Show simple item record

AGE-RELATED CHANGES IN THE STRUCTURE AND FUNCTION OF SKELETAL MUSCLES

dc.contributor.authorFaulkner, John A.en_US
dc.contributor.authorLarkin, Lisa M.en_US
dc.contributor.authorClaflin, Dennis R.en_US
dc.contributor.authorBrooks, Susan V.en_US
dc.date.accessioned2010-06-01T22:23:18Z
dc.date.available2010-06-01T22:23:18Z
dc.date.issued2007-11en_US
dc.identifier.citationFaulkner, John A; Larkin, Lisa M; Claflin, Dennis R; Brooks, Susan V (2007). "AGE-RELATED CHANGES IN THE STRUCTURE AND FUNCTION OF SKELETAL MUSCLES." Clinical and Experimental Pharmacology and Physiology 34(11): 1091-1096. <http://hdl.handle.net/2027.42/75382>en_US
dc.identifier.issn0305-1870en_US
dc.identifier.issn1440-1681en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75382
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17880359&dopt=citationen_US
dc.description.abstract1.  For animals of all ages, during activation of skeletal muscles and the subsequent contraction, the balance between the force developed by the muscle and the external load determines whether the muscle shortens, remains at fixed length (isometric) or is lengthened. With maximum activation, the force developed is least during shortening, intermediate when muscle length is fixed and greatest during lengthening contractions. During lengthening contractions, when force is high, muscles may be injured by the contractions. 2.  ‘Frailty’ and ‘failure to thrive’ are most frequently observed in elderly, physically inactive people. A ‘frail’ person is defined as one of small stature, with muscles that are atrophied, weak and easily fatigued. The condition of ‘failure to thrive’ is typified by a lack of response to well-designed programmes of nutrition and physical activity. 3.  With ageing, skeletal muscle atrophy in humans appears to be inevitable. A gradual loss of muscle fibres begins at approximately 50 years of age and continues such that by 80 years of age, approximately 50% of the fibres are lost from the limb muscles that have been studied. For both humans and rats, the observation that the timing and magnitude of the loss of motor units is similar to that for muscle fibres suggests that the mechanism responsible for the loss of fibres and the loss of whole motor units is the same. The degree of atrophy of the fibres that remain is largely dependent on the habitual level of physical activity of the individual. 4.  ‘Master athletes’ maintain a high level of fitness throughout their lifespan. Even among master athletes, performance of marathon runners and weight lifters declines after approximately 40 years of age, with peak levels of performance decreased by approximately 50% by 80 years of age. The success of the master athletes and of previously sedentary elderly who undertake well-designed, carefully administered training programmes provide dramatic evidence that age-associated atrophy, weakness and fatigability can be slowed, but not halted.en_US
dc.format.extent262734 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Asiaen_US
dc.rights© 2007 Blackwell Publishing Asia Pty Ltd.en_US
dc.subject.otherFrailtyen_US
dc.subject.otherMaster Athlete Recordsen_US
dc.subject.otherMotor Unitsen_US
dc.subject.otherMuscle Atrophyen_US
dc.subject.otherWeaknessen_US
dc.titleAGE-RELATED CHANGES IN THE STRUCTURE AND FUNCTION OF SKELETAL MUSCLESen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSurgery, Biomedical Science Research Building, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother* Molecular & Integrative Physiology,en_US
dc.contributor.affiliationotherBiomedical Engineering anden_US
dc.identifier.pmid17880359en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75382/1/j.1440-1681.2007.04752.x.pdf
dc.identifier.doi10.1111/j.1440-1681.2007.04752.xen_US
dc.identifier.sourceClinical and Experimental Pharmacology and Physiologyen_US
dc.identifier.citedreferenceFaulkner JA. Terminology for contractions of muscles during shortening, while isometric, and during lengthening. J. Appl. Physiol. 2003; 95: 455 – 9.en_US
dc.identifier.citedreferenceMcCully KK, Faulkner JA. Injury to skeletal muscle fibers of mice following lengthening contractions. J. Appl. Physiol. 1985; 59: 119 – 26.en_US
dc.identifier.citedreferenceMcCully KK, Faulkner JA. Characteristics of lengthening contractions associated with injury to skeletal muscle fibers. J. Appl. Physiol. 1986; 61: 293 – 9.en_US
dc.identifier.citedreferenceFaulkner JA, Brooks SV, Zerba E. Muscle atrophy and weakness with aging: Contraction-induced injury as an underlying mechanism. J. Gerontol. A Biol. Sci. Med. Sci. 1995; 50 Spec. No.: 124 – 9.en_US
dc.identifier.citedreferenceRader EP, Song W, Van Remmen H, Richardson A, Faulkner JA. Raising the antioxidant levels within mouse muscle fibres does not affect contraction-induced injury. Exp. Physiol. 2006; 91: 781 – 9.en_US
dc.identifier.citedreferenceRader EP, Faulkner JA. Recovery from contraction-induced injury is impaired in weight-bearing muscles of old male mice. J. Appl. Physiol. 2006; 100: 656 – 61.en_US
dc.identifier.citedreferenceRader EP, Faulkner JA. Effect of aging on the recovery following contraction-induced injury in muscles of female mice. J. Appl. Physiol. 2006; 101: 887 – 92.en_US
dc.identifier.citedreferenceBortz WM. A conceptual framework of frailty: A review. J. Gerontol. A Biol. Sci. Med. Sci. 2002; 57: M283 – 8.en_US
dc.identifier.citedreferenceAniansson A, Hedberg M, Henning GB, Grimby G. Muscle morphology, enzymatic activity, and muscle strength in elderly men: A follow-up study. Muscle Nerve 1986; 9: 585 – 91.en_US
dc.identifier.citedreferenceGrimby G, Saltin B. The ageing muscle. Clin. Physiol. 1983; 3: 209 – 18.en_US
dc.identifier.citedreferenceLexell J. Human aging, muscle mass, and fiber type composition. J. Gerontol. A Biol. Sci. Med. Sci. 1995; 50 Spec. No.: 11 – 16.en_US
dc.identifier.citedreferenceYoung A, Stokes M, Crowe M. The size and strength of the quadriceps muscles of old and young men. Clin. Physiol. 1985; 5: 145 – 54.en_US
dc.identifier.citedreferenceAkima H, Kano Y, Enomoto Y et al. Muscle function in 164 men and women aged 20–84 years. Med. Sci. Sports Exerc. 2001; 33: 220 – 6.en_US
dc.identifier.citedreferenceAllen TH, Andersen EC, Langham WH. Total body potassium and gross body composition in relationship to age. J. Gerontol. 1960; 15: 348 – 57.en_US
dc.identifier.citedreferenceLexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J. Neurol. Sci. 1988; 84: 275 – 94.en_US
dc.identifier.citedreferenceFrontera WR, Hughes VA, Lutz KJ, Evans WJ. A cross-sectional study of muscle strength and mass in 45- to 78-year-old men and women. J. Appl. Physiol. 1991; 71: 644 – 50.en_US
dc.identifier.citedreferenceGoodpaster BH, Park SW, Harris TB et al. The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. J. Gerontol. A Biol. Sci. Med. Sci. 2006; 61: 1059 – 64.en_US
dc.identifier.citedreferenceBassey EJ, Fiatarone MA, O’Neill EF, Kelly M, Evans WJ, Lipsitz LA. Leg extensor power and functional performance in very old men and women. Clin. Sci. 1992; 82: 321 – 7.en_US
dc.identifier.citedreferenceBrooks SV, Faulkner JA. Skeletal muscle weakness in old age: Underlying mechanisms. Med. Sci. Sports Exerc. 1994; 26: 432 – 9.en_US
dc.identifier.citedreferenceBrooks SV, Faulkner JA. Forces and powers of slow and fast skeletal muscles in mice during repeated contractions. J. Physiol. 1991; 436: 701 – 10.en_US
dc.identifier.citedreferenceFaulkner JA, Brooks SV. Muscle fatigue in old animals. Unique aspects of fatigue in elderly humans. Adv. Exp. Med. Biol. 1995; 384: 471 – 80.en_US
dc.identifier.citedreferenceFried LP. Conference on the physiologic basis of frailty. Aging 1992; 4: 251 – 65.en_US
dc.identifier.citedreferenceHadley EC, Ory MG, Suzman R, Weindruch R, Fried L. Physical frailty: A treatable cause of dependence in old age. J. Gerontol. 1993; 48: 1 – 88.en_US
dc.identifier.citedreferenceVerdery RB. Failure to thrive in the elderly. Clin. Geriatr. Med. 1995; 11: 653 – 9.en_US
dc.identifier.citedreferenceSchultz AB. Muscle function and mobility biomechanics in the elderly: An overview of some recent research. J. Gerontol. A Biol. Sci. Med. Sci. 1995; 50 Spec. No.: 60 – 3.en_US
dc.identifier.citedreferenceLord SR, Sherrington C, Menz HB. Falls in Older People. Risk Factors and Strategies for Prevention. Cambridge University Press, Cambridge. 2001.en_US
dc.identifier.citedreferenceTinetti ME, Williams TF, Mayewski R. Fall risk index for elderly patients based on number of chronic disabilities. Am. J. Med. 1986; 80: 429 – 34.en_US
dc.identifier.citedreferenceBaumgartner RN, Koehler KM, Gallagher D et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 1998; 147: 755 – 63.en_US
dc.identifier.citedreferenceMaxwell LC, Faulkner JA, Hyatt GJ. Estimation of number of fibers in guinea pig skeletal muscles. J. Appl. Physiol. 1974; 37: 259 – 64.en_US
dc.identifier.citedreferenceBlaivas M, Carlson BM. Muscle fiber branching: Difference between grafts in old and young rats. Mech. Ageing Dev. 1991; 60: 43 – 53.en_US
dc.identifier.citedreferenceGollnick PD, Timson BF, Moore RL, Riedy M. Muscular enlargement and number of fibers in skeletal muscles of rats. J. Appl. Physiol. 1981; 50: 936 – 43.en_US
dc.identifier.citedreferenceTrappe S, Williamson D, Godard M, Porter D, Rowden G, Costill D. Effect of resistance training on single muscle fiber contractile function in older men. J. Appl. Physiol. 2000; 89: 143 – 52.en_US
dc.identifier.citedreferenceTrappe S, Godard M, Gallagher P, Carroll C, Rowden G, Porter D. Resistance training improves single muscle fiber contractile function in older women. Am. J. Physiol. Cell Physiol. 2001; 281: C398 – 406.en_US
dc.identifier.citedreferenceLexell J, Taylor CC. Variability in muscle fibre areas in whole human quadriceps muscle: Effects of increasing age. J. Anat. 1991; 174: 239 – 49.en_US
dc.identifier.citedreferenceWidrick JJ, Stelzer JE, Shoepe TC, Garner DP. Functional properties of human muscle fibers after short-term resistance exercise training. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002; 283: R408 – R416.en_US
dc.identifier.citedreferenceDaw CK, Starnes JW, White TP. Muscle atrophy and hypoplasia with aging: Impact of training and food restriction. J. Appl. Physiol. 1988; 64: 2428 – 32.en_US
dc.identifier.citedreferenceEddinger TJ, Moss RL, Cassens RG. Fiber number and type composition in extensor digitorum longus, soleus, and diaphragm muscles with aging in Fisher 344 rats. J. Histochem. Cytochem. 1985; 33: 1033 – 41.en_US
dc.identifier.citedreferenceHooper AC. Length, diameter and number of ageing skeletal muscle fibres. Gerontology 1981; 27: 121 – 6.en_US
dc.identifier.citedreferenceLarkin LM, Kuzon WM, Halter JB. Effects of age and nerve-repair grafts on reinnervation and fiber type distribution of rat medial gastrocnemius muscles. Mech. Ageing Dev. 2003; 124: 653 – 61.en_US
dc.identifier.citedreferenceBrooks SV, Faulkner JA. Contractile properties of skeletal muscles from young, adult and aged mice. J. Physiol. 1988; 404: 71 – 82.en_US
dc.identifier.citedreferenceAnsved T, Larsson L. Quantitative and qualitative morphological properties of the soleus motor nerve and the L5 ventral root in young and old rats. Relation to the number of soleus muscle fibers. J. Neurol. Sci. 1990; 96: 269 – 82.en_US
dc.identifier.citedreferenceCampbell MJ, McComas AJ, Petito F. Physiological changes in ageing muscles. J. Neurol. Neurosurg. Psychiatry 1973; 36: 174 – 82.en_US
dc.identifier.citedreferenceCederna PS, Asato H, van der Gu XMJ, Kuzon Jr WM, Carlson BM, Faulkner JA. Motor unit properties of nerve-intact extensor digitorum longus muscle grafts in young and old rats. J. Gerontol. A Biol. Sci. Med. Sci. 2001; 56: B254 – 8.en_US
dc.identifier.citedreferenceMcComas AJ, Fawcett PR, Campbell MJ, Sica RE. Electrophysiological estimation of the number of motor units within a human muscle. J. Neurol. Neurosurg. Psychiatry 1971; 34: 121 – 31.en_US
dc.identifier.citedreferenceKadhiresan VA, Hassett CA, Faulkner JA. Properties of single motor units in medial gastrocnemius muscles of adult and old rats. J. Physiol. 1996; 493: 543 – 52.en_US
dc.identifier.citedreferenceKanda K, Hashizume K. Changes in properties of the medial gastrocnemius motor units in aging rats. J. Neurophysiol. 1989; 61: 737 – 46.en_US
dc.identifier.citedreferenceSugiura M, Kanda K. Progress of age-related changes in properties of motor units in the gastrocnemius muscle of rats. J. Neurophysiol. 2004; 92: 1357 – 65.en_US
dc.identifier.citedreferenceDoherty TJ, Brown WF. The estimated numbers and relative sizes of thenar motor units as selected by multiple point stimulation in young and older adults. Muscle Nerve 1993; 16: 355 – 66.en_US
dc.identifier.citedreferenceDoherty TJ, Vandervoort AA, Taylor AW, Brown WF. Effects of motor unit losses on strength in older men and women. J. Appl. Physiol. 1993; 74: 868 – 74.en_US
dc.identifier.citedreferenceHolloszy JO. Workshop on sarcopenia: Muscle atrophy in old age. J. Gerontol. A Biol. Sci. Med. Sci. 1995; 50 Spec. No.: 1 – 161.en_US
dc.identifier.citedreferenceIshihara A, Naitoh H, Araki H, Nishihira Y. Soma size and oxidative enzyme activity of motoneurones supplying the fast twitch and slow twitch muscles in the rat. Brain Res. 1988; 446: 195 – 8.en_US
dc.identifier.citedreferenceTomlinson BE, Irving D. The numbers of limb motor neurons in the human lumbosacral cord throughout life. J. Neurol. Sci. 1977; 34: 213 – 19.en_US
dc.identifier.citedreferenceKanda K, Hashizume K, Nomoto E, Asaki S. The effects of aging on physiological properties of fast and slow twitch motor units in the rat gastrocnemius. Neurosci. Res. 1986; 3: 242 – 6.en_US
dc.identifier.citedreferenceAndersson AM, Olsen M, Zhernosekov D et al. Age-related changes in expression of the neural cell adhesion molecule in skeletal muscle: A comparative study of newborn, adult and aged rats. Biochem. J. 1993; 290: 641 – 8.en_US
dc.identifier.citedreferenceBrown MC, Holland RL, Hopkins WG. Motor nerve sprouting. Annu. Rev. Neurosci. 1981; 4: 17 – 42.en_US
dc.identifier.citedreferenceWilson GJ, Newton RU, Murphy AJ, Humphries BJ. The optimal training load for the development of dynamic athletic performance. Med. Sci. Sports Exerc. 1993; 25: 1279 – 86.en_US
dc.identifier.citedreferenceSvantesson U, Grimby G, Thomee R. Potentiation of concentric plantar flexion torque following eccentric and isometric muscle actions. Acta Physiol. Scand. 1994; 152: 287 – 93.en_US
dc.identifier.citedreferenceVerdery RB. Failure to thrive in old age: Follow-up on a workshop. J. Gerontol. A Biol. Sci. Med. Sci. 1997; 52: M333 – 6.en_US
dc.identifier.citedreferenceLopez ME, Zainal TA, Chung SS, Aiken JM, Weindruch R. Oxidative stress and the pathogenesis of sarcopenia. In: Sen CK, Packer L, Hanninen O (eds). Handbook of Oxidants and Antioxidants in Exercise. Elsevier, Oxford. 2000; 831 – 80.en_US
dc.identifier.citedreferenceVander A, Sherman J, Luciano D. Muscle. In: Human Physiology. The Mechanisms of Body Function, 8th edn. McGraw-Hill, Boston. 2001; Ch. II, pp. 291 – 332.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.