.en_US
dc.identifier.citedreferenceFaden A., Medoza E., Flynn F.. Subclinical neuropathy associated with chronic obstructive pulmonary disease. Possible pathophysiologic role of smoking. Arch Neurol 1981; 38: 639 – 642.en_US
dc.identifier.citedreferenceLow PA, Schmelzer JD, Ward KK. Experimental hypoxic neuropathy: relevance to diabetic neuropathy. Am J Physiol 1986; 250: E94 – E98.en_US
dc.identifier.citedreferenceLow PA, Schmelzer JD, Ward KK, Curran GL, Poduslo JF. Effect of hyperbaric oxygenation on normal and chronic streptozotocin diabetic peripheral nerves. Exp Neurol 1988; 99: 201 – 212.en_US
dc.identifier.citedreferenceTakeuchi M., Low PA. Dynamic peripheral nerve metabolic and blood pressure responses to exsanguination. Am J Phsyiol 1987; 253: E349 – E353.en_US
dc.identifier.citedreferenceAdams WE. The blood supply of nerves. II. The effects of exclusion of its regional sources of supply on the sciatic nerve of the rabbit. J Anat 1943; 77: 243 – 250.en_US
dc.identifier.citedreferenceTesfaye S., Harris N., Jakubowski JJ, Mody C., Wilson RM, Renme IG, et al. Impaired blood flow and arterio-venous shunting in human diabetic neuropathy: a novel technique of nerve physiology and fluorescein angiography. Diabetologia 1993; 36: 1266 – 1274.en_US
dc.identifier.citedreferenceDyck PJ, Hansen S., Karnes J., O'Brien P., Yasuda H., Windebank A., et al. Capillary number and percentage closed in human diabetic sural nerve. Proc Natl Acad Sci 1985; 82: 2513 – 2517.en_US
dc.identifier.citedreferenceJohnson PC, Doll SC, Cromey DW. Pathogenesis of diabetic neuropathy. Ann Neurol 1986; 19: 450 – 457.en_US
dc.identifier.citedreferenceDyck PJ, Karnes JL, O'Brien P., Okazaki H., Lois A., Engelstad J.. The spatial distribution of fiber loss in diabetic polyneuropathy suggests ischemia. Ann Neurol 1986; 19: 440 – 449.en_US
dc.identifier.citedreferenceDyck PJ, Lois A., Karnes JL, O'Brien P., Rizza R.. Fiber loss is primary and multifocal in sural nerves in diabetic polyneuropathy. Ann Neurol 1986; 19: 425 – 435.en_US
dc.identifier.citedreferenceVracko R.. A comparison of the microvascular lesions in diabetic mellitus with those of normal aging. J Am Geriatr Soc 1982; 30: 201 – 205.en_US
dc.identifier.citedreferenceWilliams E., Timperley WR, Ward JD, Duckworth T.. Electron microscopic studies of vessels in diabetic peripheral neuropathy. J Clin Pathol 1980; 33: 462 – 470.en_US
dc.identifier.citedreferenceSima AAF, Nathaniel V., Prashar A., Bril V., Greene DA. Endoneurial microvessels in human diabetic neuropathy: endothelial cell dysfunction and lack of effect by aldose reductase inhibitor. Diabetes 1991; 40: 1090 – 1099.en_US
dc.identifier.citedreferenceLlewelyn JG, Thomas PK, Gilbey SG, Watkins PJ, Muddle JR. Pattern of myelinated fibre loss in the sural nerve in neuropathy related to Type 1 (insulin-dependent) diabetes. Diabetologia 1988; 31: 162 – 167.en_US
dc.identifier.citedreferenceSchmid-Schonbein H., Volger E.. Red cell aggregation and red cell deformability in diabetes. Diabetes 1976; 25 ( suppl 2 ): 897 – 902.en_US
dc.identifier.citedreferenceLowe GD, Lowe JM, Drummond MM, Reith S., Belch JJ, Kesson CM, et al. Blood viscosity in young male diabetics with or without retinopathy. Diabetologia 1980; 18: 359 – 362.en_US
dc.identifier.citedreferenceBauersachs RM, Shaw S., Ziedler A., Meiselman HJ. Red blood cell aggregation and blood viscosity in poorly controlled type 2 diabetes mellitus. Clin Hemorheol 1989; 9: 935 – 952.en_US
dc.identifier.citedreferenceMacRury SM, Lockhart JC, Small M., Weir AI, MacCuish AC, Lowe GDO. Do rheological variables play a role in diabetic peripheral neuropathy? Diabetic Med 1991; 8: 232 – 236.en_US
dc.identifier.citedreferenceMoncada S., Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 1991; 43: 109 – 141.en_US
dc.identifier.citedreferenceWard KK, Low PA, Schmelzer JD, Zochodne DW. Prostacyclin and noradrenaline in peripheral nerve of chronic experimental diabetic in rats. Brain 1989; 112: 197 – 208.en_US
dc.identifier.citedreferenceGarthwaite J.. Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 1991; 14: 60 – 67.en_US
dc.identifier.citedreferenceGarthwaite J., Charles S., Chess-Williams R.. Endotheliumderived relaxing factor release on activation of NMDA receptors suggests a role as intercellular messenger in the brain. Nature 1988; 336: 385 – 388.en_US
dc.identifier.citedreferenceMoncada S., Palmer RMJ, Higgs EA. Biosynthesis of nitric oxide from 1-arginine: a pathway for the regulation of cell function and communication. Biochem Pharmacol 1989; 38: 1709 – 1715.en_US
dc.identifier.citedreferencede Tejada Saenz I., Goldstein I., Azadzoi K., Krane RJ, Cohen RA. Impaired neurogenic and endothelium-mediated relaxation of the penile smooth muscle from diabetic men with impotence. N Engl I Med 1989; 320: 1025 – 1030.en_US
dc.identifier.citedreferenceDurant W., Amar K., Sunahara Sen FA. Impairment of endothelium-dependent relaxation in aorta from spontaneously diabetic rats. Br J Pharmacol 1988; 94: 463 – 468.en_US
dc.identifier.citedreferenceMayhan WG, Simmons LK, Sharpe GM. Mechanism of impaired responses of cerebral arterioles during diabetes mellitus. Am J Physiol 1991; 260: ( Heart Circ Physiol 29 ) H319 – H326.en_US
dc.identifier.citedreferenceKamata K., Miyata N., Kasuya Y.. Impairment of endothelium-dependent relaxation and changes in levels of cyclic GMP in aorta from streptozotocin-induced diabetic rats. Br J Pharmacol 1989; 97: 614 – 618.en_US
dc.identifier.citedreferencePeiper GM, Gross GJ. Oxygen free radicals abolish endothelium-dependent relaxation in diabetic rat aorta. Am J Physiol 1988; 255: H825 – H833.en_US
dc.identifier.citedreferenceGryglewski RJ, Palmer RJM, Moncada S.. Superoxide anion is involved in the breakdown of endotheliumderived vascular relaxing factor. Nature 1986; 320: 454 – 456.en_US
dc.identifier.citedreferenceRees DD, Palmer RM, Moncada S.. Role of endotheliumderived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 1989; 86: 3375 – 3378.en_US
dc.identifier.citedreferenceVallence P., Collier J., Moncada S.. Effects of endotheliumderived nitric oxide on peripheral arterial tone in man. Lancet 1989; ii: 997 – 1000.en_US
dc.identifier.citedreferenceCalver A., Collier J., Vallance P.. Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes. J Clin Invest 1992; 90: 2548 – 2554.en_US
dc.identifier.citedreferenceRapoport RM, Murard F.. Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res 1983; 52: 352 – 357.en_US
dc.identifier.citedreferenceFurchgott RF, Cherry PD, Zawadzki JV, Jon-Arhianandan D.. Endothelial cells as mediators of vasodilatation of arteries. J Cardiovasc Pharmacol 1984; 6 ( suppl 2 ): 336 – 343.en_US
dc.identifier.citedreferenceGupta S., Sussman I., McArthur CS, Tornheim K., Cohen RA, Ruderman NB. Endothelium-dependent inhibition of Na/K-ATPase activity in rabbit aorta by hyperglycemia. J Clin Invest 1992; 90: 727 – 732.en_US
dc.identifier.citedreferenceBult H., Boeckxstaens GE, Pelckmans PA, Jordaens FH, Van Maercke YM, Herman AG. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature (Lond) 1990; 345: 346 – 347.en_US
dc.identifier.citedreferenceCameron NE, Cotter MA. Impaired contraction and relaxation in aorta from streptozotocin-diabetic rats: role of polyol pathway. Diabetologia 1992; 35: 1011 – 1019.en_US
dc.identifier.citedreferenceDvornik D.. Hyperglycemia in the pathogenesis of diabetic complications. In: Porte D., ed. Aldose Reductase Inhibition. An Approach to the Prevention of Diabetic Complications. New York: Biomedical Information Corporation, 1987; 69 – 151.en_US
dc.identifier.citedreferenceHogan M., Cerami A., Bucala R.. Advanced glycosylation endproducts block the antiproliferative effect of nitric oxide. Role in the vascular and renal complications of diabetes mellitus. J Clin Invest 1992; 90: 1110 – 1105.en_US
dc.identifier.citedreferenceYasuda H., Sonobe M., Yamashita M., Terada M., Hatanaka I., Huitian Z., et al. Effect of prostaglandin E1 analogue TFC 612 on diabetic neuropathy in streptozotocin-induced diabetes rats: comparison with aldose reductase inhibitor ONO 2235. Diabetes 1989; 38: 832 – 838.en_US
dc.identifier.citedreferenceNakane M., Mitchel L., Forstermann U., Murad F.. Phosphorylation by calcium clamodulin-dependent protein kinase II and protein kinase C modulates the activity of nitric oxide synthetase. Biochem Biophys Res Commun 1991; 180: 1396 – 1402.en_US
dc.identifier.citedreferenceBredt DS, Ferris CD, Snyder SH. Nitric oxide synthetase regulatory sites. J Biol Chem 1992; 267: 10976 – 10981.en_US
dc.identifier.citedreferenceMurthy KS, Jin J-G, Makhlouf GM. Inhibition of nitric oxide synthase activity in dispersed gastric muscle cells by protein kinase. C. Am J Physiol 1994; 266: ( Gastrointest Liver Physiol 29 ): C161 – C165.en_US
dc.identifier.citedreferenceSmith SS, Li J.. Novel action of nitric oxide as mediator of N-methyl-d-aspartate-induced phosphatidylinositol hydrolysis in neonatal rat cerebellum. Mol Pharmacol 1992; 43: 1 – 5.en_US
dc.identifier.citedreferenceShimizu K., Muramatsu M., Kakegawa Y., Asano H., Toki Y., Miyazaki Y., et al. Role of prostaglandin H2 as an endothelium-derived contracting factor in diabetic state. Diabetes 1993; 42: 1246 – 1252.en_US
dc.identifier.citedreferenceSubbiah MTR, Deitemeyer D.. Altered synthesis of prostaglandins in platelet and aorta from spontaneously diabetic Wistar rats. Biochem Med 1980; 23: 231 – 235.en_US
dc.identifier.citedreferenceHarrison HE, Reece AH, Johnson M.. Decreased vascular prostacyclin in experimental diabetes. Life Sci 1978; 23: 354 – 356.en_US
dc.identifier.citedreferenceBazan NG. Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochimica et Biophysica Acta 1970; 218: 1 – 10.en_US
dc.identifier.citedreferenceWolfe LS. Eicosanoids, prostaglandins, thromboxanes, leukotrienes, and other derivatives of carbon-2 unsaturated fatty acids. J Neurochem 1982; 38: 1 – 14.en_US
dc.identifier.citedreferenceSimpson PJ, Mickelson J., Fantone JC, Gallagher KP, Lucchesi BR. Reduction of experimental canine infarct size with prostaglandin E1: inhibition of neutrophil migration and activation. J Pharmacol Exp Therapeut 1988; 244: 619 – 624.en_US
dc.identifier.citedreferenceHedqvist P., Wennmalm A.. Comparison of the effects of prostaglandins E1, E2 and F2 alpha on the sympathetically stimulated rabbit heart. Acta Physiol Scand 1971; 83: 156 – 162.en_US
dc.identifier.citedreferenceWennmalm A., Hedqvist P.. Inhibition by prostaglandin E1 of parasympathetic neurotransmission in the rabbt heart. Life Sci 1971; 10: 465 – 470.en_US
dc.identifier.citedreferenceShindo H., Tawata M., Aida K., Onaya T.. The role of cyclic adenosine 3′, 5′-monophosphate and polyol metabolism in diabetic neuropathy. J Clin Endocrinol Metab 1992; 74: 393 – 398.en_US
dc.identifier.citedreferenceSonobe M., Yasuda H., Hisanaga T., Maeda K., Yamashita M., Kawabata T., et al. Amelioration of nerve Na/K-ATPase activity independently of myo -inositol level by PGE1 analogue OP-1206. a-CD in streptozotocin-induced diabetic rats. Diabetes 1991; 40: 726 – 730.en_US
dc.identifier.citedreferenceCameron NE, Cotter MA, Robertson S.. Effects of essential fatty acid dietary supplementation on peripheral nerve and skeletal muscle function and capillarisation in streptozotocin diabetic rats. Diabetes 1991; 40: 532 – 539.en_US
dc.identifier.citedreferenceHoutsmiller AJ, Van Hal-Ferwerda J., Zahn KJ, Henkes HE. Favourable influences of linoleic acid on the progression of diabetic micro- and microangiopathy in adult onset diabetes mellitus. Prog Lipid Res 1982; 20: 377 – 386.en_US
dc.identifier.citedreferenceHorrobin DF. Gamma linolenic acid. Rev Contemporary Pharmacotherapy 1990; 1: 1 – 41.en_US
dc.identifier.citedreferenceFritz IB. Carnitine and its role in fatty acid metabolism. Adv Lipid Res 1963; 1: 285 – 334.en_US
dc.identifier.citedreferenceMcGary JD, Foster DW. Acute reversal of experimental diabetic ketosis in the diabetic rat with (+)-decanoyl-carntine. J Clin Invest 1973; 52: 877 – 884.en_US
dc.identifier.citedreferenceFrohlich J., Seccombe DW, Hahn P., Dodek P., Hynle L.. Effect of fasting on free and esterified carnitine levels in human serum and urine: Correlation with serum levels of free fatty acids and Β-hydroxybutyrate. Metabolism 1978; 27: 555 – 561.en_US
dc.identifier.citedreferenceGenuth SM, Hoppel CL. Plasma and urine carnitine in diabetic ketosis. Diabetes 1979; 28: 1083 – 1087.en_US
dc.identifier.citedreferenceArduini A., Rossi M., Mancinelli G., Belfiglio M., Scurti R. Radatti GL, et al. Effect of 1-carnitine and acetyl-1-carntine on human erythrocyte membrane stability and deformability. Life Sciences 1990; 47: 2395 – 2400.en_US
dc.identifier.citedreferenceBrecher P.. The interaction of long-chain acyl coA with membranes. Mol Cell Biochem 1983; 57: 3 – 15.en_US
dc.identifier.citedreferenceGreene DA, Winegrad AI. In vitro studies of the substrates for energy production and the effects of insulin on glucose utilization in the neural components of peripheral nerve. Diabetes 1979; 28: 878 – 887.en_US
dc.identifier.citedreferenceGodin DV, Lopaschuk GD, McNeil JH. Subcellular myocardial abnormalities in experimental diabetes: role of long chain acylcarnitines. Can J Cardiol 1986; 2: 222 – 229.en_US
dc.identifier.citedreferenceLowitt S., Malone JE, Solem A., Kosthals A.. Acetylcarnitine improves neuronal function in streptozotocin (STZ) diabetic rats. Diabetes 1990; 39: 155A.en_US
dc.identifier.citedreferencePacifici L., Bellucci A., Piovesan P., Maaccari F., Gorio A., Ramaci MT. Counteraction on experimentally induced diabetic neuropathy by levocarnitine acetyl. Int J Clin Pharm Res 1992; 12: 231 – 236.en_US
dc.identifier.citedreferenceWilliamson JR, Arrigoni-Martelli E.. The roles of glucose-induced metabolic hypoxia and imbalances in carnitine metabolism in mediating diabetes induced vascular dysfunction. Int J Clin Pharm Res 1992; 12: 247 – 252.en_US
dc.identifier.citedreferenceTaglialatela G., Angelucci L., Ramacci MT, Werrbach-Perez K., Jackson GR, Perez-Polo JR. Acetyl 1-carnitine enhances the response of PC 12 cells to nerve growth factor. Brain Res Dev Brain Res 1991; 59: 221 – 230.en_US
dc.identifier.citedreferenceGreene LA, Tischler AS. PC12 phaeochromocytoma cultures in neurobiological research. Adv Cell Neurobiol 1982; 3: 373 – 414.en_US
dc.identifier.citedreferenceFernandez E., Pallini R., Gangitano C., Delfa A., Sangiacomo CO, Sbriccoli A., et al. Effects of 1-carnitine, 1-acetyl 1-carnitine and gangliosides on the regeneration of the transected sciatic nerve in rats. Neurol Res 1989; 11: 57 – 62.en_US
dc.identifier.citedreferenceImperato A., Scrocco MG, Ghirardi O., Ramacci MT, Angeluci L.. In vivo probing of the brain cholinergic system in the aged rat: Effects of long term acetyl-1-carnitine. Annals NY Acad Sci 1991; 621: 90 – 97.en_US
dc.identifier.citedreferenceMcCaman RE, McCaman RW, Stafford ML. Carnitine acetyltransferase in nervous tissue. J Biol Chem 1966; 241: 930 – 934.en_US
dc.identifier.citedreferenceJaniri L., Tempesta E.. A pharmacological profile of the effects of carnitine and acetylcarnitine on the central nervous system. Int J Clin Pharmacol Res 1983; 3: 295 – 306.en_US
dc.identifier.citedreferenceWilliamson JR, Chang K., Frangos M., Hasan KS, Ido Y., Kawamura JR, et al. Hyperglcemic ‘pseudohypoxia’ and diabetic complications. Diabetes 1993; 42: 801 – 813.en_US
dc.identifier.citedreferenceBrownlee M.. Glycation products and the pathogenesis of diabetic complications. Diabetes Care 1992; 15: 1835 – 1843.en_US
dc.identifier.citedreferenceRichard S., Tamas C., Sell DR, Monnier VM. Tissue-specific effects of aldose reductase inhibition on fluorescence and cross-linking of extracellular matrix in chronic galactosemia. Relationship to pentosidine cross-links. Diabetes 1991; 40: 1049 – 1056.en_US
dc.identifier.citedreferenceYagihashi S., Kamijo M., Baba M., Yagihashi N., Nagai K.. Effect of aminoguanidine on functional and structural abnormalities in peripheral nerve of STZ-induced diabetic rats. Diabetes 1992; 41: 47 – 52.en_US
dc.identifier.citedreferenceGrumet M.. Structure, expression, and function of Ng-CAM, a member of the immunoglobulin superfamily involved in neuron-neuron and neuron-glia adhesion. J Neurosci Res 1992; 31: 1 – 13.en_US
dc.identifier.citedreferenceDaston MM, Ratner N.. Expression of P30, a protein with adhesive properties, in Schwann cells and neurons of the developing and regenerating peripheral nerve. J Cell Biol 1991; 112: 1229 – 1239.en_US
dc.identifier.citedreferenceWood PM, Schachner M., Bunge RP. Inhibition of Schwann cell myelination in vitro by antibody to the L1 adhesion molecule. J Neurosci 1990; 10: 3635 – 3645.en_US
dc.identifier.citedreferenceHaitoglou CS, Tsilibary EC, Brownlee M., Charonis AS. Altered cellular interactions between endothelial cells and nonenzymatically glucosylated laminin/type IV collagen. J Biol Chem 1992; 267: 12404 – 12407.en_US
dc.identifier.citedreferenceLevi-Montaicini R., Calissano P.. Nerve growth factor as a paradigm for other polypeptide growth factors. Trends Neurosci 1986; 9: 473 – 477.en_US
dc.identifier.citedreferenceThoenen H., Bandtlow C., Heumann R.. The physiological function of nerve growth factor in the central nervous system: comparison with the periphery. Rev Physiol Biochem Pharmacol 1987; 109: 146 – 178.en_US
dc.identifier.citedreferenceScarpini E., Ross AH, Rosen JL, Brown MJ, Rostami A., Koprowski H., et al. Expression of nerve growth factor receptor during human peripheral nerve development. Dev Biol 1988; 125: 301 – 310.en_US
dc.identifier.citedreferenceYan Q., Johnson EM. A quantitative study of the developmental expression of nerve growth factor (NGF) receptor in rats. Dev Biol 1987; 121: 139 – 148.en_US
dc.identifier.citedreferenceHellweg R., Hartung H-D. Endogenous levels of nerve growth factor (NGF) are altered in experimental diabetes mellitus: A possible role for NGF in the pathogenesis of diabetic neuropathy. J Neurosci Res 1990; 26: 258 – 267.en_US
dc.identifier.citedreferenceKasayama S., Oka T.. Impaired production of nerve growth factor in the submandibular gland of diabetic mice. Am J Physiol 1989; 257: E400 – E404.en_US
dc.identifier.citedreferenceFaradji V., Sotelo J.. Low serum levels of nerve growth factor in diabetic neuropathy. Acta Neurol Scand 1990; 81: 402 – 406.en_US
dc.identifier.citedreferenceTomlinson DR, Mayer JH. Defects of axonal transport in diabetes mellitus—a possible contribution to the aetiology of diabetic neuropathy. J Aut Pharmacol 1984; 4: 59 – 72.en_US
dc.identifier.citedreferenceJakobsen J., Brimijoin S., Skau K., Sidepius P., Wells D.. Retrograde axonal transport of transmitter enzmes, fucose-labeled protein, and nerve growth factor in streptozotocin-diabetic rats. Diabetes 1981; 30: 797 – 803.en_US
dc.identifier.citedreferenceFisher SK, Heacock AM, Agranoff BW. Inositol lipids and signal transduction in the nervous system: An update. J Neurochem 1992; 58: 18 – 38.en_US
dc.identifier.citedreferenceLakshmanan J.. Post-synaptic PI-effect of nerve growth factor in rat superior cervical ganglia. J Neurochem 1979; 32: 1599 – 1601.en_US
dc.identifier.citedreferenceTraynor AE, Schubert D., Allen WR. Alterations of lipid metabolism in response to nerve growth factor. J Neurochem 1982; 39: 1677 – 1683.en_US
dc.identifier.citedreferencePike LJ, Eakes AT. Epidermal growth factor stimulates the production of phosphatidylinositol monophosphate and the breakdown of polyphosphoinositides in A431 cells. J Biol Chem 1987; 262: 1644 – 1651.en_US
dc.identifier.citedreferenceWahl M., Carpenter G.. Regulation of epidermal growth factor-stimulated formation of inositol phosphates in A-431 cells by calcium and protein kinase C. J Biol Chem 1988; 263: 7581 – 7590.en_US
dc.identifier.citedreferenceRogers SA, Hammerman MR. Insulin-like growth factor II stimulates production of inositol trisphosphate in proximal tubular basolateral membranes from canine kidney. Proc Natl Acad Sci USA 1988; 85: 4037 – 4041.en_US
dc.identifier.citedreferenceRogers SA, Hammerman MR. Mannose-6-phosphate potentiates insulin-like growth factor II-stimulated inositol trisphosphate production in proximal tubular basolateral membranes. J Biol Chem 1989; 264: 4273 – 4276.en_US
dc.identifier.citedreferenceJohnson EM, Taniuchi M., DiStefano PA. Expression and possible function of nerve growth factor receptors on Schwann Cells. Trends Neurosci 1988; 111: 299 – 304.en_US
dc.identifier.citedreferenceBosch EP, Zhong W., Lim R.. Axonal signals regulate expression of glia maturation factor-b in Schwann cells: an immunohistochemical study of injured sciatic nerves and cultured Schwann cells. J Neurosci 1989; 9: 3690 – 3698.en_US
dc.identifier.citedreferenceHeumann R., Korsching S., Bandtlow C., Thoenen H.. Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J Cell Biol 1987; 104: 1623 – 1631.en_US
dc.identifier.citedreferenceTaniuchi M., Brent Clark H., Johnson EM. Induction of nerve growth factor receptor in Schwann cells after axotomy. Proc Natl Acad Sci USA 1986; 83: 4094 – 4098.en_US
dc.identifier.citedreferenceTaniuchi M., Clark HB, Schweitzer JB, Johnson EJ. Expression of nerve growth factor receptors by Schwann cells of axotomized peripheral nerves: ultrastructural location, suppression by axonal contact, and binding properties. J Neurosci 1988; 8: 664 – 681.en_US
dc.identifier.citedreferenceArakawa Y., Sendtner M., Thoenen H.. Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: comparison with other neurotrophic factors and cytokines. J Neurosci 1990; 10: 3507 – 3515.en_US
dc.identifier.citedreferenceOppenheim RW, Prevette D., Qin-Wei Y., Collins F., MacDonald J.. Control by embryonic motorneuron survival in vivo by ciliary neurotrophic factor. Science 1991; 252: 1616 – 1618.en_US
dc.identifier.citedreferenceSendtner M., Kreutzberg GW, Thoenen H.. Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature 1990; 345: 440 – 441.en_US
dc.identifier.citedreferenceHansson HA, Dahlin LB, Danielsen N., Fryklund L., Nachemson AK, Polleryd P., et al. Evidence indicating trophic importance of IGF-I in regenerating peripheral nerves. Acta Physiol Scand 1986; 126: 609 – 614.en_US
dc.identifier.citedreferenceSjoberg J., Kanje M.. Insulin-like growth factor (IGF-I) as a stimulator of regeneration in the freeze-injured rat sciatic nerve. Brain Res 1989; 485: 102 – 108.en_US
dc.identifier.citedreferenceEkstrom AR, Kanje M., Skottner A.. Nerve regeneration and serum levels of insulin-like growth factor-I in rats with streptozotocin-induced insulin deficiency. Brain Res 1989; 496: 141 – 147.en_US
dc.identifier.citedreferenceYang H., Scheff AJ, Schalch DS. Effects of streptozotocin-induced diabetes mellitus on growth and hepatic insulinlike growth factor I gene expression in the rat. Metabolism 1990; 39: 295 – 301.en_US
dc.identifier.citedreferenceGraubert MD, Goldstein S., Phillips LS. Nutrition and somatomedin: XXVII. Total and free IGF-I and IGF binding proteins in rats with streptozocin-induced diabetes. Diabetes 1991; 40: 959 – 965.en_US
dc.identifier.citedreferenceBornfeldt KE, Arnqvist JH, Enberg B., Matthews LS, Norstedt G.. Regulation of insulin-like growth factor-I and growth hormone receptor gene expression by diabetes and nutritional state in rat tissues. J Endocrinol 1989; 122: 651 – 656.en_US
dc.identifier.citedreferenceLuo J., Murphy LJ. Differential expression of insulin-like growth factor-I and insulin-like growth factor binding protein-1 in the diabetic rat. Mol Cell Biochem 1991; 103: 41 – 50.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.