AGE-RELATED CHANGES IN THE STRUCTURE AND FUNCTION OF SKELETAL MUSCLES
dc.contributor.author | Faulkner, John A. | en_US |
dc.contributor.author | Larkin, Lisa M. | en_US |
dc.contributor.author | Claflin, Dennis R. | en_US |
dc.contributor.author | Brooks, Susan V. | en_US |
dc.date.accessioned | 2010-06-01T22:23:18Z | |
dc.date.available | 2010-06-01T22:23:18Z | |
dc.date.issued | 2007-11 | en_US |
dc.identifier.citation | Faulkner, John A; Larkin, Lisa M; Claflin, Dennis R; Brooks, Susan V (2007). "AGE-RELATED CHANGES IN THE STRUCTURE AND FUNCTION OF SKELETAL MUSCLES." Clinical and Experimental Pharmacology and Physiology 34(11): 1091-1096. <http://hdl.handle.net/2027.42/75382> | en_US |
dc.identifier.issn | 0305-1870 | en_US |
dc.identifier.issn | 1440-1681 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/75382 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17880359&dopt=citation | en_US |
dc.description.abstract | 1. For animals of all ages, during activation of skeletal muscles and the subsequent contraction, the balance between the force developed by the muscle and the external load determines whether the muscle shortens, remains at fixed length (isometric) or is lengthened. With maximum activation, the force developed is least during shortening, intermediate when muscle length is fixed and greatest during lengthening contractions. During lengthening contractions, when force is high, muscles may be injured by the contractions. 2. ‘Frailty’ and ‘failure to thrive’ are most frequently observed in elderly, physically inactive people. A ‘frail’ person is defined as one of small stature, with muscles that are atrophied, weak and easily fatigued. The condition of ‘failure to thrive’ is typified by a lack of response to well-designed programmes of nutrition and physical activity. 3. With ageing, skeletal muscle atrophy in humans appears to be inevitable. A gradual loss of muscle fibres begins at approximately 50 years of age and continues such that by 80 years of age, approximately 50% of the fibres are lost from the limb muscles that have been studied. For both humans and rats, the observation that the timing and magnitude of the loss of motor units is similar to that for muscle fibres suggests that the mechanism responsible for the loss of fibres and the loss of whole motor units is the same. The degree of atrophy of the fibres that remain is largely dependent on the habitual level of physical activity of the individual. 4. ‘Master athletes’ maintain a high level of fitness throughout their lifespan. Even among master athletes, performance of marathon runners and weight lifters declines after approximately 40 years of age, with peak levels of performance decreased by approximately 50% by 80 years of age. The success of the master athletes and of previously sedentary elderly who undertake well-designed, carefully administered training programmes provide dramatic evidence that age-associated atrophy, weakness and fatigability can be slowed, but not halted. | en_US |
dc.format.extent | 262734 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Publishing Asia | en_US |
dc.rights | © 2007 Blackwell Publishing Asia Pty Ltd. | en_US |
dc.subject.other | Frailty | en_US |
dc.subject.other | Master Athlete Records | en_US |
dc.subject.other | Motor Units | en_US |
dc.subject.other | Muscle Atrophy | en_US |
dc.subject.other | Weakness | en_US |
dc.title | AGE-RELATED CHANGES IN THE STRUCTURE AND FUNCTION OF SKELETAL MUSCLES | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Pharmacy and Pharmacology | en_US |
dc.subject.hlbsecondlevel | Physiology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Surgery, Biomedical Science Research Building, University of Michigan, Ann Arbor, Michigan, USA | en_US |
dc.contributor.affiliationother | * Molecular & Integrative Physiology, | en_US |
dc.contributor.affiliationother | Biomedical Engineering and | en_US |
dc.identifier.pmid | 17880359 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/75382/1/j.1440-1681.2007.04752.x.pdf | |
dc.identifier.doi | 10.1111/j.1440-1681.2007.04752.x | en_US |
dc.identifier.source | Clinical and Experimental Pharmacology and Physiology | en_US |
dc.identifier.citedreference | Faulkner JA. Terminology for contractions of muscles during shortening, while isometric, and during lengthening. J. Appl. Physiol. 2003; 95: 455 – 9. | en_US |
dc.identifier.citedreference | McCully KK, Faulkner JA. Injury to skeletal muscle fibers of mice following lengthening contractions. J. Appl. Physiol. 1985; 59: 119 – 26. | en_US |
dc.identifier.citedreference | McCully KK, Faulkner JA. Characteristics of lengthening contractions associated with injury to skeletal muscle fibers. J. Appl. Physiol. 1986; 61: 293 – 9. | en_US |
dc.identifier.citedreference | Faulkner JA, Brooks SV, Zerba E. Muscle atrophy and weakness with aging: Contraction-induced injury as an underlying mechanism. J. Gerontol. A Biol. Sci. Med. Sci. 1995; 50 Spec. No.: 124 – 9. | en_US |
dc.identifier.citedreference | Rader EP, Song W, Van Remmen H, Richardson A, Faulkner JA. Raising the antioxidant levels within mouse muscle fibres does not affect contraction-induced injury. Exp. Physiol. 2006; 91: 781 – 9. | en_US |
dc.identifier.citedreference | Rader EP, Faulkner JA. Recovery from contraction-induced injury is impaired in weight-bearing muscles of old male mice. J. Appl. Physiol. 2006; 100: 656 – 61. | en_US |
dc.identifier.citedreference | Rader EP, Faulkner JA. Effect of aging on the recovery following contraction-induced injury in muscles of female mice. J. Appl. Physiol. 2006; 101: 887 – 92. | en_US |
dc.identifier.citedreference | Bortz WM. A conceptual framework of frailty: A review. J. Gerontol. A Biol. Sci. Med. Sci. 2002; 57: M283 – 8. | en_US |
dc.identifier.citedreference | Aniansson A, Hedberg M, Henning GB, Grimby G. Muscle morphology, enzymatic activity, and muscle strength in elderly men: A follow-up study. Muscle Nerve 1986; 9: 585 – 91. | en_US |
dc.identifier.citedreference | Grimby G, Saltin B. The ageing muscle. Clin. Physiol. 1983; 3: 209 – 18. | en_US |
dc.identifier.citedreference | Lexell J. Human aging, muscle mass, and fiber type composition. J. Gerontol. A Biol. Sci. Med. Sci. 1995; 50 Spec. No.: 11 – 16. | en_US |
dc.identifier.citedreference | Young A, Stokes M, Crowe M. The size and strength of the quadriceps muscles of old and young men. Clin. Physiol. 1985; 5: 145 – 54. | en_US |
dc.identifier.citedreference | Akima H, Kano Y, Enomoto Y et al. Muscle function in 164 men and women aged 20–84 years. Med. Sci. Sports Exerc. 2001; 33: 220 – 6. | en_US |
dc.identifier.citedreference | Allen TH, Andersen EC, Langham WH. Total body potassium and gross body composition in relationship to age. J. Gerontol. 1960; 15: 348 – 57. | en_US |
dc.identifier.citedreference | Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J. Neurol. Sci. 1988; 84: 275 – 94. | en_US |
dc.identifier.citedreference | Frontera WR, Hughes VA, Lutz KJ, Evans WJ. A cross-sectional study of muscle strength and mass in 45- to 78-year-old men and women. J. Appl. Physiol. 1991; 71: 644 – 50. | en_US |
dc.identifier.citedreference | Goodpaster BH, Park SW, Harris TB et al. The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. J. Gerontol. A Biol. Sci. Med. Sci. 2006; 61: 1059 – 64. | en_US |
dc.identifier.citedreference | Bassey EJ, Fiatarone MA, O’Neill EF, Kelly M, Evans WJ, Lipsitz LA. Leg extensor power and functional performance in very old men and women. Clin. Sci. 1992; 82: 321 – 7. | en_US |
dc.identifier.citedreference | Brooks SV, Faulkner JA. Skeletal muscle weakness in old age: Underlying mechanisms. Med. Sci. Sports Exerc. 1994; 26: 432 – 9. | en_US |
dc.identifier.citedreference | Brooks SV, Faulkner JA. Forces and powers of slow and fast skeletal muscles in mice during repeated contractions. J. Physiol. 1991; 436: 701 – 10. | en_US |
dc.identifier.citedreference | Faulkner JA, Brooks SV. Muscle fatigue in old animals. Unique aspects of fatigue in elderly humans. Adv. Exp. Med. Biol. 1995; 384: 471 – 80. | en_US |
dc.identifier.citedreference | Fried LP. Conference on the physiologic basis of frailty. Aging 1992; 4: 251 – 65. | en_US |
dc.identifier.citedreference | Hadley EC, Ory MG, Suzman R, Weindruch R, Fried L. Physical frailty: A treatable cause of dependence in old age. J. Gerontol. 1993; 48: 1 – 88. | en_US |
dc.identifier.citedreference | Verdery RB. Failure to thrive in the elderly. Clin. Geriatr. Med. 1995; 11: 653 – 9. | en_US |
dc.identifier.citedreference | Schultz AB. Muscle function and mobility biomechanics in the elderly: An overview of some recent research. J. Gerontol. A Biol. Sci. Med. Sci. 1995; 50 Spec. No.: 60 – 3. | en_US |
dc.identifier.citedreference | Lord SR, Sherrington C, Menz HB. Falls in Older People. Risk Factors and Strategies for Prevention. Cambridge University Press, Cambridge. 2001. | en_US |
dc.identifier.citedreference | Tinetti ME, Williams TF, Mayewski R. Fall risk index for elderly patients based on number of chronic disabilities. Am. J. Med. 1986; 80: 429 – 34. | en_US |
dc.identifier.citedreference | Baumgartner RN, Koehler KM, Gallagher D et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 1998; 147: 755 – 63. | en_US |
dc.identifier.citedreference | Maxwell LC, Faulkner JA, Hyatt GJ. Estimation of number of fibers in guinea pig skeletal muscles. J. Appl. Physiol. 1974; 37: 259 – 64. | en_US |
dc.identifier.citedreference | Blaivas M, Carlson BM. Muscle fiber branching: Difference between grafts in old and young rats. Mech. Ageing Dev. 1991; 60: 43 – 53. | en_US |
dc.identifier.citedreference | Gollnick PD, Timson BF, Moore RL, Riedy M. Muscular enlargement and number of fibers in skeletal muscles of rats. J. Appl. Physiol. 1981; 50: 936 – 43. | en_US |
dc.identifier.citedreference | Trappe S, Williamson D, Godard M, Porter D, Rowden G, Costill D. Effect of resistance training on single muscle fiber contractile function in older men. J. Appl. Physiol. 2000; 89: 143 – 52. | en_US |
dc.identifier.citedreference | Trappe S, Godard M, Gallagher P, Carroll C, Rowden G, Porter D. Resistance training improves single muscle fiber contractile function in older women. Am. J. Physiol. Cell Physiol. 2001; 281: C398 – 406. | en_US |
dc.identifier.citedreference | Lexell J, Taylor CC. Variability in muscle fibre areas in whole human quadriceps muscle: Effects of increasing age. J. Anat. 1991; 174: 239 – 49. | en_US |
dc.identifier.citedreference | Widrick JJ, Stelzer JE, Shoepe TC, Garner DP. Functional properties of human muscle fibers after short-term resistance exercise training. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002; 283: R408 – R416. | en_US |
dc.identifier.citedreference | Daw CK, Starnes JW, White TP. Muscle atrophy and hypoplasia with aging: Impact of training and food restriction. J. Appl. Physiol. 1988; 64: 2428 – 32. | en_US |
dc.identifier.citedreference | Eddinger TJ, Moss RL, Cassens RG. Fiber number and type composition in extensor digitorum longus, soleus, and diaphragm muscles with aging in Fisher 344 rats. J. Histochem. Cytochem. 1985; 33: 1033 – 41. | en_US |
dc.identifier.citedreference | Hooper AC. Length, diameter and number of ageing skeletal muscle fibres. Gerontology 1981; 27: 121 – 6. | en_US |
dc.identifier.citedreference | Larkin LM, Kuzon WM, Halter JB. Effects of age and nerve-repair grafts on reinnervation and fiber type distribution of rat medial gastrocnemius muscles. Mech. Ageing Dev. 2003; 124: 653 – 61. | en_US |
dc.identifier.citedreference | Brooks SV, Faulkner JA. Contractile properties of skeletal muscles from young, adult and aged mice. J. Physiol. 1988; 404: 71 – 82. | en_US |
dc.identifier.citedreference | Ansved T, Larsson L. Quantitative and qualitative morphological properties of the soleus motor nerve and the L5 ventral root in young and old rats. Relation to the number of soleus muscle fibers. J. Neurol. Sci. 1990; 96: 269 – 82. | en_US |
dc.identifier.citedreference | Campbell MJ, McComas AJ, Petito F. Physiological changes in ageing muscles. J. Neurol. Neurosurg. Psychiatry 1973; 36: 174 – 82. | en_US |
dc.identifier.citedreference | Cederna PS, Asato H, van der Gu XMJ, Kuzon Jr WM, Carlson BM, Faulkner JA. Motor unit properties of nerve-intact extensor digitorum longus muscle grafts in young and old rats. J. Gerontol. A Biol. Sci. Med. Sci. 2001; 56: B254 – 8. | en_US |
dc.identifier.citedreference | McComas AJ, Fawcett PR, Campbell MJ, Sica RE. Electrophysiological estimation of the number of motor units within a human muscle. J. Neurol. Neurosurg. Psychiatry 1971; 34: 121 – 31. | en_US |
dc.identifier.citedreference | Kadhiresan VA, Hassett CA, Faulkner JA. Properties of single motor units in medial gastrocnemius muscles of adult and old rats. J. Physiol. 1996; 493: 543 – 52. | en_US |
dc.identifier.citedreference | Kanda K, Hashizume K. Changes in properties of the medial gastrocnemius motor units in aging rats. J. Neurophysiol. 1989; 61: 737 – 46. | en_US |
dc.identifier.citedreference | Sugiura M, Kanda K. Progress of age-related changes in properties of motor units in the gastrocnemius muscle of rats. J. Neurophysiol. 2004; 92: 1357 – 65. | en_US |
dc.identifier.citedreference | Doherty TJ, Brown WF. The estimated numbers and relative sizes of thenar motor units as selected by multiple point stimulation in young and older adults. Muscle Nerve 1993; 16: 355 – 66. | en_US |
dc.identifier.citedreference | Doherty TJ, Vandervoort AA, Taylor AW, Brown WF. Effects of motor unit losses on strength in older men and women. J. Appl. Physiol. 1993; 74: 868 – 74. | en_US |
dc.identifier.citedreference | Holloszy JO. Workshop on sarcopenia: Muscle atrophy in old age. J. Gerontol. A Biol. Sci. Med. Sci. 1995; 50 Spec. No.: 1 – 161. | en_US |
dc.identifier.citedreference | Ishihara A, Naitoh H, Araki H, Nishihira Y. Soma size and oxidative enzyme activity of motoneurones supplying the fast twitch and slow twitch muscles in the rat. Brain Res. 1988; 446: 195 – 8. | en_US |
dc.identifier.citedreference | Tomlinson BE, Irving D. The numbers of limb motor neurons in the human lumbosacral cord throughout life. J. Neurol. Sci. 1977; 34: 213 – 19. | en_US |
dc.identifier.citedreference | Kanda K, Hashizume K, Nomoto E, Asaki S. The effects of aging on physiological properties of fast and slow twitch motor units in the rat gastrocnemius. Neurosci. Res. 1986; 3: 242 – 6. | en_US |
dc.identifier.citedreference | Andersson AM, Olsen M, Zhernosekov D et al. Age-related changes in expression of the neural cell adhesion molecule in skeletal muscle: A comparative study of newborn, adult and aged rats. Biochem. J. 1993; 290: 641 – 8. | en_US |
dc.identifier.citedreference | Brown MC, Holland RL, Hopkins WG. Motor nerve sprouting. Annu. Rev. Neurosci. 1981; 4: 17 – 42. | en_US |
dc.identifier.citedreference | Wilson GJ, Newton RU, Murphy AJ, Humphries BJ. The optimal training load for the development of dynamic athletic performance. Med. Sci. Sports Exerc. 1993; 25: 1279 – 86. | en_US |
dc.identifier.citedreference | Svantesson U, Grimby G, Thomee R. Potentiation of concentric plantar flexion torque following eccentric and isometric muscle actions. Acta Physiol. Scand. 1994; 152: 287 – 93. | en_US |
dc.identifier.citedreference | Verdery RB. Failure to thrive in old age: Follow-up on a workshop. J. Gerontol. A Biol. Sci. Med. Sci. 1997; 52: M333 – 6. | en_US |
dc.identifier.citedreference | Lopez ME, Zainal TA, Chung SS, Aiken JM, Weindruch R. Oxidative stress and the pathogenesis of sarcopenia. In: Sen CK, Packer L, Hanninen O (eds). Handbook of Oxidants and Antioxidants in Exercise. Elsevier, Oxford. 2000; 831 – 80. | en_US |
dc.identifier.citedreference | Vander A, Sherman J, Luciano D. Muscle. In: Human Physiology. The Mechanisms of Body Function, 8th edn. McGraw-Hill, Boston. 2001; Ch. II, pp. 291 – 332. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.