Biological systems of the host cell involved in Agrobacterium infection
dc.contributor.author | Citovsky, Vitaly | en_US |
dc.contributor.author | Kozlovsky, Stanislav V. | en_US |
dc.contributor.author | Lacroix, Benoît | en_US |
dc.contributor.author | Zaltsman, Adi | en_US |
dc.contributor.author | Dafny-Yelin, Mery | en_US |
dc.contributor.author | Vyas, Shachi | en_US |
dc.contributor.author | Tovkach, Andriy | en_US |
dc.contributor.author | Tzfira, Tzvi | en_US |
dc.date.accessioned | 2010-06-01T22:26:02Z | |
dc.date.available | 2010-06-01T22:26:02Z | |
dc.date.issued | 2007-01 | en_US |
dc.identifier.citation | Citovsky, Vitaly; Kozlovsky, Stanislav V.; Lacroix, BenoÎt; Zaltsman, Adi; Dafny-Yelin, Mery; Vyas, Shachi; Tovkach, Andriy; Tzfira, Tzvi (2007). "Biological systems of the host cell involved in Agrobacterium infection." Cellular Microbiology 9(1): 9-20. <http://hdl.handle.net/2027.42/75425> | en_US |
dc.identifier.issn | 1462-5814 | en_US |
dc.identifier.issn | 1462-5822 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/75425 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17222189&dopt=citation | en_US |
dc.description.abstract | Genetic transformation of plants by Agrobacterium , which in nature causes neoplastic growths, represents the only known case of trans -kingdom DNA transfer. Furthermore, under laboratory conditions, Agrobacterium can also transform a wide range of other eukaryotic species, from fungi to sea urchins to human cells. How can the Agrobacterium virulence machinery function in such a variety of evolutionarily distant and diverse species? The answer to this question lies in the ability of Agrobacterium to hijack fundamental cellular processes which are shared by most eukaryotic organisms. Our knowledge of these host cellular functions is critical for understanding the molecular mechanisms that underlie genetic transformation of eukaryotic cells. This review outlines the bacterial virulence machinery and provides a detailed discussion of seven major biological systems of the host cell–cell surface receptor arrays, cellular motors, nuclear import, chromatin targeting, targeted proteolysis, DNA repair, and plant immunity – thought to participate in the Agrobacterium -mediated genetic transformation. | en_US |
dc.format.extent | 471769 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.rights | © 2006 The Authors; Journal compilation © 2006 Blackwell Publishing Ltd | en_US |
dc.title | Biological systems of the host cell involved in Agrobacterium infection | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA. | en_US |
dc.contributor.affiliationother | Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794, USA. | en_US |
dc.identifier.pmid | 17222189 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/75425/1/j.1462-5822.2006.00830.x.pdf | |
dc.identifier.doi | 10.1111/j.1462-5822.2006.00830.x | en_US |
dc.identifier.source | Cellular Microbiology | en_US |
dc.identifier.citedreference | Abu-Arish, A., Frenkiel-Krispin, D., Fricke, T., Tzfira, T., Citovsky, V., Grayer Wolf, S., and Elbaum, M. ( 2004 ) Three-dimensional reconstruction of Agrobacterium VirE2 protein with single-stranded DNA. J Biol Chem 279: 25359 – 25363. | en_US |
dc.identifier.citedreference | Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., et al. ( 2003 ) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653 – 657. | en_US |
dc.identifier.citedreference | van Attikum, H., and Hooykaas, P.J.J. ( 2003 ) Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Acids Res 31: 826 – 832. | en_US |
dc.identifier.citedreference | van Attikum, H., Bundock, P., and Hooykaas, P.J.J. ( 2001 ) Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO J 20: 6550 – 6558. | en_US |
dc.identifier.citedreference | van Attikum, H., Bundock, P., Overmeer, R.M., Lee, L.Y., Gelvin, S.B., and Hooykaas, P.J.J. ( 2003 ) The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Res 31: 4247 – 4255. | en_US |
dc.identifier.citedreference | Avivi, Y., Morad, V., Ben-Meir, H., Zhao, J., Kashkush, K., Tzfira, T., et al. ( 2004 ) Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality. Dev Dyn 230: 12 – 22. | en_US |
dc.identifier.citedreference | BakÓ, L., Umeda, M., Tiburcio, A.F., Schell, J., and Koncz, C. ( 2003 ) The VirD2 pilot protein of Agrobacterium -transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci USA 100: 10108 – 10113. | en_US |
dc.identifier.citedreference | Ballas, N., and Citovsky, V. ( 1997 ) Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94: 10723 – 10728. | en_US |
dc.identifier.citedreference | Bartel, B., and Bartel, D.P. ( 2003 ) MicroRNAs: at the root of plant development? Plant Physiol 132: 709 – 717. | en_US |
dc.identifier.citedreference | Bisaro, D.M. ( 2006 ) Silencing suppression by geminivirus proteins. Virology 344: 158 – 168. | en_US |
dc.identifier.citedreference | Burr, T.J., Bazzi, C., Sule, S., and Otten, L. ( 1998 ) Crown gall of grape: biology of Agrobacterium vitis and the development of disease control strategies. Plant Dis 82: 1288 – 1297. | en_US |
dc.identifier.citedreference | Chilton, M.D., and Que, Q. ( 2003 ) Targeted integration of T-DNA into the tobacco genome at double-strand breaks: new insights on the mechanism of T-DNA integration. Plant Physiol 133: 956 – 965. | en_US |
dc.identifier.citedreference | Christie, P.J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S., and Cascales, E. ( 2005 ) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59: 451 – 485. | en_US |
dc.identifier.citedreference | Citovsky, V., Zupan, J., Warnick, D., and Zambryski, P.C. ( 1992 ) Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256: 1802 – 1805. | en_US |
dc.identifier.citedreference | Citovsky, V., Warnick, D., and Zambryski, P.C. ( 1994 ) Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc Natl Acad Sci USA 91: 3210 – 3214. | en_US |
dc.identifier.citedreference | Citovsky, V., Kapelnikov, A., Oliel, S., Zakai, N., Rojas, M.R., Gilbertson, R.L., et al. ( 2004 ) Protein interactions involved in nuclear import of the Agrobacterium VirE2 protein in vivo and in vitro. J Biol Chem 279: 29528 – 29533. | en_US |
dc.identifier.citedreference | Deng, W., Chen, L., Wood, D.W., Metcalfe, T., Liang, X., Gordon, M.P., et al. ( 1998 ) Agrobacterium VirD2 protein interacts with plant host cyclophilins. Proc Natl Acad Sci USA 95: 7040 – 7045. | en_US |
dc.identifier.citedreference | Ditt, R.F., Nester, E.W., and Comai, L. ( 2001 ) Plant gene expression response to Agrobacterium tumefaciens. Proc Natl Acad Sci USA 98: 10954 – 10959. | en_US |
dc.identifier.citedreference | Ditt, R.F., Nester, E., and Comai, L. ( 2005 ) The plant cell defense and Agrobacterium tumefaciens. FEMS Microbiol Lett 247: 207 – 213. | en_US |
dc.identifier.citedreference | Ditt, R.F., Kerr, K.F., de Figueiredo, P., Delrow, J., Comai, L., and Nester, E.W. ( 2006 ) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant Microbe Interact 19: 665 – 681. | en_US |
dc.identifier.citedreference | Dombek, P., and Ream, L.W. ( 1997 ) Functional domains of Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J Bacteriol 179: 1165 – 1173. | en_US |
dc.identifier.citedreference | Dunoyer, P., Himber, C., and Voinnet, O. ( 2006 ) Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet 38: 258 – 262. | en_US |
dc.identifier.citedreference | Durrant, W.E., and Dong, X. ( 2004 ) Systemic acquired resistance. Annu Rev Phytopathol 42: 185 – 209. | en_US |
dc.identifier.citedreference | Friesner, J., and Britt, A.B. ( 2003 ) Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J 34: 427 – 440. | en_US |
dc.identifier.citedreference | Gallego, M.E., Bleuyard, J.Y., Daoudal-Cotterell, S., Jallut, N., and White, C.I. ( 2003 ) Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 35: 557 – 565. | en_US |
dc.identifier.citedreference | Gaspar, Y.M., Nam, J., Schultz, C.J., Lee, L.Y., Gilson, P.R., Gelvin, S.B., and Bacic, A. ( 2004 ) Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant ( rat1) that results in a decreased efficiency of Agrobacterium transformation. Plant Physiol 135: 2162 – 2171. | en_US |
dc.identifier.citedreference | Gelvin, S.B. ( 1998 ) Agrobacterium VirE2 proteins can form a complex with T strands in the plant cytoplasm. J Bacteriol 180: 4300 – 4302. | en_US |
dc.identifier.citedreference | Gelvin, S.B. ( 2003 ) Agrobacterium -mediated plant transformation: the biology behind the ‘gene-jockeying’ tool. Microbiol Mol Biol Rev 67: 16 – 37. | en_US |
dc.identifier.citedreference | Guralnick, B., Thomsen, G., and Citovsky, V. ( 1996 ) Transport of DNA into the nuclei of Xenopus oocytes by a modified VirE2 protein of Agrobacterium. Plant Cell 8: 363 – 373. | en_US |
dc.identifier.citedreference | Henry, T., Gorvel, J.P., and Meresse, S. ( 2006 ) Molecular motors hijacking by intracellular pathogens. Cell Microbiol 8: 23 – 32. | en_US |
dc.identifier.citedreference | Hirooka, T., and Kado, C.I. ( 1986 ) Location of the right boundary of the virulence region on Agrobacterium tumefaciens plasmid pTiC58 and a host specifying gene next to the boundary. J Bacteriol 168: 237 – 243. | en_US |
dc.identifier.citedreference | Ho, M.S., Tsai, P.I., and Chien, C.T. ( 2006 ) F-box proteins: the key to protein degradation. J Biomed Sci 13: 181 – 191. | en_US |
dc.identifier.citedreference | Howard, E., Zupan, J., Citovsky, V., and Zambryski, P.C. ( 1992 ) The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell 68: 109 – 118. | en_US |
dc.identifier.citedreference | Hwang, H.H., and Gelvin, S.B. ( 2004 ) Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16: 3148 – 3167. | en_US |
dc.identifier.citedreference | Jasin, M. ( 1996 ) Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 12: 224 – 228. | en_US |
dc.identifier.citedreference | Kado, C.I. ( 2000 ) The role of the T-pilus in horizontal gene transfer and tumorigenesis. Curr Opin Microbiol 3: 643 – 648. | en_US |
dc.identifier.citedreference | Koukolikova-Nicola, Z., Raineri, D., Stephens, K., Ramos, C., Tinland, B., Nester, E.W., and Hohn, B. ( 1993 ) Genetic analysis of the virD operon of Agrobacterium tumefaciens: a search for functions involved in transport of T-DNA into the plant cell nucleus and in T-DNA integration. J Bacteriol 175: 723 – 731. | en_US |
dc.identifier.citedreference | Lacroix, B., Vaidya, M., Tzfira, T., and Citovsky, V. ( 2005 ) The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO J 24: 428 – 437. | en_US |
dc.identifier.citedreference | Lacroix, B., Tzfira, T., Vainstein, A., and Citovsky, V. ( 2006a ) A case of promiscuity: Agrobacterium 's endless hunt for new partners. Trends Genet 22: 29 – 37. | en_US |
dc.identifier.citedreference | Lacroix, B., Li, J., Tzfira, T., and Citovsky, V. ( 2006b ) Will you let me use your nucleus? How Agrobacterium gets its T-DNA expressed in the host plant cell. Can J Physiol Pharmacol 84: 333 – 345. | en_US |
dc.identifier.citedreference | Lai, E.M., and Kado, C.I. ( 2000 ) The T-pilus of Agrobacterium tumefaciens. Trends Microbiol 8: 361 – 369. | en_US |
dc.identifier.citedreference | Li, J., Krichevsky, A., Vaidya, M., Tzfira, T., and Citovsky, V. ( 2005a ) Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proc Natl Acad Sci USA 102: 5733 – 5738. | en_US |
dc.identifier.citedreference | Li, J., Vaidya, M., White, C., Vainstein, A., Citovsky, V., and Tzfira, T. ( 2005b ) Involvement of KU80 in T-DNA integration in plant cells. Proc Natl Acad Sci USA 102: 19231 – 19236. | en_US |
dc.identifier.citedreference | Liu, P., and Nester, E.W. ( 2006 ) Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of A grobacterium tumefaciens C58. Proc Natl Acad Sci USA 103: 4658 – 4662. | en_US |
dc.identifier.citedreference | Loyter, A., Rosenbluh, J., Zakai, N., Li, J., Kozlovsky, S.V., Tzfira, T., and Citovsky, V. ( 2005 ) The plant VirE2 interacting protein 1. A molecular link between the Agrobacterium T-complex and the host cell chromatin? Plant Physiol 138: 1318 – 1321. | en_US |
dc.identifier.citedreference | Luby-Phelps, K. ( 2000 ) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192: 189 – 221. | en_US |
dc.identifier.citedreference | McCullen, C.A., and Binns, A.N. ( 2006 ) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22: 101 – 127. | en_US |
dc.identifier.citedreference | Mysore, K.S., Bassuner, B., Deng, X.B., Darbinian, N.S., Motchoulski, A., Ream, L.W., and Gelvin, S.B. ( 1998 ) Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. Mol Plant Microbe Interact 11: 668 – 683. | en_US |
dc.identifier.citedreference | Mysore, K.S., Nam, J., and Gelvin, S.B. ( 2000a ) An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci USA 97: 948 – 953. | en_US |
dc.identifier.citedreference | Mysore, K.S., Kumar, C.T., and Gelvin, S.B. ( 2000b ) Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. Plant J 21: 9 – 16. | en_US |
dc.identifier.citedreference | Nagai, H., and Roy, C.R. ( 2003 ) Show me the substrates: modulation of host cell function by type IV secretion systems. Cell Microbiol 5: 373 – 383. | en_US |
dc.identifier.citedreference | NÜrnberger, T., Brunner, F., Kemmerling, B., and Piater, L. ( 2004 ) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198: 249 – 266. | en_US |
dc.identifier.citedreference | Paulsson, M., and Wadstrom, T. ( 1990 ) Vitronectin and type-I collagen binding by Staphylococcus aureus and coagulase-negative streptococci. FEMS Microbiol Immunol 65: 55 – 62. | en_US |
dc.identifier.citedreference | Regensburg-Tuink, A.J., and Hooykaas, P.J.J. ( 1993 ) Transgenic N. glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature 363: 69 – 71. | en_US |
dc.identifier.citedreference | Rhee, Y., Gurel, F., Gafni, Y., Dingwall, C., and Citovsky, V. ( 2000 ) A genetic system for detection of protein nuclear import and export. Nat Biotechnol 18: 433 – 437. | en_US |
dc.identifier.citedreference | Salman, H., Abu-Arish, A., Oliel, S., Loyter, A., Klafter, J., Granek, R., and Elbaum, M. ( 2005 ) Nuclear localization signal peptides induce molecular delivery along microtubules. Biophys J 89: 2134 – 2145. | en_US |
dc.identifier.citedreference | Salomon, S., and Puchta, H. ( 1998 ) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17: 6086 – 6095. | en_US |
dc.identifier.citedreference | Schrammeijer, B., Risseeuw, E., Pansegrau, W., Regensburg-TuÏnk, T.J.G., Crosby, W.L., and Hooykaas, P.J.J. ( 2001 ) Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr Biol 11: 258 – 262. | en_US |
dc.identifier.citedreference | Shaked, H., Melamed-Bessudo, C., and Levy, A.A. ( 2005 ) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci USA 102: 12265 – 12269. | en_US |
dc.identifier.citedreference | Sheng, J., and Citovsky, V. ( 1996 ) Agrobacterium –plant cell interaction: have virulence proteins – will travel. Plant Cell 8: 1699 – 1710. | en_US |
dc.identifier.citedreference | Ye, G.N., Stone, D., Pang, S.Z., Creely, W., Gonzalez, K., and Hinchee, M. ( 1999 ) Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J 19: 249 – 257. | en_US |
dc.identifier.citedreference | Swart, S., Logman, T.J., Smit, G., Lugtenberg, B.J., and Kijne, J.W. ( 1994 ) Purification and partial characterization of a glycoprotein from pea ( Pisum sativum ) with receptor activity for rhicadhesin, an attachment protein of Rhizobiaceae. Plant Mol Biol 24: 171 – 183. | en_US |
dc.identifier.citedreference | Tao, Y., Rao, P.K., Bhattacharjee, S., and Gelvin, S.B. ( 2004 ) Expression of plant protein phosphatase 2C interferes with nuclear import of the Agrobacterium T-complex protein VirD2. Proc Natl Acad Sci USA 101: 5164 – 5169. | en_US |
dc.identifier.citedreference | Tzfira, T. ( 2006 ) On tracks and locomotives: the long route of DNA to the nucleus. Trends Microbiol 14: 61 – 63. | en_US |
dc.identifier.citedreference | Tzfira, T., Rhee, Y., Chen, M.-H., and Citovsky, V. ( 2000 ) Nucleic acid transport in plant–microbe interactions: the molecules that walk through the walls. Annu Rev Microbiol 54: 187 – 219. | en_US |
dc.identifier.citedreference | Tzfira, T., Vaidya, M., and Citovsky, V. ( 2001 ) VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20: 3596 – 3607. | en_US |
dc.identifier.citedreference | Tzfira, T., Vaidya, M., and Citovsky, V. ( 2002 ) Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis VIP1 gene. Proc Natl Acad Sci USA 99: 10435 – 10440. | en_US |
dc.identifier.citedreference | Tzfira, T., Frankmen, L., Vaidya, M., and Citovsky, V. ( 2003 ) Site-specific integration of Agrobacterium T-DNA via double-stranded intermediates. Plant Physiol 133: 1011 – 1023. | en_US |
dc.identifier.citedreference | Tzfira, T., Vaidya, M., and Citovsky, V. ( 2004a ) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431: 87 – 92. | en_US |
dc.identifier.citedreference | Tzfira, T., Li, J., Lacroix, B., and Citovsky, V. ( 2004b ) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20: 375 – 383. | en_US |
dc.identifier.citedreference | Veena, Doerge, R.W., and Gelvin, S.B. ( 2003 ) Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35: 219 – 236. | en_US |
dc.identifier.citedreference | Vergunst, A.C., Schrammeijer, B., den Dulk-Ras, A., de Vlaam, C.M.T., Regensburg-Tuink, T.J., and Hooykaas, P.J.J. ( 2000 ) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290: 979 – 982. | en_US |
dc.identifier.citedreference | Villemont, E., Dubois, F., Sangwan, R.S., Vasseur, G., Bourgeois, Y., and Sangwan-Norreel, B.S. ( 1997 ) Role of the host cell cycle in the Agrobacterium -mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer. Planta 201: 160 – 172. | en_US |
dc.identifier.citedreference | Wagner, V.T., and Matthysse, A.G. ( 1992 ) Involvement of vitronectin-like protein in attachment of Agrobacterium tumefaciens to carrot suspension culture cells. J Bacteriol 174: 5999 – 6003. | en_US |
dc.identifier.citedreference | Yi, H., Mysore, K.S., and Gelvin, S.B. ( 2002 ) Expression of the Arabidopsis histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation. Plant J 32: 285 – 298. | en_US |
dc.identifier.citedreference | Zhu, Y., Nam, J., Carpita, N.C., Matthysse, A.G., and Gelvin, S.B. ( 2003a ) Agrobacterium -mediated root transformation is inhibited by mutation of an Arabidopsis cellulose synthase-like gene. Plant Physiol 133: 1000 – 1010. | en_US |
dc.identifier.citedreference | Zhu, Y., Nam, J., Humara, J.M., Mysore, K., Lee, L.Y., Cao, H., et al. ( 2003b ) Identification of Arabidopsis rat mutants. Plant Physiol 132: 494 – 505. | en_US |
dc.identifier.citedreference | Ziemienowicz, A., GÖrlich, D., Lanka, E., Hohn, B., and Rossi, L. ( 1999 ) Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacterium. Proc Natl Acad Sci USA 96: 3729 – 3733. | en_US |
dc.identifier.citedreference | Ziemienowicz, A., Merkle, T., Schoumacher, F., Hohn, B., and Rossi, L. ( 2001 ) Import of Agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. Plant Cell 13: 369 – 384. | en_US |
dc.identifier.citedreference | Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., and Felix, G. ( 2006 ) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium -mediated transformation. Cell 125: 749 – 760. | en_US |
dc.identifier.citedreference | Zupan, J., Citovsky, V., and Zambryski, P.C. ( 1996 ) Agrobacterium VirE2 protein mediates nuclear uptake of ssDNA in plant cells. Proc Natl Acad Sci USA 93: 2392 – 2397. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.