Show simple item record

Governor of the glnAp2 promoter of Escherichia coli

dc.contributor.authorAtkinson, Mariette R.en_US
dc.contributor.authorPattaramanon, Narinpornen_US
dc.contributor.authorNinfa, Alexander J.en_US
dc.date.accessioned2010-06-01T22:24:34Z
dc.date.available2010-06-01T22:24:34Z
dc.date.issued2002-12en_US
dc.identifier.citationAtkinson, Mariette R.; Pattaramanon, Narinporn; Ninfa, Alexander J. (2002). "Governor of the glnAp2 promoter of Escherichia coli ." Molecular Microbiology 46(5): 1247-1257. <http://hdl.handle.net/2027.42/75402>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/75402
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12453212&dopt=citationen_US
dc.description.abstractLow-affinity sites for the activator NRI∼P (NtrC∼P) that map between the enhancer and the glnAp2 promoter were responsible for limiting promoter activity at high concentrations of NRI∼P in intact cells and in an in vitro transcription system consisting of purified bacterial components. That is, the low-affinity sites constitute a ‘governor’, limiting the maximum promoter activity. As the governor sites are themselves far from the promoter, they apparently act either by preventing the formation of the activation DNA loop that brings the enhancer-bound activator and the promoter-bound polymerase into proximity or by preventing a productive interaction between the enhancer-bound activator and polymerase. The combination of potent enhancer and governor sites at the glnAp2 promoter provides for efficient activation of the promoter when the activator concentration is low, while limiting the maximum level of promoter activity when the activator concentration is high.en_US
dc.format.extent237095 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rightsBlackwell Science, 2002en_US
dc.titleGovernor of the glnAp2 promoter of Escherichia colien_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA.en_US
dc.identifier.pmid12453212en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/75402/1/j.1365-2958.2002.03211.x.pdf
dc.identifier.doi10.1046/j.1365-2958.2002.03211.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAtkinson, M. R., and Ninfa, A. J. ( 1994 ) Mechanism and regulation of transcription from bacterial Σ 54 -dependent promoters. In Transcription: Mechanisms and Regulation. Conaway, R. C., and Conaway, J. W. (eds). New York: Raven Press, pp. 323 – 342.en_US
dc.identifier.citedreferenceAtkinson, M. R., Blauwkamp, T. A., Bondarenko, V., Studitsky, V., and Ninfa, A. J. ( 2002 ) Activation of the glnA, glnK, and nac promoters as Escherichia coli undergoes the transition from nitrogen-excess growth to nitrogen starvation. J Bacteriol 184: 5358 – 5363.en_US
dc.identifier.citedreferenceBackman, K., Chen, Y. -M., and Magasanik, B. ( 1981 ) Physical and genetic characterization of the glnA–glnG region of the Escherichia coli chromosome. Proc Natl Acad Sci USA 78: 3743 – 3747.en_US
dc.identifier.citedreferenceBlauwkamp, T. A., and Ninfa, A. J. ( 2002a ) Physiological role of the GlnK signal transduction protein of Escherichia coli: survival of nitrogen starvation. Mol Microbiol 46: 203 – 214.en_US
dc.identifier.citedreferenceBlauwkamp, T. A., and Ninfa, A. J. ( 2002b ) Nac-mediated repression of the serA promoter of Escherichia coli. Mol Microbiol 45: 351 – 363.en_US
dc.identifier.citedreferenceBondarenko, V., Liu, Y., Ninfa, A., and Studitsky, V. M. ( 2002 ) Action of prokaryotic enhancer over a distance does not require continued presence of promoter-bound sigma54 subunit. Nucleic Acids Res 30: 636 – 642.en_US
dc.identifier.citedreferenceBueno, R., Pahel, G., and Magasanik, B. ( 1985 ) Role of glnB and glnD gene products in regulation of the glnALG operon of Escherichia coli. J Bacteriol 164: 816 – 822.en_US
dc.identifier.citedreferenceCarmona, M., and Magasanik, B. ( 1996 ) Activation of transcription at Σ 54 -dependant promoters on linear DNA templates requires intrinsic or induced bending of DNA. J Mol Biol 261: 348 – 356.en_US
dc.identifier.citedreferenceChen, Y. -M., Backman, K., and Magasanik, B. ( 1982 ) Characterization of a gene, glnL, the product of which is involved in the regulation of nitrogen utilization in Escherichia coli. J Bacteriol 150: 214 – 220.en_US
dc.identifier.citedreferenceClaverie-Martin, F., and Magasanik, B. ( 1991 ) Role of integration host factor in the regulation of the glnHp2 promoter of Escherichia coli. Proc Natl Acad Sci USA 88: 1631 – 1635.en_US
dc.identifier.citedreferenceElliot, T. ( 1992 ) A method for constructing single-copy lac fusions in Salmonella typhimurium and its application to the hemA–pfrA operon. J Bacteriol 174: 245 – 253.en_US
dc.identifier.citedreferenceElliot, T., and Geiduschek, E. P. ( 1984 ) Defining a bacteriophage T4 late promoter: absence of a ‘−35’ region. Cell 36: 211 – 219.en_US
dc.identifier.citedreferenceFeng, J., Goss, T. J., Bender, R. A., and Ninfa, A. J. ( 1995a ) Activation of transcription initiation from the nac promoter of Klebsiella aerogenes. J Bacteriol 177: 5523 – 5534.en_US
dc.identifier.citedreferenceFeng, J., Goss, T. J., Bender, R. A., and Ninfa, A. J. ( 1995b ) Repression of the Klebsiella aerogenes nac promoter. J Bacteriol 177: 5535 – 5538.en_US
dc.identifier.citedreferenceHirschman, J., Wong, P. -K., Sei, K., Keener, J., and Kustu, S. ( 1985 ) Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate g lnA transcription in vitro: evidence that the ntrA product is a Σ factor. Proc Natl Acad Sci USA 82: 7525 – 7529.en_US
dc.identifier.citedreferenceHoover, T. R., Santero, E., Proter, S.. and Kustu, S. ( 1990 ) The integration host factor stimulates interaction of RNA polymerase with NifA, the transcriptional activator of nitrogen fixation operons. Cell 63: 11 – 22.en_US
dc.identifier.citedreferenceKustu, S., Santero, E., Pophan, D., and Keener, J. ( 1989 ) Expression of Σ 54 ( ntrA )-dependent genes is probably united in a common mechanism. Microbiol Rev 54: 367 – 376.en_US
dc.identifier.citedreferenceLiu, Y., Bondarenko, V., Ninfa, A., and Studitsky, V. M. ( 2002 ) DNA supercoiling allows enhancer action over a large distance. Proc Natl Acad Sci USA 98: 14883 – 14888.en_US
dc.identifier.citedreferenceNinfa, A. J., and Magasanik, B. ( 1986 ) Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc Natl Acad Sci USA 83: 5909 – 5913.en_US
dc.identifier.citedreferenceNinfa, A., Ueno-Nishio, S., Hunt, T. P., Robustell, B., and Magasanik, B. ( 1986 ) Purification of nitrogen regulator II, the product of the glnL ( ntrB ) gene of Escherichia coli. J Bacteriol 168: 1002 – 1004.en_US
dc.identifier.citedreferenceNinfa, A. J., Reitzer, L. J., and Magasanik, B. ( 1987 ) Initiation of transcription at the bacterial glnAp2 promoter by purified E. coli components is facilitated by enhancers. Cell 50: 1039 – 1046.en_US
dc.identifier.citedreferenceNinfa, A. J., Brodsky, E., and Magasanik, B. ( 1989 ) The role of NRI-phosphate in the activation of transcription from the nitrogen regulated promoter glnap2 of Escherichia coli. In DNA–Protein Interactions in Transcription. Gralla, J.D. (ed.). New York: Alan R. Liss, pp. 43 – 52.en_US
dc.identifier.citedreferenceNinfa, A. J., Jiang, P., Atkinson, M. R., and Peliska, J. A. ( 2000 ) Integration of antagonistic signals in the regulation of nitrogen assimilation in Escherichia coli. Curr Topics Cell Regul 36: 31 – 75.en_US
dc.identifier.citedreferencePahel, G., Zelentz, A. D., and Tyler, B. M. ( 1978 ) gltB gene and regulation of nitrogen metabolism by glutamine synthetase in Escherichia coli. J Bacteriol 133: 139 – 148.en_US
dc.identifier.citedreferencePahel, G., Rothstein, D. M., and Magasanik, B. ( 1982 ) Complex glnA–glnL–glnG operon of Escherichia coli. J Bacteriol 150: 202 – 213.en_US
dc.identifier.citedreferencePopham, D. L., Szeto, D., Keener, J., and Kustu, S. ( 1989 ) Function of a bacterial activator protein that binds to transcriptional enhancers. Science 243: 629 – 635.en_US
dc.identifier.citedreferencePorter, S. C., North, A. K., Wedel, A. B., and Kustu, S. ( 1993 ) Oligomerization of NTRC at the glnA enhancer is required for transcriptional activation. Genes Dev 7: 2258 – 2273.en_US
dc.identifier.citedreferenceReitzer, L. J., and Magasanik, B. ( 1985 ) Expression of glnA in Escherichia coli is regulated at tandem promoters. Proc Natl Acad Sci USA 82: 1979 – 1983.en_US
dc.identifier.citedreferenceReitzer, L. J., and Magasanik, B. ( 1986 ) Transcription of glnA. E. coli is stimulated by activator bound to sites far from the promoter. Cell 45: 785 – 792.en_US
dc.identifier.citedreferenceRhee, S. G., Chock, P. B., and Stadtman, E. R. ( 1985 ) Glutamine synthetase from Escherichia coli. Methods Enzymol 113: 213 – 241.en_US
dc.identifier.citedreferenceSasse-Dwight, S., and Gralla, J. D. ( 1988 ) Probing the Escherichia coli glnALG upstream activation mechanism in vivo. Proc Natl Acad Sci USA 85: 8934 – 8938.en_US
dc.identifier.citedreferenceSchneider, B. L., Shiau, S., and Reitzer, L. J. ( 1991 ) Role of multiple environmental stimuli in control of transcription from a nitrogen-regulated promoter in Escherichia coli with weak or no activator-binding sites. J Bacteriol 173: 6355 – 6363.en_US
dc.identifier.citedreferenceShiau, S. -P., Schneider, B. L., Gu, W., and Reitzer, L. J. ( 1992 ) Role of nitrogen regulator I (NtrC), the transcriptional activator of glnA in enteric bacteria, in reducing expression of glnA during nitrogen-limiting growth. J Bacteriol 174: 179 – 185.en_US
dc.identifier.citedreferenceSilhavy, T. J., Berman, M. L., and Enquist, L. W. ( 1984 ) Experiments with Gene Fusions. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 107 – 111.en_US
dc.identifier.citedreferenceSimons, R. W., Houman, F., and Kleckner, N. ( 1987 ) Improved single copy and multicopy lac -based cloning vectors for protein and operon fusions. Gene 53: 85 – 96.en_US
dc.identifier.citedreferenceSu, W., Porter, S., Kustu, S., and Echols, H. ( 1990 ) DNA-looping and enhancer activity. association between DNA-bound NtrC activator and RNA polymerase at the glnA promoter. Proc Natl Acad Sci USA 87: 5504 – 5508.en_US
dc.identifier.citedreferenceWedel, A., Weiss, D. S., Popham, D., Droge, P., and Kustu, S. ( 1990 ) A bacterial enhancer functions to tether a transcriptional activator near a promoter. Science 248: 486 – 490.en_US
dc.identifier.citedreferenceWeiss, D. S., Batut, J., Klose, K. E., Keener, J., and Kustu, S. ( 1991 ) The phosphorylated form of the enhancer-binding protein NtrC has an ATPase activity that is essential for activation of transcription. Cell 67: 155 – 167.en_US
dc.identifier.citedreferenceWeiss, V., Claverie-Martin, F., and Magasanik, B. ( 1992 ) Phosphorylation of nitrogen regulator I of Escherichia coli induces strong cooperative binding to DNA essential for activation of transcription. Proc Natl Acad Sci USA 89: 5088 – 5092.en_US
dc.identifier.citedreferenceYanisch-Perron, C., Vieira, J., and Messing, J. ( 1985 ) Improved M13 cloning vectors and host strains. nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103 – 119.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.